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Constructing PCA Baseline Algorithms to Reevaluate
ICA-Based Face-Recognition Performance

Jian Yang, David Zhang, and Jing-Yu Yang

Abstract—The literature on independent component analysis (ICA)-
based face recognition generally evaluates its performance using stan-
dard principal component analysis (PCA) within two architectures, ICA
Architecture I and ICA Architecture II. In this correspondence, we analyze
these two ICA architectures and find that ICA Architecture I involves
a vertically centered PCA process (PCA I), while ICA Architecture II
involves a whitened horizontally centered PCA process (PCA II). Thus,
it makes sense to use these two PCA versions as baselines to reevaluate
the performance of ICA-based face-recognition systems. Experiments on
the FERET, AR, and AT&T face-image databases showed no significant
differences between ICA Architecture I (II) and PCA I (II), although ICA
Architecture I (or II) may, in some cases, significantly outperform standard
PCA. It can be concluded that the performance of ICA strongly depends
on the PCA process that it involves. Pure ICA projection has only a trivial
effect on performance in face recognition.

Index Terms—Face recognition, feature extraction, image represen-
tation, independent component analysis (ICA), principal component
analysis (PCA).

I. INTRODUCTION

Face recognition has attracted significant attention in the past
decades because of its potential applications in biometrics, information
security, and law enforcement. Many methods have been suggested
to recognize faces [1]. Perhaps the simplest method is principal
component analysis (PCA). PCA was first used to represent images
of human faces by Sirovich and Kirby in 1987 [2], [3] and was,
subsequently, applied to face recognition by Turk and Pentland [4], [5]
who presented the well-known Eigenfaces method in 1991. Since then,
PCA has been widely investigated and has become one of the most
popular face-recognition approaches [6]–[12].

Recently, a method closely related to PCA, independent component
analysis (ICA) [13], has received wide attention. ICA can be viewed
as a generalization of PCA, since it is concerned not only with
second-order dependencies between variables but also with high-order
dependencies between them. PCA makes the data uncorrelated while
ICA makes the data as independent as possible. Generally, there are
two arguments for using ICA for face representation and recognition.
First, the high-order relationships among image pixels may contain
information that is important in recognition tasks. Second, ICA seeks
to find the directions such that the projections of the data into those
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Fig. 1. Illustration of the ICA process for feature extraction and classification.

directions have maximally “non-Gaussian” distributions. These pro-
jections may be interesting and useful in classification tasks [13], [31].

Bartlett et al. [14], [15] were among the first to apply ICA to
face representation and recognition. They used the Infomax algorithm
[27], [28] to implement ICA and suggested two ICA architectures (i.e.,
ICA Architectures I and II) for face representation. Both architectures
were evaluated on a subset of the FERET face database and were
found to be effective for face recognition [15]. Yuen and Lai [16], [17]
adopted the fixed-point algorithm [29] to obtain the independent
components (ICs) and used a householder transform to gain the least
square solution of a face image for representation. Liu and Wechsler
[18]–[20] used an ICA algorithm given by Comon [26] to perform
ICA and assessed its performance for face identification. All of these
researchers claimed that ICA outperforms PCA in face recognition.
Other researchers, however, reported differently. Baek et al. [21] re-
ported that PCA outperforms ICA while Moghaddam [22] and Jin and
Davoine [23] reported no significant performance difference between
the two methods. Socolinsky and Selinger [24] reported that ICA
outperforms PCA on visible images but PCA outperforms ICA on
infrared images.

Recently, Draper et al. [25] tried to account for these apparently
contradictory results. They retested ICA and PCA on the FERET face
database with 1196 individuals and made a comprehensive comparison
of the performances of the two methods and found that the relative
performance of ICA and PCA mainly depends on the ICA architec-
ture and the distance metric. Their experimental results showed that:
1) ICA Architecture II with the cosine distance significantly outper-
forms PCA with L1 (city block), L2 (Euclidean), and cosine distance
metrics. This is consistent with Bartlett and Liu’s results; 2) PCA with
the L1 distance outperforms ICA Architecture I. This is in favor of
Baek’s results; and 3) ICA Architecture II with L2 still significantly
outperforms PCA with L2, although the degree of significance is
not as great as in the ICA Architecture II with cosine over PCA.
Moreover, it should be noted that this last result is still inconsistent
with Moghaddam and Jin’s results.

