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Abstract—The parameterization of a 3D mesh into a planar domain requires a distortion metric and a minimizing process. Most

previous work has sought to minimize the average area distortion, the average angle distortion, or a combination of these. Typical

distortion metrics can reflect the overall performance of parameterizations but discount high local deformations. This affects the

performance of postprocessing operations such as uniform remeshing and texture mapping. This paper introduces a new metric that

synthesizes the average distortions and the variances of both the area deformations and the angle deformations over an entire mesh.

Experiments show that, when compared with previous work, the use of synthesized distortion metric performs satisfactorily in terms of

both the average area deformation and the average angle deformation; furthermore, the area and angle deformations are distributed

more uniformly. This paper also develops a new iterative process for minimizing the synthesized distortion, the coefficient-optimizing

algorithm. At each iteration, rather than updating the positions immediately after the local optimization, the coefficient-optimizing

algorithm first update the coefficients for the linear convex combination and then globally updates the positions by solving the Laplace

system. The high performance of the coefficient-optimizing algorithm has been demonstrated in many experiments.

Index Terms—Mesh parameterization, texture mapping, barycentric mapping, conformal mapping, harmonic mapping.

�

1 INTRODUCTION

MESH parameterization addresses the problem of map-
ping a piecewise linear mesh surface into either a

planar domain [6], [7], a spherical domain [10], [13], an
octahedral domain [23], or a polygonal domain consisting of
a base mesh [12], [17]. Mesh parameterization has many
applications, including texture mapping [2], [13], [18], [19],
[20], [21], [25], [27], remeshing [1], [3], [15], multiresolution
representation [6], [12], [17], and geometric images [11].
This paper focuses on the planar parameterization or, as it is
also known, surface flattening [2], [31]. Most recent works
[4], [5], [20], [24], [25], [27], [28], [32] have focused on
defining the distortion and showing how to minimize it.

The most commonly used distortion metric for an entire

mesh is the area-weighted average norm [4], [25], [32]. The
distortion metric for a single triangle, however, is widely

different, whether that includes the area deformation [4],
[5], [21], the angle deformation [14], [20], [22], the length

deformation [21], [25], [27], or any combination of these [4],
[5], [21], [27]. The average norm is able to reflect the overall

distortion in a mesh parameterization, but discounts high
local deformations. Several works [25], [28] have used the

maximum norm, but it is not differentiable and cannot be
quickly minimized. The most successful application of the

maximum norm is to guarantee the distortion under a user-
specified threshold by automatically partitioning and
flattening the mesh [28]. To our knowledge, there little
work has been done to date on the effective control of
distortion variance. This is of interest because a smaller
variance reflects a more balanced distortion distribution,
which is desirable in many applications such as uniform
remeshing, texture mapping, or geometric images.

In this paper, we introduce a new metric that synthesizes
the average distortions and the variances of both the area
deformations and the angle deformations over an entire
mesh. This synthesized distortion metric is able to reflect not
only the overall area and angle deformations, but also their
distributions. Some textured results tested on the Mannequin
model are shown in Fig. 1. The distributions of area
deformation per triangle and of angle deformation per
triangle are represented in Fig. 2. It can be seen that, when
compared with the average geometric stretch [25], [32] and
the combined energy [4], the use of the synthesized distortion
metric produces comparable performance in terms of the
average area deformation and the average angle deformation;
furthermore, both the distribution of the area deformation per
triangle and the distribution of the angle deformation per
triangle in our results are much more uniform.

To minimize the synthesized distortion arising from an
initial parameterization, we present a coefficient-optimizing
algorithm, which is developed from the position-optimizing
algorithm presented by Sander et al. [25]. At each loop, the
position-optimizing algorithm updates the positions of all
internal vertices in the parameter domain, computed by a
linear search along a random direction. The position-
optimizing algorithm is always effective but is very slow.
A fast algorithm that iteratively diffuses the local geometric
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stretch was presented by Yoshizawa et al. [32]. For
simplicity, we call this the coefficient-diffusing algorithm.
The coefficient-diffusing algorithm can quickly lower the
average geometric stretch, but is unstable for use in finer
optimization. Unfortunately, it is not strong enough to
directly minimize our synthesized distortion by diffusing
the local synthesized distortion. Hence, we integrate the
advantages of the position-optimizing algorithm and the
coefficient-diffusing algorithm and present the coefficient-
optimizing algorithm as a way of minimizing our synthe-
sized distortion. This coefficient-optimizing algorithm
computes the locally optimal position by searching linearly

along a random direction, but, rather than updating the

position immediately for all internal vertices, it converts the

locally optimal position into the linear convex combination

of its neighbors and updates the combination coefficients.

The new positions of all internal vertices are thus globally

determined by the Laplace operator [10]. Our experiments

show that the coefficient-optimizing algorithm is computa-

tionally much faster than the position-optimizing algorithm

[25]. Unlike the coefficient-diffusing algorithm [32], the

coefficient-optimizing algorithm performs stably for finer

optimization during the minimizing process.
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Fig. 1. The textured mannequin models parameterized by: (a) minmizing the average geometric stretch [25], (b) diffusing the average geometric

stretch [32], (c) minimizing the combined energy [4], and (d) minimizing our synthesized distortion. For each parameterization, we map a

chekerboard image with 128� 128 pixels onto the mesh surface.



The remainder of this paper is organized as follows:
Section 2 reviews previous work. Section 3 introduces our
new distortion metric. In Section 4, we describe the
coefficient-optimizing algorithm. Section 5 offers some
comparisons. Finally, Section 6 presents our conclusion.

2 PREVIOUS WORK

A significant body of work on mesh parameterization has
been published over the last 10 years. Most of the
techniques described in this work sought to produce least-
distorted parameterizations and varied only in the distor-
tions they considered and the minimization processes that
were used, broadly either linear or nonlinear.

The linear minimization methods ultimately convert the
parameterization problem into a problem of computing a
sparse linear system, which can be solved with the

Conjugate Gradient methods [30]. The linear methods can
be broadly subdivided, according to the distortions they
addressed, into barycentric mapping, conformal mapping,
and harmonic mapping methods.

Barycentric mapping was an early introduction of Tutte
[29] and is used to make a straight line drawing of a planar
graph. Within the barycentric mapping, any internal vertex
is a linear convex combination of its neighbors in the
parameterized domain. In Tutte’s work, the weight coeffi-
cients for combination were evenly assigned. Floater [7]
generalized barycentric mapping by considering the weight
coefficients in terms of the local edge-length distortion and
conformality, which was shape preserving in some sense.
Levy and Mallet [19] took additional linear constraints into
account and used the modified method for nondistorted
texture mapping. More recently, Floater [8] further derived
a generalization of barycentric mapping from the Mean
Value Theorem for harmonic functions.

The purpose of conformal mapping is to minimize the
distortion of the angles between the 3D mesh and its
2D parameterization. A number of authors have indepen-
dently proposed discrete conformal parameterization
(DCP) deriving the same linear condition for conformality
either using Differential Geometry [22], harmonic maps [6],
Finite Elements [18], or Cauchy-Riemann Equations [20].

Harmonic mapping was initially used by Eck et al. [6] for
mesh multiresolution analysis and remeshing. Imagine a
mesh composed of elastic, triangular rubber sheets sewn
together along their edges. Stretch the boundary of the
mesh over the boundary of a polygon according to the
mapping. Using the elasticity theory, Eck et al. [6]
interpreted the harmonic mapping by minimizing the total
spring-like energy over this configuration of rubber sheets.
Different spring-constant selection schemes [16] would
produce very different results.

The linear methods are generally simple, intuitive, and
easy to compute, but, in many applications, the total
performance is not always acceptable. In particular, they
are not effective in capturing highly frequent details. Many
complex distortion metrics for improving the performance of
mesh parameterization have been proposed, but these
metrics usually cannot be minimized by computing a linear
system.

Maillot et al. [21] minimize an edge-spring energy that
preserves the edge length, but the best solution that
computes a degree three polynomial might be to “fold”
the map. To solve the problem of face folds, Maillot et al.
also define an area-based energy using the difference of
signed areas to penalize wrongly oriented triangles. The
final energy is a linear combination of the edge-spring
energy and the area-based energy. However, it is still not
the case that this combined energy can guarantee the
absence of face folds in the best solution [25]. Hormann and
Greiner [14] have introduced a distortion metric with the
Dirichlet energy per parameter area and proposed “most
isometric parameterizations (MIPS),” which perfectly pre-
serve angles. Sheffer and Sturler [26] minimize a pointwise
criterion that is formulated in terms of the angles of the
parameter triangles. Some nonlinear constraints have to be
added to guarantee the validity of the solution. To reduce
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Fig. 2. The parameterization, per triangle angle deformation distribution
and per triangle area deformation distribution tested on the mannequin
model by: (a) mnimizing the average stretch [25], (b) diffusing the
average stretch [32], (c) minimizing the combined energy [4], and
(d) minimizing our synthesized distortion. In accordance with the per
triangle angle (area) deformation, we assign the distortion range of
½2; 6:34þ� (½2; 6:63þ�) with colors from blue to red in all the distribution
figures of angle (area) deformation. Statistical details of the maximum
deformation, the average deformation, and the variance are summar-
ized in Table 4 (Section 5).



the length distortion, they also present a second step that
iteratively smoothes an overlay grid [27]. Sander et al. [25]
minimize the average or maximum geometric stretch of a
mapping to prevent undersampling. However, since they
penalize only undersampling, some regions may exhibit
high anisotropic stretch, consisting of slim triangles. Sorkine
et al. [28] propose a maximum metric that compares the
maximum stretch and the inverse of the minimum stretch,
which penalizes both under and oversampling. Their
functionality is not differentiable and is consequently hard
to minimize. Instead, they use the maximum metric
guaranteeing the distortion remains under a user-specified
threshold by simultaneously cutting and flattening the
mesh. Desbrun et al. [5] minimize a linear combination
distortion of a discrete conformal energy and a discrete
authalic energy, which can be converted into computing a
linear system. However, the combined conformal and
authalic energy remedies only local angle and area
deformations. The performance of their algorithm is the
same as that of Floater’s shape preserving algorithm [7].
Recently, Degener et al. [4] extended the MIPS method for
identifying parameterizations that mediate between angle
and area deformations. The user can use a parameter to
control the trade-off between the degree of angle and global
area preservation.

In this paper, we propose a synthesized metric for
measuring the distortion between the 3D mesh and its
parameter version. Like the metric presented by Degener
et al. [4], our synthesized metric takes into consideration
both the average area deformation and the average angle
deformation. Our synthesized metric also deals with
variances, which reflect the distribution of the distortion
of angle and area deformations.

3 THE SYNTHESIZED DISTORTION METRIC

Consider the case of a parameterization:

� : D!M : ðu; vÞ 2 R2 ! ðx; y; zÞ 2 R3;

where D is a planar domain. At any point ðu; vÞ, the singular
values � and � of the 3� 2 Jacobian matrix J� ