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Abstract—Tongue diagnosis is an important diagnostic method
in traditional Chinese medicine (TCM). However, due to its quali-
tative, subjective and experience-based nature, traditional tongue
diagnosis has a very limited application in clinical medicine.
Moreover, traditional tongue diagnosis is always concerned with
the identification of syndromes rather than with the connection
between tongue abnormal appearances and diseases. This is not
well understood in Western medicine, thus greatly obstruct its
wider use in the world. In this paper, we present a novel computer-
ized tongue inspection method aiming to address these problems.
First, two kinds of quantitative features, chromatic and textural
measures, are extracted from tongue images by using popular
digital image processing techniques. Then, Bayesian networks are
employed to model the relationship between these quantitative
features and diseases. The effectiveness of the method is tested
on a group of 455 patients affected by 13 common diseases as
well as other 70 healthy volunteers, and the diagnostic results
predicted by the previously trained Bayesian network classifiers
are reported.

Index Terms—Bayesian network, computerized tongue diag-
nosis, TCM modernization.

1. INTRODUCTION

ONGUE diagnosis [1], [2] is one of the most valuable

and widely used diagnostic methods in traditional Chinese
medicine (TCM). The beauty of tongue diagnosis lies in its sim-
plicity and immediacy: whenever there is a complex disorder
full of contradictions, examination of the tongue instantly clari-
fies the main pathological process. Therefore, it is of great value
in both clinic applications and self-diagnosis. Moreover, tongue
diagnosis is one of the few diagnostic techniques that accord
with the most promising direction in the 21st century: no pain
and no injury.

As tongue diagnosis has played such a prominent role in
the diagnosis and the subsequent treatment of diseases, it has
attracted an increasing amount of attention both in clinical
medicine and in biomedicine. However, traditional tongue
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diagnosis has inevitable limitations that impede its medical
applications. First, the clinical competence of tongue diag-
nosis is determined by the experience and knowledge of the
practitioners. Second, tongue diagnosis is usually based on
the detailed visual discrimination. Therefore, it depends on
the subjective analysis of the examiners, so that the diagnostic
results may be unreliable and inconsistent. Finally, traditional
tongue diagnosis is intimately related to the identification of
syndromes (also called patterns) [2], and it is not very well
understood in Western medicine and modern biomedicine.
Therefore, it is necessary to build an objective and quantitative
diagnostic standard for tongue diagnosis, and explore the
relations between features and diseases.

Recently, researchers have been developing various methods
and systems [3]-[9] to circumvent these problems. Despite con-
siderable progress in the standardization and quantification of
tongue diagnosis, there are significant problems with the ex-
isting approaches. First, some methods are only concerned with
the identification of syndromes that are expressed in sophisti-
cated terms from TCM; consequently they will not be widely
accepted. Second, many of the developed models are only ded-
icated to the recognition of pathological features defined in tra-
ditional tongue diagnosis, and the mapping from images of the
tongue to diseases is not considered. This will undoubtedly limit
the applications of these approaches in clinical medicine.

In this paper, we propose a computerized tongue inspection
method based on quantitative features and Bayesian networks.
Different from the existing approaches, our method is dedicated
to the classification of 14 diagnostic categories (13 common dis-
eases and healthy) instead of the identification of syndromes.
Also, rather than trying to find numeric representations of those
qualitative features that originate from traditional tongue diag-
nosis, we extract two ordinary kinds of quantitative features
from tongue images, namely chromatic and textural features,
using popular image processing techniques. One direct benefit
is that the subjectivity of evaluation will be eliminated.

II. TONGUE DIAGNOSIS USING BAYESIAN NETWORKS

Uncertainty is an inherent issue in nearly all medical prob-
lems. The prevailing methods for managing various forms of
uncertainty are formalized within a probabilistic framework.
The corresponding Bayesian statistics provides a compelling
theoretical foundation that coherent subjective beliefs of human
experts should be expressible in a probabilistic framework.
Bayesian network models provide a practical tool to create and
maintain such probabilistic knowledge bases.