An interesting byproduct of comparative research into ICA and PCA
is the finding that different versions of ICA algorithms seem to perform
similarly in face-recognition tasks. Moghaddam [22] showed that the
basis images derived from Hyvärinen’s fixed-point algorithm is very
similar to those from Cardoso’s JADE algorithm [32]. Draper et al.
[25] showed that the performance difference between Infomax algo-
rithm [27] and FastICA [29], [30] is insignificant.

The previous researchers [14]–[25] commonly use standard PCA
as the baseline algorithm to evaluate ICA-based face-recognition sys-
tems. This, however, begs the question as to whether standard PCA is a
good choice for evaluating ICA. The ICA process, as shown in Fig. 1,
involves not only a PCA process but also a whitening step. After the
whitening step, we get the whitened PCA features of data. How is the
performance of these whitened PCA features in contrast to standard
PCA features and ICA features? This issue has not been addressed
yet. The function of the whitening step, particularly its potential effect
on the recognition performance, is still unclear. In the case where the
performance of ICA is significantly different from that of PCA, it is
critically important to determine what causes this difference, whether
it is the whitening process or the subsequent pure ICA projection.

1083-4419/$25.00 © 2007 IEEE
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Fig. 2. Basis images corresponding to ICA Architecture I and ICA
Architecture II. (a) Basis images corresponding to ICA Architecture I. (b) Basis
images corresponding to ICA Architecture II.

If the whitened PCA features can perform as well as ICA features,
it is certainly unnecessary to use a computationally expensive ICA
projection for further processing. It seems that standard PCA is not as
an appropriate baseline algorithm as “PCA + Whitening” (whitened
PCA) for evaluating ICA.

In this correspondence, we analyze two ICA-based image-
representation architectures and find that ICA Architecture I involves a
vertically centered PCA process (PCA I), while ICA Architecture II in-
volves a whitened horizontally centered PCA process (PCA II). There-
fore, it is natural to use these two PCA versions as baseline algorithms
to reevaluate the performance of ICA-based face-recognition systems.

It should be stated that in this correspondence, our goal is not to
find whether ICA or PCA is better but to investigate first what role the
PCA whitening step and centering mode play in the ICA-based face-
recognition system and second what effect the pure ICA projection
has on the performance of face recognition. We also investigate how
the performances of two ICA architectures depend on their related
PCA versions. It is hoped that this investigation may explain why ICA
outperforms PCA in some cases and why not in other cases.

The remainder of correspondence is organized as follows. Section II
describes two ICA-based image-representation architectures and their
corresponding PCA baseline algorithms. In Section III, we apply
these two architectures and baseline algorithms to three face-image
databases and compare their performance. Section IV offers some
conclusions and outlines future work.

II. TWO ICA-BASED IMAGE-REPRESENTATION ARCHITECTURES

AND THEIR CORRESPONDING PCA-BASELINE ALGORITHMS

Regardless of the algorithm that is used, ICA for face recogni-
tion will generally operate within one of two different architectures,
Architecture I or Architecture II. In Architecture I, the observed
face images are viewed as a linear mixture of a set of statistically
independent basis images. ICA is used to recover the set of statis-
tically independent basis images. To represent the image for use in
recognition, ICA makes use of the reconstruction coefficients of a face
image that are derived from these basis images. These coefficients for
coding each image may be mutually dependent, but the basis images
are mutually independent. In Architecture II, however, ICA is used
to find a set of statistically independent coefficients to represent an
image and the resulting basis images may be mutually dependent.
Fig. 2 shows some basis images corresponding to ICA Architecture
I and ICA Architecture II. It is shown that ICA Architecture I provides
a more localized representation for faces, while ICA Architecture II
provides a more holistic representation.

