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Abstract Expected marginal seat revenue (EMSR) is a 
well-known method for airline seat inventory control 
airlines. However, this method employs a static model to 
study the dynamic reservation process, and does not take 
into account the risk tolerance of policy makers. Expected 
marginal seat utility (EMSU) replaces revenue by utility, 
which addresses the real situation of seat inventory 
control. However, there is still a lack of multi-leg seat 
control algorithms based on EMSU. Therefore, using 
EMSU and bucket algorithms, this paper applies the 
Markov decision-making process to simulate the flight 
reservation process and builds a dynamic multi-leg seat 
inventory control model. Experimental results validate 
the effectiveness of the proposed method. 
 

Keywords EMSU, Virtual Bucket, Markov Decision-
Making Process, EMSR

                                         
1. Introduction 
 
Airline seat inventory control is about “selling the 
appropriate seat to the right person at the right time” [1]. 
If all the airline’s seats are sold at a cheap price, travellers 
on urgent business cannot buy short-notice tickets just 

before the plane takes off. On the other hand, if too many 
seats are allocated for travellers able to pay high prices, 
this may lead to many empty seats. Therefore, 
optimization of airline seats aims to allocate reasonable 
numbers of seats for the different levels of fare, in order 
to maximize flight revenue. 
 
The most well-known airline seat inventory control 
method today is the expected marginal seat revenue 
(EMSR) method proposed by Belobaba [2]. Because this 
method is easy to understand and easy to implement, it 
was quickly adopted by many airline companies. EMSR 
has become the classic airline seat inventory control 
method and the normal foundation of seat optimization 
algorithms. But EMSR has two disadvantages. First, a 
reservation limit produced by EMSR cannot be changed 
as the reservation process progresses. In other words, the 
method is static. Secondly, the method does not consider 
the risk in the decision-making process [3]. To address 
these two shortcomings, the research community has 
recently proposed the expected marginal seat utility 
(EMSU) method [3-4]. EMSU has been applied in the 
single-leg seat control algorithm; however, for the multi-
leg seat control problem there is not yet a sound solution. 
A popular method to address the multi-leg problem is the 
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virtual bucket [2]. In this paper, a model based on the 
virtual bucket and EMSU ideas is proposed in order to 
solve the multi-leg problem. 
 
2. Background and Previous Research 

2.1 Introduction to EMSU 

EMSU uses the expected marginal utility to replace the 
expected marginal revenue in the EMSR model [3]. The 
utility function is: 
 

            (1) 
 
The model determines the level of risk. EMSU is defined 
as below: 

 

                                  (2) 

 
In Equation (2), c represents the number of remaining 
seats, i shows the requested class level,  represents the 

fare of class i,   means the risk factor,  indicates the 

probability of requesting the level of class j in stage n, and 
a means the accepted number of passengers in stage n.  

2.2 Virtual Bucket  

To solve the multi-leg seat allocation problem, we should 
consider not only the fare level (F), but also the 
interaction between routing origin (O) and destination 
(D). The virtual bucket method is potentially important to 
solve multi-leg seat allocation effectively [4]. 
 
The steps are: 

1. For each ODF combination fare, several virtual 
levels (or “buckets”) are set. The value of each 
bucket is the average of the ODF fares represented. 

2. Each ODF fare is mapped to the corresponding 
bucket. 

3. Every bucket can be treated as one level in a single-
leg problem, and we can use the composite nested 
EMSR method to allocate seats.  

4. Seats are allocated for each ODF. When an ODF seat 
is requested, the request can be accepted only if the 
bucket has seats. A connected ODF request can be 
accepted when all segments have seats. 

 
3. Model and Policies  
 
The assumptions of this study include: 

1. Each passenger can only request one seat. 
2. There is no overbooking and there are no 

cancellations. 