A Bayesian network [or Bayesian belief network (BBN)]
[10], [11] for a problem domain, which is just a set of variables
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{21,...,zy,}, is a causal probabilistic network that compactly
represents a joint probability distribution (JPD) over those vari-
ables. The representation consists of a set of local conditional
probability distributions, combined with a set of assertions
of conditional independence (CI) that allow us to construct
the global joint distribution from the local distributions. The
decomposition is based on the chain rule of probability, which
dictates that

n

p(T1,.. ., Tn) = Hp(% |21, zi1). ey

=1
For each variable x;, let II; C {x1,...,2,_1} (a parent set)
be a set of variables that renders z; and {z1,...,z; 1} condi-

tionally independent. That is

p(zilxy,. .. xim1) = pla; | 10;). 2)

Given these sets, a Bayesian network can be described as a di-
rected acyclic graph (DAG) such that each variable x4, ..., x,
corresponds to a node in that graph and the parents of the node
corresponding to x; are the nodes corresponding to the vari-
ables in II;. Associated with each node z; are the conditional
probability distributions p(z; | I1;)—one distribution for each
instance of IT;. Combining (1) and (2), we see that any Bayesian
network for {z1,...,x,} uniquely determines a joint proba-
bility distribution for those variables. That is

n

p(or,.wn) = [ o | ). 3)

=1

Bayesian networks have several advantages for data analysis
[20]. First, since the model encodes dependencies among
all variables, it readily handles situations where some data
entries are missing. Second, a Bayesian network can be used
to learn causal relationships, and hence can be used to gain
understanding about a problem domain and to predict the
consequences of intervention. Third, because the model has
both a causal and probabilistic semantics, it is an ideal repre-
sentation for combining prior knowledge (which often comes in
causal form) and data. Fourth, Bayesian statistical methods in
conjunction with Bayesian networks offer an efficient and prin-
cipled approach for avoiding the over-fitting of data. Finally,
it is found [12] that diagnostic performance with Bayesian
networks is often surprisingly insensitive to imprecision in
the numerical probabilities. Knowledge that high levels of
precision are not necessary should greatly improve acceptance
of these techniques. Many researchers have criticized the use
of Bayesian networks because of the need to provide many
numbers to specify the conditional probability distributions.
However, if rough approximations are adequate, then these
criticisms may lose their sting. Thanks to these unique char-
acteristics, BBNs have been widely used in many of machine
learning applications, also in medical diagnosis [13], [14].

As for computerized tongue diagnosis, two points should be
mentioned when using a BBN as a diagnostic model. First, al-
though Bayesian networks provide a natural and efficient way
of representing prior knowledge, we do not employ any such
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information when constructing our diagnostic model. Conse-
quently, both the graphical structure and the conditional prob-
ability tables of the BBN must be estimated from patient case
data using statistical algorithms. The reason is twofold. First,
humans are often inconsistent in their assessment of probabil-
ities, and demonstrate many forms of bias in their judgments
[15]. Similarly, experts are not able to provide probability dis-
tributions for a large number of variables in a consistent fashion,
although they are usually good at identifying important depen-
dencies that exist across variables in the domain. Thus, it is ar-
gued that for the computerized tongue diagnosis application,
which involves a large number of variables, obtaining proba-
bility estimates from an existing database is often more reli-
able than eliciting them from human experts. Second, expert
knowledge in traditional tongue diagnosis is always concerned
with the identification of syndromes instead of with the rela-
tionship between tongue appearances and diseases. Therefore,
prior knowledge of the relationship between symptoms (tongue
abnormal appearances) and diseases in terms of probability dis-
tributions is actually unavailable.

The second point concerning the use of a BBN as a diag-
nostic model is that, all of the nodes except for the root node
(class node) in our model (a Bayesian network classifier) rep-
resent quantitative chromatic and textural features obtained by
using image processing techniques, which are not directly re-
lated to qualitative pathological features employed in tradition
tongue diagnosis. This is consistent with the original intention
of our method: the quantification and objectivization of tradi-
tional tongue diagnosis.

The outline of a computerized tongue diagnosis system that
uses a Bayesian network as the feature-matching model is illus-
trated in Fig. 1. Our method is dedicated to the feature extraction
and matching processes.