In the following sections, we will analyze these two architectures
and give their corresponding PCA-baseline algorithms.

A. ICA Architecture I and Its Baseline Algorithm PCA I

Given a set of M training samples (image column vectors)
x1,x2, . . . ,xM in R

N , we form the image column data matrix X =
(x1,x2, . . . ,xM ) and its transpose (image row data matrix) Y = XT.

In Architecture I, the face images are viewed as random variables
and the pixel values provide observations of these variables. This
means that ICA is performed on the image row data matrix Y.
Rewriting Y = (y1,y2, . . . ,yN ), its column vectors y1,y2, . . . ,yN

are used as observation vectors to estimate the unmixing matrix of the
ICA model.
1) Centering Data: Let us center the data Y in an observation

space R
M and obtain its mean vector µI = E{y} = (1/N)

∑N

j=1
yj .

Denote µI = (µ1, µ2, . . . , µM )T. Actually, µj = E{xj}, that is, the
mean of all pixel values of the image xj . Subtracting the mean vector
µI from each observation vector, that is, yj = (yj − µI), we get the
centered image row data matrix Yh = (y1,y2, . . . ,yN ).

Let us define Xν = YT
h = (x̃1, x̃2, · · · , x̃M ). Xν is called the

vertically centered image column data matrix. Each column x̃j is a
zero-mean image, that is, the original image from whose elements the
mean of all pixel values have been removed.
2) Sphering Data Using PCA: We will sphere the data using PCA

based on the centered observation vectors y1,y2, · · · ,yN . The covari-
ance matrix is given by

ΣI =
1

N

N∑
j=1

yjy
T
j =

1

N
YhY

T
h . (1)

Let Gν = YhY
T
h . Calculate the orthonormal eigenvectors

γ1, γ2, . . . , γm of Gν corresponding to the m largest positive
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm. Then, the m largest positive
eigenvalues of ΣI are λ1/N, λ2/N, . . . , λm/N , and the associated
orthonormal eigenvectors are γ1, γ2, . . . , and γm.

Letting V = (γ1, γ2, . . . , γm) and Λ = diag(λ1, λ2, . . . , λm), we
obtain the whitening matrix P = V[(1/N)Λ]−1/2 =

√
N VΛ−1/2,

such that

PTΣIP = I. (2)

The data matrix Yh = (y1,y2, . . . ,yN ) can be whitened using the
transform

R = PTYh. (3)

Let us construct the following covariance matrix based on
the vertically centered image column data matrix Xν = YT

h =
(x̃1, x̃2, . . . , x̃M ):

Σν =
1

M
XνX

T
ν =

1

M
YT

h Yh. (4)

We may then draw the following conclusion.
Proposition 1: The row vectors of R = PTYh are orthogonal

eigenvectors of Σν corresponding to the m largest positive eigenvalues
λ1/M,λ2/M, . . . , λm/M [36].
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3) ICA Processing: We perform ICA on R, producing the matrix
UI with m independent basis images in its rows, i.e.,

UI = WIR (5)

where WI is the unmixing matrix generated by a given ICA algorithm
based on the input data R.

Taking note that the unmixing matrix must be invertible, from (5),
it follows that

R = W−1
I UI. (6)

After vertically centering and projecting a given image x in a col-
umn vector onto the row vectors of R, we have z = Rx. Since the row
vectors of R are principal eigenvectors of Σν (from Proposition 1),
a minimum-square-error-based representation of x is

x̂ = RTz. (7)

Substituting (6) into (7), we have

x̂ = UT
I

(
W−1

I

)T
z. (8)

Therefore, in the space spanned by the row vectors of UI, i.e., a set
of m statistically independent basis images, the vector of representa-
tion coefficients of image x is given by

s =
(
W−1

I

)T
z =

(
W−1

I

)T
Rx. (9)

This transform can be decomposed into the following two
transforms:

z =Rx (10)

s =
(
W−1

I

)T
z. (11)

Since the row vectors of R are principal eigenvectors of Σν (from
Proposition 1), the transform in (10) is a special PCA transform in
which the data is centered vertically. This transform is thus called
vertically centered PCA.