3. There are several levels of ticket from 1 to k, where 
the corresponding fare is , . 

4. The aircraft capacity at each stopover point remains 
the same. 

The model of the booking stage is divided into N stages. 
In each stage, one person at most will arrive. The 
probability of one passenger arriving is found in the 
Poisson process. jnp  shows the probability when 

class j is requested in stage n. The probability of no 
passenger arriving is: 

 

 .                         (3) 

 

3.1 model description 

Markov decision processes are used to choose an action 
from the decision-making space, according to the various 
stages of decision-making. Decision-makers can also 
make a new decision according to the new state observed. 
This study uses Markov for  dynamic decision-making in 
the booking process. 
 
A Markov decision-making process includes the state 
space, action set, decision epochs, rewards and transition 
probabilities. In the model study herein, these are defined 
as follows. 

1. State space: S={0,1…C}×{0,1…k}, where the first 
dimension stands for the remaining seat capacity 
and the second dimension is the fare class, with 
artificial fare class 0 with fare F0 = 0. A state (c, i) 
says that as c seats are remaining, we have a request 
for fare class i. Aircraft capacity is C, and the 
remaining capacity is the variable c, c ≤ C. 

2. Action set: 
 

 

         (4) 
 

This represents the “reject” and “accept” decision 
for a given state. 

3. Decision epochs correspond to the time periods: 
T={0,1,..N}, where N represents the departure of 
flight and 0 is the start of booking. 

4. Transition probabilities:   (5) 

5. Rewards: 
        

(6) 

 
To combine EMSU and virtual bucket, first we should 
divide the bucket according to the multi-leg fares; second, 
we attach the bucket to the corresponding leg, and then we 
calculate the EMSU values for every leg using Equation 1. 
 
Then, we determine the structured  protection number of 
various stages. The structured protection number is 
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different from the protection number in the EMSR model: 
it means that the air company can accept reservations 
only when the remaining capacity is greater than the 
protection number. The calculation method is as follows: 
 

 

 

         (7) 

 
With the protection number, it is then possible to make a 
decision when a request arrives. The expression is: 
 

                    (8) 

In Equation (8), only when the remaining capacity is 
larger than the number of seats left at stage n can the 
reservation for the long leg ODF be accepted.  

3.2 The division of stage and the transition  
probabilities’ setting 

As stated above, we require N-stage booking stages and 
transition probabilities based on the Poisson arrival 
process. These requirements are met as follows. 

1. The booking time is divided into a series of short 
time intervals, and in each time interval the 
passenger arrival process follows a Poisson 
distribution. 

2. Each interval is set to a number n, n=1,2,3…h. Time 
interval 1 represents the end of the booking time;
time interval h represents the beginning of the 
booking. 

3. Since the model assumes that each decision interval 
has at most one passenger arrival, each time interval 
described above is divided into intervals related to 
the decisions required by the model.	µ�	

�  means the 
expected arrivals in stage n at the required class 
level k. The expected arrivals in each class level in 
every stage corresponds to the following equation: 
 

     µ� � µ�
� � µ�

� � �� µ�
�.                       (9) 

 
In each time interval, passengers arrive according to 
the Poisson distribution with a mean	µ�. 

4. The interval n is divided into ��  short decision 
intervals of equal length. Passenger arrivals in each 
short interval meet the Poisson distribution with a 

mean µ
�
v�� ; the most important constraint is that at 

most one passenger arrives in each interval. 
5. ε	 is a very small probability value, which can be 

negligible; v�  must then satisfy the equation  
 

P�x ≫ 2� � �, where x is the number of passengers 
arriving within a decision interval. Because each 
interval meets the Poisson distribution with a mean 

, where v� satisfies Equation 10, if given a 
value for	ε we can easily find the value of 	v�	: 
 
� � ��� ��� ������� ��� � 				� 	�xp���� ��� � ≪ ε,  (10) 

 
6. The probability of passenger arrival in each decision 

interval is calculated. Passenger arrival meets the 

Poisson distribution with mean , and  
 

           (11) 

 
	p����  stands for a passenger arriving, requiring 
class level k at stage n. 