III. QUANTITATIVE PATHOLOGICAL FEATURES EXTRACTION

As mentioned above, the main aim of our method is to di-
agnose diseases from a set of quantitative features that are ex-
tracted using image processing algorithms. However, traditional
tongue diagnosis theories on the pathological features are all
qualitative, thus subjective, using descriptions such as “reddish
purple tongue,” “white, thin, and slippery coating,” and so on
[2]. Therefore, how to develop appropriate objective features
that are meaningful for diagnosis is an important issue. The most
direct way is to find out a set of objective measurements, each of
which corresponds to a specific qualitative feature in traditional
tongue diagnosis, just as many existing methods [4], [6]—[8]
for computerized tongue image analysis usually do. Although
direct and simple, these methods suffer from difficulties con-
cerning evaluation standards, since they are evaluated by physi-
cians. This leads to a strange situation: methods are purposely
devised to replace qualitative features so to avoid subjectivity,
while they are evaluated subjectively.

Actually, many descriptive features in traditional tongue di-
agnosis indicate some implicit relations to color and texture re-
lated features (for example “reddish purple,” “white,” “thin,”
and “slippery”). In order to remain consistent with the original
intention of our method, we employ several general chromatic
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Fig. 1. The outline of the computerized tongue diagnosis system.

and textural measurements [18], [19] and take no considerations
of whether these measurements correspond to specific qualita-
tive features explicitly. Note that some of these features may be
neither visible nor understandable by tongue diagnosis practi-
tioners. The correlation and effectiveness of these features in di-
agnosis are identified in a statistical manner during the training
of Bayesian network classifiers.

A. Quantitative Color Features

A color is always to be given in relation to a specific color
space, and the extraction of color features can be performed in
different color spaces [18]. A color space is a method by which
we can specify, create and visualize color. A color is usually
specified using three coordinates, or parameters. These param-
eters describe the position of the color within the color space
being used. Familiar color spaces frequently used in image pro-
cessing include RGB, HSV, CIEYxy, CIELUYV, and CIELAB.

RGB (Red Green Blue) is an additive color system based on
tri-chromatic theory, which often found in systems that use a
CRT to display images. RGB is easy to implement but non-
linear with visual perception. RGB is frequently used in most
computer applications since no transform is required to display
information on the screen. Consequently, RGB is commonly the
basic color space for most applications.

The CIE (the International Commission on Illumination)
system is based on the description of color as a luminance
component Y, and two additional components X and Z. The
magnitudes of the XYZ components are proportional to phys-
ical energy, i.e., any color is represented by a positive set of
values. The CIEXYZ color space is usually used as a reference
color space and is as such an intermediate device-independent
color space. Practically, it is often convenient to discuss “pure”
color in the absence of brightness. The CIE defines a nor-
malization process to compute two chromaticity coordinates:
r=X/(X+Y+2)y=Y/(X+Y + Z). Thus, a color can
be specified by its chromaticity and luminance, in the form of a
xyY (CIEYxy) triple.

The CIEXYZ and RGB systems are far from exhibiting per-
ceptual uniformity. So the CIE standardized two systems based
on CIEXYZ, CIELUYV, and CIELAB, whose main goal was to
provide a perceptually equal space. This means that the Eu-
clidian distance between two colors in the CIELUV/CIELAB
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Segmentation I: rOA Classifier
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color space is strongly correlated with the human visual percep-
tion. CIELUV and CIELAB are device independent but suffer
from being quite unintuitive despite the L parameter having a
good correlation with perceived lightness.

Different from other color spaces, the HSV color space is an
intuitive system in which a specific color is described by its hue,
saturation and brightness values. It is a linear transformation
from the RGB space. However, HSV has discontinuities in the
value of hue around red, which make this system noise-sensitive.
As a result, we use the other four color spaces (RGB, CIEYxy,
CIELUYV, and CIELAB) for the extraction of quantitative color
features.