Because the ICA Architecture I involves a vertically centered PCA
process, it makes sense to evaluate it using this specific PCA as the
baseline algorithm. In this correspondence, the vertically centered
PCA algorithm is referred to as PCA Baseline Algorithm I (PCA
I).Incidentally, if the unmixing matrix WI is orthogonal,1 the equation
W−1

I = WT
I holds. Then, (9) becomes

s = WIRx = UIx. (12)

In this case, we can see that s is obtained by directly projecting the
sample x onto m independent basis images [36].

B. ICA Architecture II and Its Baseline Algorithm PCA II

Given a set of M training samples (image column vectors)
x1,x2, . . . ,xM in R

N , we form the image column data matrix X =
(x1,x2, . . . ,xM ).

The goal of ICA Architecture II is to find statistically independent
coefficients for the input image data. In this architecture, the face
images are viewed as observations, and the pixel values are random
variables. ICA is performed directly on the image column data matrix
X. In other words, x1,x2, . . . ,xM are used as observation vectors to
estimate the unmixing matrix of the ICA model.

1Ideally, the unmixing matrix should be orthogonal, but in practice, it may
be nonorthogonal. Except for FastICA, many ICA algorithms, such as Infomax
algorithm or Comon’s algorithm, result in a nonorthogonal unmixing matrix.

1) Centering Data: Let us center the data in the observation vector
space R

N . The mean vector µII = E{x} = (1/M)
∑M

j=1
xj . Every

observation vector is subtracted by the mean vector µII, i.e., xj ←
(xj − µII), then we get the centered image column data matrix
Xh = (x1,x2, . . . ,xM ). Xh is called the horizontally centered image
column data matrix, in contrast with the vertically centered image
column data matrix Xν , as described in Section II-A.
2) Sphering Data Using PCA: Based on the horizontally centered

image vectors x1,x2, . . . ,xM , we can construct the following covari-
ance matrix:

ΣII =
1

M

M∑
j=1

xjx
T
j =

1

M
XhX

T
h . (13)

Suppose β1, β2, . . . , and βm are the orthonormal eigenvectors
of ΣII corresponding to the m largest positive eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λm. Letting Ph = (β1, β2, . . . , βm), the standard PCA
transform is

z = PT
hx. (14)

Letting Pw = PhΛ−1/2, where Λ = diag(λ1, λ2, . . . , λm), we
have PT

w ΣIIPw = I. Thus, Pw is a whitening matrix. The whitened
PCA transform is

z = PT
wx. (15)

3) ICA Processing: We then perform ICA on the sphered data
z1, z2, . . . , and zM . Suppose the resulting unmixing matrix is WII.
The whole transform matrix UII of ICA Architecture II is

UII = WIIP
T
w. (16)

For a given image x in a column vector, after being horizontally
centered and unmixed by UII, we have

s = UIIx = WIIP
T
wx. (17)

The vector s, containing a set of independent coefficients, is used to
represent the image x for recognition purposes.

It is obvious that the transform in (17) can be decomposed into two
items: A whitened PCA transform z = PT

wx and a pure ICA projection
s = WIIz.

Since the ICA Architecture II involves not only a standard PCA
(horizontally centered PCA) but also a whitened PCA process, the two
PCA processes should be taken as baseline algorithms for evaluating
ICA Architecture II. In this correspondence, the whitened horizontally
centered PCA algorithm is refered to as PCA Baseline Algorithm II
(PCA II).

C. Two ICA Architectures: A Summary

Fig. 3 illustrates two ICA-based image-representation architectures.
Each involves a different version of PCA: ICA Architecture I involves
a vertically centered PCA (PCA I), whereas ICA Architecture II
involves a whitened horizontally centered PCA (PCA II). Standard
PCA removes the mean image of all training samples, while PCA I
removes the mean of each image. PCA II is a whitened version of
standard PCA. It can normalize the variances of coefficients as well
as being able to render these coefficients uncorrelated. To assess the
performance of two ICA architectures, it is necessary to compare them
with the two different versions of PCA as well as with the standard
PCA. In other words, PCA I, PCA II, and standard PCA should all be
used as baseline algorithms to evaluate the ICA.
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Fig. 3. Illustration of two ICA-based image-representation architectures.