 
4. Numerical Simulation and Results 
 
This study uses data from a Chinese domestic airline 
route, Nanjing (A) --- Shenzhen (B) --- Sanya (C), in 
simulation. Each ODF has two class level fares, Y and 
B, where Y denotes 100% fare and B denotes 80% fare.
The number of available seats in the aircraft, C, is 140. 
There are three legs: AB, AC, and BC. We thus have 
ABY, ABB, ACY, ACB, BCY, and BCB as the six ODF 
combinations. ODF fares and demand data are shown 
in Table 1. 
 

number 1 2 3 4 5 6 
ODF ABY ABB ACY ACB BCY BCB 
Fare 1000 800 1200 960 400 320 

demand 42 66 35 50 41 71 

Table 1. ODF fares and demand information 
 

Because the number of ODF is not too high, we take each 
fare as a bucket. There are thus six virtual buckets. For 
the given data, the results of bucket division are as 
follows: 
 

A-B B-C 
bucket F  fare bucket F class fare 
1 ACY 1200 1 ACY 1200 
2 ABY 1000 2 ACB 960 
3 ACB 960 3 BCY 400 
4 ABB 800 4 BCB 320 

Table 2. Results of bucket division 
 

As passengers arrive in non-homogeneous  Poisson 
distribution, we can obtain the probability and the 
number of passengers arriving at each stage, according to 
section B. The stimulation results are shown in Tables 3 
and 4. 
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stage ACY ABY ACB ABB BCY BCB 
0-180 0.037 0.042 0.011 0.016 0.027 0.011 
181-360 0.027 0.032 0.016 0.027 0.027 0.022 
361-510 0.025 0.032 0.019 0.019 0.032 0.026 
511-660 0.019 0.025 0.019 0.025 0.025 0.025 
661-840 0.016 0.021 0.021 0.027 0.021 0.032 
841-990 0.019 0.019 0.025 0.032 0.025 0.038 
991-1170 0.016 0.016 0.027 0.037 0.016 0.042 
1171-1350 0.010 0.016 0.032 0.037 0.016 0.042 
1351-1550 0.010 0.010 0.029 0.038 0.014 0.043 
1551-1750 0.010 0.010 0.029 0.043 0.014 0.047 
1751-1950 0.005 0.010 0.038 0.047 0.019 0.010 

Table 3. Probabilities of passenger arrival 
 

ODF Arrival at interval t 
ABY 48,55,67,71,84,93,173,200,208,217,232,247,260, 

262,333,398,413,435,444,461,504,521,533,544, 
547,560,594,642,661,703,783,869,999,1004, 
1071,1103,1120,1163,1217,1221,1276,1302, 
1322,1383,1438,1536,1618,1693,1737,1763,1828, 
1919 

ABB 79,148,177,223,228,258,266,314,354,411,428,448, 
483,484,498,577,628,709,712,732,756,789,817, 
833,853,862,868,935,991,1019,1106,1187,1193, 
1219,1230,1317,1319,1335,1336,1401,1409,1424, 
1483,1492,1506,1520,1537,1538,1647,1673,1677, 
1684,1710,1747,1782,1788,1806,1840,1842,1846, 
1853,1866,1867,1893,1905,1914,1942, 

ACY 11,30,31,46,74,89,90,96,127,214,219,246,265,337, 
359,409,447,477,489,492,526,530,561,602,607, 
608,635,648,689,701,832,854,889,917,925,933, 
939,982,1026,1107,1207,1471,1597,1751,1845 

ACB 116,321,433,456,497,571,600,625,636,691,696, 
720,729,791,830,846,888,988,1042,1052,1129, 
1226,1255,1282,1315,1329,1330,1368,1388, 
1407,1488,1531,1535,1727,1739,1755,1767, 
1778,1834,1874,1878,1922,1923,1936,1943 

BCY 17,24,65,92,215,251,285,295,303,341,345,367, 
368,387,422,424,458,462,469,488,494,511,546, 
651,656,700,704,719,731,735,823,855,914,920, 
937,951,973,983,1032,1047,1114,1120,1229, 
1235,1236,1269,1289,1405,1616,1654 