The color-related measurements used in our method are the
mean and standard deviation of the colors of pixels within the
whole region of the tongue, in all the four color spaces. Since
both of the L channels in CIELUV and CIELAB indicate the
sensation of the lightness in human vision system, we use it
only once. Thus, there are a total of 22 different measures as
follows. CR;(i = 1,2,...,11): Means of each color plane in
the four color spaces, and CR;(j = 12,13, ...,22): Standard
deviations of each color plane in the four color spaces.

B. Quantitative Texture Features

Among all statistical methods, the most popular one, which
is based on the estimation of the second-order statistics of the
spatial arrangement of the gray level values, are the gray level
co-occurrence matrices. A co-occurrence matrix [22] is a square
matrix whose elements correspond to the relative frequency of
occurrence of pairs of gray level values of pixels separated by a
certain distance in a given direction. Formally, the elements of
a G x @ gray level co-occurrence matrix Pq4 for a displacement
vector d = (dz, dy) is defined as

(a,b) € N x N: I(a,b) = g1,

I(a+ dz,b+ dy) = go, 4
(a+dz,b+dy) e NxN

Pa(g1,92) =

where I(+, -) denotes an image of size N x N with G gray values,
g1 and go are two gray level values, and | - | is the cardinality of
a set.

In this paper, two measures of textural features, which are de-
rived from the co-occurrence matrix, are used to extract different
textural features from tongue images. These two descriptors are
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the second-order moment and the contrast measures of the ma-
trix, which are shown as follows:

Wi = ZZP2(91792)
gir 92

We =Y "lg1 — g2lp(91, 92) (5)

g1 g2

where p(g1,92) is a normalized co-occurrence matrix.
That is p(g1,92) = Pa(g1,92)/S where S is the total
number of pixel pairs (g1,92) across all g; and go, ie.,
S = ZgGl_:lo fz;lg P4(g1, g2). Wi measures the smoothness
or homogeneity of an image, which will reach its minimum
value when all of the p(g1, g2) have the same value. W is
the first-order moment of the differences in the values of the
gray level between the entries in a co-occurrence matrix. Both
of the textural descriptors are calculated quantitatively. Notice
that they have little correlation with the sensation of the human
vision system [19]. For all of the textural measures in the
following experiments, we take 64 gray levels (i.e., G = 64)
and d = (6,6).

It is believed [2] that different parts of the tongue correspond
to different internal organs. The tip of the tongue, for example,
reveals heart and lung conditions, and the middle tongue con-
ditions of the spleen and stomach. It does not matter whether
this theory is true; the important fact is that there are usually ab-
normal changes in texture in different parts of the tongue when
various diseases are present. Therefore, to represent these pos-
sible pathological changes, we calculate the above textural mea-
sures for each partition of a tongue. For convenience, we denote
each partition of a tongue using a digit: 1—Tip of the tongue;
2—Left edge of the tongue; 3—Center of the tongue; 4-Right
edge of the tongue; and 5—Root of the tongue. Thus, we obtain
a set of textural measurements for each tongue, which contains
a total of 10 texture measures as follows:

{ T ) (6)

TRi+5 = We,i
where Wy ; and W ; denote the measurements of Wy, and
We for partition ¢, respectively.

IV. EXPERIMENTAL RESULTS

We use the Bayesian Network PowerPredictor, developed
by Cheng [16], [17], to train and test the tongue diagnosis
models. The PowerPredictor takes a database as input and
constructs the Bayesian network classifier, both structure and
parameters, as output. The construction process is based on
dependence analysis using information theory. The dependency
relationships among nodes are measured by using some kind of
CI test. The learning algorithm uses a three-phase construction
mechanism, at the same time a wrapper algorithm is applied to
fight the overfitting problem. Moreover, a natural method for
feature subset selection is introduced in the learning process,
which can often produce a much smaller Bayesian network
classifier without compromising the classification accuracy.