Fig. 4. Sample images of one person in the FERET database.

III. EXPERIMENTS AND ANALYSIS

In this section, we evaluate two ICA architectures using PCA I,
PCA II, and standard PCA as baseline algorithms on three face-image
databases: the FERET, AR, and AT&T databases.

A. Experiment Using the FERET Face Database

The FERET face database [34], [35] has become a standard database
for testing and evaluating state-of-the-art face-recognition algorithms.
The basic gallery of the FERET 1996 standard subset contains 1196
face images of 1196 subjects (one image per subject). There are four
sets of probe images used for testing, where the fafb probe set contains
1195 images taken at the same time as the gallery images but with
different facial expressions. The fafc probe set contains 194 images
taken under different lighting conditions. The duplicate I probe set
contains 722 images taken anywhere between 1 min and 1031 days
after their respective gallery matches. Finally, the duplicate II probe set
is a subset of the duplicate I set, containing 234 images taken at least
18 months after their gallery entries. In this correspondence, the face
portion of each original image is automatically cropped based on the
location of eyes and mouth (i.e., the known coordinates of two eyes and
the mouth in the images) and resized to an image of 80×80 pixels. The
resulting image is then preprocessed using a histogram-equalization
algorithm. Fig. 4 shows some example images after preprocessing.
1) Parameter Selection in the ICA Model: As we know, an ICA-

based image-recognition system is generally implemented in two
phases. In the first phase, PCA I (or II) is used for preprocessing,
and in the second phase, a pure ICA projection is performed. It is
difficult, however, to determine how many principle components (PCs)
are required in the PCA phase of ICA. Liu [20] has shown that the
number of PCs selected has a substantial effect on the performance of
ICA-based face-recognition systems.

In this correspondence, we tried to find an optimal number of
PCs, that is, a number which maximizes the performance of ICA.
To this end, 500 images were randomly selected from the gallery to
form the training sample set, and the four probe sets were united
to form a testing set. Here, FastICA [33] with a contrast function
G1(u) = (1/4)u4 (which is closely related to kurtosis) was used as an

Fig. 5. Recognition rates of two ICA architectures versus the number of PCs.

TABLE I
OPTIMAL PARAMETERS FOR TWO ICA ARCHITECTURES

ON THE FERET DATABASE

example to perform parameter selection. Note that, here, there is only
training sample available per class, so the feature selection mechanism
based on the ratio of between-class variance to within-class variance
suggested in [15] cannot be used. Here, ICA features are automatically
ordered by the FastICA code [33]. A nearest neighbor classifier with
cosine distance was employed. Our parameter-selection strategy was to
allow the number of PCs m to vary from 20 to 300 with an interval of
20. For each m, we allowed the number of ICs d to vary from ten to m
with an interval of ten. This produces an optimal d∗

m which maximizes
the recognition rate of the ICA. Finally, we chose an optimal m∗ (and
the corresponding d∗

m) which achieves the best performance. Fig. 5
shows the best recognition rates of ICA Architectures I and II versus
the variation of the PC number m. Table I gives the optimal parameters
corresponding to two ICA architectures.
2) Performance Comparison and Analysis: In this section, we

compare the performance of face-recognition systems using standard
PCA, PCA I, PCA II, and ICA Architectures I and II. In order to
alleviate the effect on the recognition performance caused by the
choice of the training sample set, we run each system ten times.
Each time, the training sample set containing 500 images is randomly
selected from the gallery so that the training sample sets are different
for each of the ten tests.