BCB 18,292,334,374,382,468,474,524,615,641,713, 
761,812,816,842,852,865,877,885,913,964,974, 
1003,1025,1046,1049,1059,1118,1125,1132, 
1160,1180,1184,1207,1234,1266,1311,1341,1342, 
1343,1380,1394,1399,1454,1470,1509,1512,1517, 
1519,1530,1560,1623,1682,1697,1713,1731,1775, 
1799,1813,1823,1850,1856,1865,1882,1891,1902, 
1912,1924,1932,1934,1945 

Table 4. Passenger arrival  
 
In this case, the risk factor  was set to 0.002. Then, the 
protection number was obtained in each stage. The 
protection number of the AB leg is expressed in Fig. 1, 

and that of BC in Fig. 2. The risk factor was changed to 
0.001, and the results are expressed in Figs. 3 and 4. 
 
(See Table 2.) In Figs. 1 and 3, buckets 2, 3, and 4 mark the 
protected seats for ACY and respectively represent ODFs 
ABY, ACB and ABB. In Figs. 2 and 4, buckets 2,3, and 4 
mark the protected seats for ACY and respectively 
represent ODFs ACB, BCY and BCB. 
 

 
Figure 1. Segment AB’s protection level 
 

 
Figure 2. Segment BC’s protection level 
 

 
Figure 3. Segment AB’s protection level 
 

 
Figure 4. Segment BC’s protection level 
 
A comparison of the four graphs shows that a different 
risk factor may lead to different protected seats. It also 
indicates that the smaller the risk factor, the bigger the 
number of protected seats in general, and vice versa. 
 
On the other hand, how does risk factor affect flight 
revenue? Table 5 shows the latest sales state of a 
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simulation flight using the above method. The last 
column about the flight revenue shows that the smaller 
risk factor may bring more revenue; of course, this is on 
the premise that, no matter what the risk factors set, the 
flight requests should be consistent. 
 

 ABY ABB ACY ACB BCY BCB Rev 

.002 25 43 38 34 8 37 152680 

.001 31 32 41 36 8 37 155400 

Table 5. Last sales state and revenue of flight 
 
Risk factor equates to risk tolerance, and is always set by 
the decision-maker or seat control employees in airlines. 
The decision-maker may thus control different seat 
allocation schemes at every stage over the sales period of 
a flight by  setting different risk factors. 
 
5. Conclusion 
 
This paper combines the EMSU and the virtual bucket 
methods using a Markov decision process to approach 
the multi-leg seat inventory control problem. The authors 
simulated the arrival procedure of passengers with non-
homogeneous Poisson distribution. The theoretical 
analysis and the experimental results show that with the 
reduction of the risk factor, the number of protected high-
class seats rises. With the addition of risk-sensitive 
conditions that surpass the subjective rationality of 
decision-makers, the decision-making process better 
corresponds to real situations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Acknowledgements 
 
The authors acknowledge the support given by the 
United Funds of the Civil Aviation Administration of 
China and the National Natural Science Foundation 
(NSFC) under Grant No. U1333109. 
 
7. References 
 
[1] B.C. Smith, J.F. Leimkuler, and R.M. Darrow. Yield 

management at American airlines [J]. Interfaces, 
22(1):8–31, 1992. 

[2] P.P. Belobaba. Application of a probabilistic decision 
model to airline seat inventory control. Operations 
Research, 37:183–197, 1989. 

[3] C. Barz, K.-H. Waldmann. Risk-sensitive capacity 
control in revenue management [J]. Mathematical 
Methods of Operational Research, 65(3):565–579, 
2007. 

[4] L.R. Weatherford. EMSR versus EMSU: revenue or 
utility? [J]. Revenue Pricing Management, 3(3):277–
284, 2004. 

 
 
 
 

γ

Wei Fan, Jianwei Wang and W.H. Ip: Multi-leg Seat Inventory Control Based on EMSU and Virtual Bucket 13