A total of 525 subjects, including 455 patients and 70 healthy
volunteers, are involved in the following experiments. There are
totally 13 common internal diseases included (see Table I). The
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TABLE 1
LIST OF THE 13 COMMON DISEASES AND HEALTHY SUBJECTS

Disease ID Disease Number of subjects
D00 Healthy 70
D01 Intestinal infarction 11
D02 Cholecystitis 21
D03 Appendicitis 43
D04 Pancreatitis 41
D05 Nephritis 17
D06 Diabetes mellitus 49
D07 Hypertension 65
D08 Heart failure 17
D09 Pulmonary heart disease 21
D10 Coronary heart disease 71
D11 Hepatocirrhosis 25
D12 Cerebral infarction 30
D13 Upper respiratory infection 44

Fig. 2. Four tongue image samples of patients suffering intestinal infarction
(upper left), cholecystitis (upper right), appendicitis (lower left), and pancreatitis
(lower right).

patients are all in-patients mainly from five different depart-
ments at the Harbin 211 Hospital, and the healthy volunteers are
chosen from the campus students of Harbin Institute of Tech-
nology. We take a total of 525 digital tongue images, exactly
one for each subject, as the experimental samples. Four typical
tongue image samples are shown in Fig. 2.

A. Several Issues

In many projects concerning tongue diagnosis in TCM, the
straightforward way to label the samples is to ask TCM doc-
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tors to judge. However, the judgment of tongue diagnosis doc-
tors is always related to syndromes or qualitative features, rather
than medical diseases. Therefore, these approaches do not solve
the problem of the individual empiricism inherent in the tongue
diagnosis, and the diagnostic results given in this way are too
sophisticated to understand. In this research, we use the diag-
nostic results obtained by using the clinical differential diag-
nosis methodology as the labels of the tongue images. Since all
the subjects in the experiment are in-patients, the diagnoses are
highly reliable. During the testing process, the diagnostic results
obtained by querying the Bayesian networks are compared with
the corresponding labels of the tongue images. This forms an
objective evaluation basis for our method.

Another issue concerns the relative small sample size. The
weak point of this study, and very probably of most attempts
to provide medical statistics is the difficulty of gathering both a
sufficient number of cases and reliable data for each case. To cir-
cumvent this problem, we utilized a stratified k-fold cross-vali-
dation (CV) technique [21] (for all of the experiments, k equals
to 10) in all of the following experiments to estimate the accu-
racy of classifiers. K-fold CV technique partitions a pool of la-
beled data, S, into k approximately equally sized subsets. Each
subset is used as a test set for a classifier trained on the remaining
k — 1 subsets. The empirical accuracy is given by the average of
the accuracies of these k classifiers. When employing a strati-
fied partitioning in which the subsets contain approximately the
same proportion of classes as S, we get a stratified k-fold CV,
which can reduce the estimate’s variance.

Next, we use discrete Bayesian networks in all of the fol-
lowing experiments. The discretization method [17] of fields
(attributes) is “Equal Width,” and the number of intervals is set
to 5 for all of the fields. Thus, the network parameters—Ilocal
conditional probability distributions—are actually local condi-
tional probabilities. At the same time, in order to demonstrate
the superiority of Bayesian network classifiers in tongue di-
agnosis, we implement a nearest-neighbor classifier (NNC) as
comparison. Similarly, a stratified k-fold CV (k = 10) is used
for the evaluation of its accuracy. Thus, each sample in a test
subset is assigned to the same label as its nearest labeled sample
belonging to the rest (k — 1) subsets. This process is repeated k
times on each subset to estimate the overall accuracy.

Finally, in the following experiments, we use a misclassifica-
tion cost table assuming that all types of misclassification are
equally important. This may be not correct in practice, but it
does not invalidate the demonstration of the effectiveness of our
method in diagnosing diseases.

B. Bayesian Network Classifier Based on Textural Features

In the first experiment, we trained a Bayesian network classi-
fier based on textural features, which is called a “texture BNC”
(T-BNC). The graphical structure of the learned T-BNC is il-
lustrated in Fig. 3. Note that, this BNC structure corresponds to
the highest scoring out of the tenfold CV iterations. A subset
of 5 textural features out of the original feature set (containing
a total of 10 textural features) is selected by an underlying fea-
ture selection function integrated in the training algorithm. Two
of the five surviving features (namely, TR and TRj5) are the
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Fig. 3. Structure of the T-BNC.

measurements of W), for the left side and root of the tongue;
the other three are the measurements of W for the tip, left side
and root of the tongue, respectively. Obviously, textural mea-
surements related to the tip, sides (although only the measure-
ments for the left side of the tongue are selected, it is found that
both sides have the similar values), and root of the tongue are
most discriminating for the classification.

