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Finite Horizon H Fixed-Lag Smoothing for
Time-Varying Continuous Systems

Huanshui Zhang and David Zhang

Abstract—In this paper, we aim to solve the long-standing
fixed-lag smoothing problem for time-varying continuous systems.
By applying a novel innovation analysis approach in an indefinite
linear space, a sufficient and necessary condition for the existence
of an fixed-lag smoother is derived. The smoother is cal-
culated by performing the linear matrix differential equation and
the integral equation.

Index Terms—Continuous-time systems, fixed-lag smoothing, H
, innovation approach, time varying.

I. INTRODUCTION

THE PROBLEM of estimation, including filtering, predic-
tion and smoothing, has been one of the key research topics

in the control community since the seminal paper by Wiener
[12]. The Kalman filtering [5], which addresses the minimiza-
tion of the filtering error covariance (usually termed as es-
timation), emerged as a major tool of state estimation in the
1960s.

The estimation in the sense of has become another im-
portant method since the 1980s [7]. An estimator is such
that the ratio between the energy of estimation error and the en-
ergy of input noise is bounded by a prescribed level ; see [8]
for the continuous-time case and [10] for the discrete-time one,
and is applicable to situations where no information on statis-
tics of input noises is available. In the past decades, most of the
works in this area were focused on the filtering. The objec-
tive of filtering is to estimate the system states via past observa-
tions.

The smoothing problem, in which the use of future
measurement information is available, is classified into three
categories [5], namely fixed-point smoothing, fixed-interval
smoothing and fixed-lag smoothing. The fixed-point smoothing
and fixed-interval smoothing have been shown to be identical
to the smoother [8]. Of the three different smoothing prob-
lems, the fixed-lag one is the most complicated and remains
the least investigated. In the case of discrete-time system,
the fixed-lag smoothing problems have been studied in [11],
through system augmentation and filtering, and in [13] by
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applying the re-organized innovation approach in an indefinite
linear space. [4] considered the infinite horizon smoother de-
sign for time invariant systems. Very recently, some attention
has been received [2], [3] for the fixed-lag smoothing
for continuous systems and nice results are obtained, where
the so-called Meinsma’s trick [1] is used to reduce a problem
delay-free problem. However, it should be pointed out that the
results in [2], [3] are only applicable to the infinite horizon
smoother for time invariant systems. So far, the finite horizon

fixed-lag smoothing in the sense of time-varying systems
has received little attention [10]. A general solution to the
problem remains to be explored.

In this paper, our purpose is to study the solution to the
fixed-lag smoothing for time-varying continuous sys-

tems. First, by constructing an indefinite linear space (Krein
space) [9], the fixed-lag smoothing is converted into an

filtering problem for a system with current and delayed
measurements. Secondly, applying innovation analysis in Krein
space, a necessary and sufficient condition of the existence for
an smoother is derived. The fixed-lag smoother is
given in terms of linear matrix differential equation and integral
equation.

II. PROBLEM STATEMENT

We consider the following time-varying continuous system
for an estimation problem:

(2.1)

(2.2)

(2.3)

where , , , , and
represent the state, input noise, measurement output,

measurement noise, and the signal to be estimated, respectively.
It is assumed that the input and measurement noises are de-
terministic signals and are from where is the time
horizon of the estimation problem under investigation.

• Given a scalar , an integer and the observation
, find an estimate of ,

if it exists, such that the inequality in (2.4) at the bottom
of the next page is satisfied, where “ ” stands for matrix
transposition and is a given positive definite matrix
which reflects the relative uncertainty of the initial state
to the input and measurement noises.

Remark II.1: When , the problem stated in the above is
termed as finite horizon fixed-lag smoothing. When

, it is the well-known finite horizon filtering problem. The
fixed-lag smoothing is a much more complicated problem than
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the filtering. The latter has been well studied in previous works
[8]–[11]. However, the former remains the least investigated.

III. FIXED-LAG SMOOTHING

In this section, the smoothing is converted into an
smoothing problem for the time-delayed systems in an indefinite
linear space. To this end, we define

(3.1)

where or

(3.2)

and for .
It is obvious that the estimator that

achieves (2.4) exists if and only if [9]: 1) has a minimum
, with, respectively, and ; 2) can be chosen

such that the value at the minimum is positive for all .

A. Equivalent Fixed-Lag Smoothing in Krein Space

To derive the estimator, we introduce a Krein-space stochastic
system

(3.3)

(3.4)

(3.5)

where the initial state , , , and ( )1,
in bold faces, are mutually uncorrelated white noises with zero
means and known covariance matrices , ,
and , respectively. Since is indefinite, (3.5)

1Whenever the Krein-space elements [9] and the Euclidean space elements
satisfy the same set of constraints, we shall denote them by the same letters
with the former identified by bold faces and the latter by normal faces.

is no longer a stochastic system in Hilbert space but a stochastic
system in Krein space. Readers are referred to [9] for details of
the Krein space.