The projection matrix of each method is obtained by training, and
for each face image, 210 features are extracted for use in recogni-
tion. Here, we calculate the unmixing matrix by using the FastICA
algorithm with the contrast function G1(u) = (1/4)u4. After feature
extraction, we classify using a nearest neighbor classifier with different
distance metrics. Three distance metrics, the L2 distance, the L1
distance, and the cosine distance, are used in standard PCA. Only
the cosine distance is used in ICA Architectures I and II, because this
metric has been shown to be most effective for both of them [25]. As
evaluators of ICA Architectures I and II, PCA I and PCA II also use the
cosine distance. Table II lists the average recognition rate and standard
deviation (std) across ten tests for each method and each probe set.
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TABLE II
AVERAGE RECOGNITION RATES AND STD OF STANDARD PCA, PCA I, PCA II, AND ICA ARCHITECTURES

I AND II USING DIFFERENT DISTANCE METRICS ON THE FERET DATABASE

TABLE III
RECOGNITION RATES OF INFOMAX ICA AND FASTICA WITH DIFFERENT CONTRAST FUNCTIONS

TABLE IV
AVERAGE RECOGNITION RATES AND STD OF STANDARD PCA, PCA I, PCA II, AND ICA ARCHITECTURES

I AND II WITH DIFFERENT TRAINING SAMPLE SIZES ON THE AR DATABASE

Uniting four probe sets as a total testing set, the total recognition rate
of each method is also listed in this table.

There are two main points to be taken from Table II. First, ICA
Architecture II with cosine distance significantly outperforms standard
PCA no matter what distance metric PCA uses. Second, PCA with
L1 distance is slightly better than ICA Architecture I in terms of the
total recognition rate. All of the results in Table II are consistent with
Draper et al.’s studies [25], which concluded that ICA Architecture
II is better than PCA for identifying faces. However, if we reevaluate
the performance of ICA using the proposed PCA-baseline algorithms,
we can draw some very different conclusions. As shown in Table II,
PCA II (I) can perform as well as (even slightly better than) ICA
Architecture II (I). There is no significant performance difference
between ICA Architecture II (I) and PCA II (I). It seems that the
effect of pure ICA projection on the performance of face recognition
is trivial. Given this, we can conclude that the significant performance
difference between ICA Architecture II and standard PCA arises from
the whitening step, rather than from pure ICA projection.

To determine whether the above conclusion depends on the choice
of ICA algorithms or contrast functions adopted in FastICA, we
tested two ICA architectures using an Infomax algorithm and FastICA
with two different contrast functions: G2(u) = (1/a1) log cosh(a1u),
where the parameter a1 = 1; G3(u) = (1/a2) exp(−a2u

2/2), where
the parameter a2 = 1 [30]. Table III shows the average recognition
rates of two ICA architectures corresponding to each ICA algorithm.
Although ICA Architecture I with an Infomax algorithm slightly
outperforms PCA I, this does not make sense, since it performs much
worse than ICA Architecture II. The performance difference between

ICA Architecture I (II) and PCA I (II) stays insignificant, no matter
what ICA algorithm or contrast function is used.

B. Experiment Using the AR Database

The AR face database [40], [41] contains face images with different
facial expressions, under lighting conditions, and with a variety of
occlusions. The pictures of 120 individuals (65 men and 55 women)
were taken in two sessions (separated by two weeks), and each session
of one person contains 13 color images. The nonoccluded 14 face
images (each session with seven) of each person of these 120 in-
dividuals are selected and used in this correspondence. The face
portion of each image is manually cropped and then normalized to
50 × 40 pixels. Please refer to [11] for some sample images.

A training sample set is formed by randomly selecting t images
from each session of each individual. The remaining images are used
for testing. Let t vary from one to four. Thus, the number of training
samples per class k is 2, 4, 6, and 8, respectively. For each k, we
perform 20 random splits and obtain into 20 different training and
testing sets. The first ten training and testing sets are used for ICA
parameter selection and the rest for performance evaluation. Standard
PCA, PCA I, PCA II, and ICA Architectures I and II are used for
face representation. Two ICA algorithms, FastICA and Infomax, are
used within each architecture. Since the number of training samples
per class in this correspondence is larger than one, to select the most
discriminative features for each method, we adopt a feature selection
mechanism based on the ratio of between-class variance to within-
class variance [15]. Finally, we use a nearest neighbor classifier with
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TABLE V
AVERAGE RECOGNITION RATES AND STD OF STANDARD PCA, PCA I, PCA II, AND ICA ARCHITECTURES

I AND II WITH DIFFERENT TRAINING SAMPLE SIZES ON THE ORL DATABASE

cosine distance for classification. The average recognition rate and the
std across ten runs of tests of each method are shown in Table IV.