The diagnostic results given by the T-BNC are shown in
the first column of Table II. The average true positive rate
(TPR) is about 26.1%, which demonstrates that the textural
features utilized in this study are not very discriminating in
diagnosing these diseases. Nevertheless, for the identification
of appendicitis (D03), pancreatitis (D04), and coronary heart
disease (D10), these textural features are more meaningful.
Due to the low sensitivity values, we do not list the positive
predictive values (PPV) for the T-BNC.

C. Bayesian Network Classifier Based on Chromatic Features

This section evaluates the suitability of chromatic measures
for the classification. The graphical structure of the trained
model, called a “color BNC” (C-BNC), is shown in Fig. 4.
Again, the learned structure also corresponds to the highest
scoring in the CV iterations. A subset of 12 chromatic fea-
tures is selected from the original feature set containing 22
features. Among these surviving measurements, there are 6
that are directly connected to the class node (Disease), which
are called “contribution” nodes thereafter. Note that, each of
the four color spaces used in our experiment includes at lease
one “contribution” node, and the mean and standard deviation
measurements have similar significance for the classification.

The diagnostic results of the color BNC are listed in the
second column of Table II in terms of sensitivity and the first
column of Table III in terms of PPVs. Obviously, the diagnostic
classification capability of the color BNC is significantly better
than that of texture BNC: the average TPR of the C-BNC
reaches 62.3%. It should be noticed that the C-BNC makes
a very accurate and relative reliable diagnosis of pancreatitis
(D04) with 90.2% TPRs and 68.5% PPVs. The reason for this
is that it is found that patients with pancreatitis usually have a
distinctively bluish tongue (see Fig. 2).

D. Bayesian Network Classifier Based on Combined Features

Finally, we use both chromatic and textural features to con-
struct a joint BNC (J-BNC) for the classification of these dis-
eases. The graphical structure of the trained J-BNC is illustrated



1808

TABLE 1I
DIAGNOSTIC RESULTS (IN PERCENTAGE) OF VARIOUS BAYESIAN NETWORK
CLASSIFIERS IN TERMS OF SENSITIVITY (TRUE POSITIVE RATE)

Disease ID Texture BNC Color BNC Joint BNC
D00 20.0 50.0 77.1
DO1 9.1 45.5 63.6
D02 4.8 42.9 61.9
D03 53.5 86.0 93.0
D04 70.7 90.2 100
D05 5.9 17.6 235
D06 4.1 53.1 65.3
D07 3.1 61.5 75.4
D08 5.9 353 35.3
D09 4.8 47.6 71.4
D10 64.8 90.1 93.0
D11 12 48.0 64.0
D12 13.3 60.0 80.0
D13 20.5 56.8 70.5

Average 26.1 62.3 75.8

Disease

Fig. 4. Structure of the C-BNC.

in Fig. 5. As well, this structure corresponds to the highest clas-
sification scoring in the CV iterations. Out of the 32 features
originally taken into consideration, 14 are finally selected and
among which 9 (5 chromatic features and 4 textural features) are
the “contribution” nodes, which are both discriminative and in-
dependent. Note that, the four surviving textural features are the
measurements of Wy, for the tip (TR;) and right side (TRy4)
of the tongue, and the measurements of W for the tip (TRg)
and root (TRyg) of the tongue. Similar to the T-BNC, textural
measurements related to the tip, sides, and root of the tongue are
most relevant to the diagnostic classification for the J-BNC. It is
interesting that this apparent relationship between diseases and
parts of the tongue that is learned purely from statistics has a
high degree of accordance with the beliefs of traditional tongue
diagnosis.

Tables II and III show the diagnostic results given by the
J-BNC in terms of TPR and PPV. The estimate prediction ac-
curacy is 75.8%, which outperforms both the T-BNC and the
C-BNC. Note that, as for the diagnosis of D00 (healthy), D04
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TABLE III
POSITIVE PREDICTIVE VALUES (PPV) OF THE C-BNC AND THE
J-BNC (IN PERCENTAGE)

Disease ID Color BNC Joint BNC
D00 79.5 85.7
DO1 100 87.5
D02 100 92.9
D03 60.7 72.7
D04 68.5 75.9
D05 100 80
D06 81.3 84.2
DO07 66.7 80.3
D08 100 100
D09 83.3 88.2
D10 37.9 54.5
D11 100 88.9
D12 66.7 75.0
D13 80.6 93.9

Disease

Fig. 5. Structure of the J-BNC.

(pancreatitis), DO7 (hypertension), and D12 (cerebral infarc-
tion), the TPRs and PPVs of the J-BNC are all higher than 75%.
For the convenience of illustration, the confusion matrix of the
J-BNC is given in Table IV.

For comparison, we employ a NNC on the combined fea-
ture set and utilize the stratified k-fold (k = 10) CV tech-
nology to evaluate the classification accuracy. The diagnostic
results are given in Table V in terms of sensitivity. It can be
seen that Bayesian network classifiers are much more superior
to the NNC with respect to the classification accuracy of tongue
images.

V. CONCLUSION

In this paper, we propose a computerized tongue diagnosis
method aimed at eliminating the subjective and qualitative char-
acteristics of traditional tongue diagnosis and establishing the
relationship between tongue appearance and diseases. Bayesian
network classifiers based on quantitative features, namely chro-
matic and textural measurements, are employed as the decision
models for diagnosis. Experiments are carried out on a total of
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TABLE 1V
CONFUSION MATRIX OF THE J-BNC
Predicted
D00 DO1 D02 D03 D04 DO0OS D06 D07 D08 D09 D10 D11 DI2 DI3

DoO| 54 2 3 2 9

poij 1 7 1 2

D02} 1 13 3 4

Do3| 1 40 1 1

D04 41

DOs| 3 1 4 1 7 1
7; Do6} 1 3 1 32 3 5 4
E D07 3 49 1 10 2

DO8| 1 I 2 I 1 6 5

D09 1 1 15 3 1

DI10| 1 1 1 2 66

D11 1 1 5 16 2

D12 1 1 1 1 24

D13 1 l 3 l l l 4 1 31
TABLE V that are very popular in TCM. Instead, it establishes a map-

COMPARISON OF J-BNC AND NNC ON COMBINED FEATURES IN
TERMS OF SENSITIVITY

Disease ID Joint BNC NNC
D00 77.1 28.6
D01 63.6 54.5
D02 61.9 333
D03 93.0 442
D04 100 56.1
D05 235 353
D06 65.3 18.4
D07 75.4 18.5
D08 353 52.9
D09 71.4 52.4
D10 93.0 46.5
D11 64.0 40.0
DI2 80.0 20.0
D13 70.5 432

Average 75.8 36.2

455 in-patients affected by 13 common internal diseases and 70
healthy volunteers. The estimate prediction accuracy of the joint
BNC is up to 75.8%. In particular, the diagnosis of four groups:
healthy, pancreatitis, hypertension, and cerebral infarction have
both TPRs and PPVs higher than 75%. The experimental re-
sults reasonably demonstrate the effectiveness of the method de-
scribed in this paper, thus establishing the potential usefulness
of computerized tongue diagnosis in clinical medicine.
Compared with the existing approaches, the method pre-
sented in this paper has several outstanding characteristics.
First, it is not concerned with the identification of syndromes

ping from quantitative features to diseases. Consequently, the
method is actually independent of TCM, except the fact that it
is motivated by the art of traditional tongue diagnosis. Second,
the underlying validity of our method is based on diagnostic
results using Western medicine techniques. The measurements
of the chromatic and textural properties of a tongue, which are
extracted via image processing procedures, are connected with
the corresponding diagnostic results obtained by using Western
medicine, instead of the judgment of a TCM doctor. This forms
an objective basis of the method and such an approach could
expedite its use in clinical applications.
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