In (3.5), is a “fictitious” observation at time for
the state , while in (3.4) is an observation at time
for the state . So, the above system is in fact, a measurement
time-delay system. Denote

(3.6)

is an observation at time for different states and
. So, the measurements up to time are collected as

(3.7)

Similar to the case in Hilbert space, the innovation of the obser-
vation is defined as

(3.8)

where , if exists, is given by the projection of
onto . Obviously, the linear space

is equivalent to [5].
From the definition (3.8), the innovation can be rewritten
directly from (3.6) and (3.4)–(3.5) as shown in (3.9)–(3.10)
at the bottom of the page, where and
are, respectively, the projections of and onto

. Immediately from (3.10) and recalling [5],
the innovation covariance matrix is
computed by

(3.11)

By applying the above innovation process, we have the fol-
lowing results.

Theorem III.1: Consider the system (2.1)–(2.3) and the as-
sociated performance criterion (2.4). Then, for a given scalar

, the following hold.

(2.4)

(3.9)

(3.10)
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• The estimator that achieves (2.4)
exists if and only if

– exists for
– exists for

where and are, respectively, given by
the projections of and onto .

• In this case, an smoother (central estimator)
is given by

(3.12)

Proof: In view of (3.1) and the stochastic system
(3.3)–(3.5), recall the discussion in [9, ch. 16, pp. 499–529],

has a minimum , with, respectively, and if
and only if the innovation ( ), defined by (3.8),
exists. From (3.9), it is readily known that ( )
exists implies that both for and
for exist.

Furthermore, if the innovation exists, the minimum of
with respect to is given by

(3.13)

where is as defined in (3.8). By using (3.9), it follows that

(3.14)

Recall that the estimator can be chosen such that
, one natural choice is that

(3.15)

for all , where is given by the projection
of onto .

Remark III.1: Now, the calculation of the fixed-lag
smoother is converted to an fixed-lag smoothing
problem for the indefinite system of (3.3)–(3.5).

B. Calculation of the Fixed-Lag Smoother

In order to compute the estimator , we need
to check if both of ( ) and
( ) exist, and compute , if exist. To this
end, denote

(3.16)
where , and is the projection of

onto ), which is calculated from the
projection formula as

(3.17)

Now, we have the following results.

Theorem III.2: The matrix , defined as in (3.16),
satisfies the following partial differential equation and boundary
conditions

(3.18)

(3.19)

(3.20)

where and

(3.21)

with for . In addition, the initial value
.

Proof: Note (3.16) is rewritten as

(3.22)

where is as in (3.10) and is as in (3.11).
Differentiation with respect to and and addition of the

results yield (3.18). Setting in (3.22), differentiation with
respect to and addition of the results yield (3.19). Finally,
setting in (3.22), differentiation with respect to
and addition of the results yield (3.20).

Remark III.2: The partial differential (3.18) is nonlinear. Its
solution can be reduced to the solution of a number of simulta-
neous linear equations such as in the case with matrix Riccati
equation [6]. The most practical approach seems to discretize
the problem and solve the discrete-time problem, the solution
of which is well-known [6].

Theorem III.3: Consider the system (2.1)–(2.3) and the as-
sociated performance criterion (2.4). Given scalar and

.
Then, the fixed-lag smoother that achieves (2.4) is
solvable if and only if the matrix and
are bounded for over , where
and are obtained by solving (3.18) with the
boundary conditions (3.19) and (3.20). In this case, the smoother

is given by

(3.23)

where is computed as

(3.24)
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and is given by

(3.25)

The estimator in (3.24) and in (3.25)
is calculated by

(3.26)

Proof: Since is given by the projection of
onto or equivalently onto
, by using the projection formula,it follows that

(3.27)

where is as in (3.11). By differentiating both sides of
the above equation with respect to yields

(3.28)

Note is uncorrelated with for , we have

(3.29)

On the other hand, from (3.10), we obtained

(3.30)

where

and is as in (3.16). By applying
, the innovation is given from (3.9) as

(3.31)

Thus, (3.26) is readily obtained from (3.29) by using (3.30) and
(3.31). Similarly, we can show that can be computed
by (3.24) and (3.25). For the limit of space, the proof is omitted.

From Theorem 3.1 and (3.24)–(3.26), it is readily known that
the fixed-lag smoother that achieves (2.4) is solvable
if and only if that the matrix and are
bounded for over . Thus we complete
the proof of the theorem.

The matrices and ( ),
which can be obtained by performing the partial differential
equation (3.18) with the boundary (3.19) and (3.20), play an im-
portant role for computing the smoother . Usually, as shown
in [6], the partial differential equation (3.18) was solved by con-
verting it into a discrete-time problem or solving a equivalent
problem that is with a number of simultaneous linear equations.

IV. CONCLUSION

Although the solution to filtering has been well known,
the fixed-lag smoothing of the time-varying continuous-
time system remains the least investigated [10]. In this paper,
we have addressed the problem by applying an innovation ap-
proach. It has been shown that the fixed-lag smoothing is
equivalent to an fixed-lag smoothing for the system with
current and delayed measurements in an indefinite linear space.
A necessary and sufficient condition for the existence of the
estimator has been derived. It is equivalent to that of two ma-
trices, which can be obtained by performing one partial dif-
ferential equation with boundary conditions, are bounded. We
would point out that the complicated fixed-lag smoothing for
time-varying continuous system has been converted into a Ric-
cati type partial differential equation which maybe not easy to
be given an analytical solution. However, it can be solved by
numerical methods such as the finite element method.
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