From Table IV, we can see that both ICA architectures significantly
outperform standard PCA with the same cosine metric. However, the
performance difference between ICA Architecture I (II) and PCA
I (II) is still insignificant, irrespective of the variation in training
sample size. This fact demonstrates again that the effect of pure
ICA projection on the performance of face recognition is trivial. The
significant performance difference between ICA Architecture I and
standard PCA arises from the centering mode rather than from the pure
ICA projection. We know that PCA I centers the data by removing
the mean of each image (i.e., vertical centering) while standard PCA
by removing the mean image of all training samples (i.e., horizontal
centering). Vertical centering may be helpful to recognize faces in
varying illumination, especially that caused by the variation of lighting
intensity. This leads to the result that PCA I outperforms standard PCA
on this database. Moreover, the significant performance difference
between ICA Architecture II and standard PCA in this correspondence
certainly arises from the whitening step.

C. Experiment Using the AT&T Database

The AT&T database (formerly the ORL database) [39] contains face
images from 40 subjects, each providing ten different images. All the
images were taken against a dark homogeneous background with the
subjects in an upright frontal position (with tolerance for some side
movement). For some subjects, the images were taken at different
times, varying the lighting, facial expressions (eyes open or closed,
smiling or not smiling, with or without glasses). Each image is 92 ×
112 pixels, with 256 gray levels per pixel.

On this database, we test and compare the performance of standard
PCA, PCA I, PCA II, and ICA Architectures I and II using the same
procedure as we used on the AR database. The experimental results are
shown in Table V. In this case, we receive very different results. Both
ICA architectures perform worse than standard PCA using the same
cosine metric. However, the difference between ICA Architecture I
(II) and PCA I (II) is still insignificant. This once again demonstrates
that the performance of ICA strongly depends on the PCA process that
it involves and that pure ICA projection has only a trivial effect on
performance in face recognition.

IV. CONCLUSION AND FUTURE WORK

In this correspondence, we examined two ICA-based image repre-
sentation architectures and found that ICA Architecture I involves a
vertically centered PCA process (PCA I), while ICA Architecture II
involves a whitened horizontally centered PCA process (PCA II). We
then used these two PCA versions as baseline algorithms to reevaluate
the performance of ICA-based face-recognition systems. We per-
formed experiments using the FERET, AR, and AT&T face databases
and drew the following conclusions. First, there is no significant per-

formance difference between ICA Architecture I (II) and PCA I (II),
although in some cases, there is a significant difference between ICA
Architecture I (II) and standard PCA. Second, the performance of
ICA strongly depends on the PCA process that it involves. Pure ICA
projection seems to have only a trivial effect on performance in face
recognition. Third, the centering mode and the whitening step in PCA
I (or II) play a central role in inducing the performance difference
between ICA Architecture I (II) and standard PCA.

As demonstrated in our correspondence, the added discriminative
power of the “independent features” produced by pure ICA projection
is not so satisfying. Therefore, the future task is to explore effective
ways to obtain more powerful independent features for face represen-
tation. Recently, Bressan and Vitria [37] proposed class-conditional
ICA (CC-ICA) and, Amoto et al. [38] suggested IC discriminant
analysis (ICDA). Both methods seek to improve the discriminative
power of ICA by embedding class-supervised information into the
ICA model. How to generalize these methods and make them suitable
for small-sample-size face-recognition problems remains, however, an
open question.

Finally, it should be mentioned that Vicente et al.’s paper [42]
can be viewed as a sister work of ours. In their paper, the authors
briefly described the connection between PCA and ICA and argued
that whitened PCA may yield identical results to ICA in some cases.
They also described some specific situations in which whitened PCA
and ICA may perform quite differently.
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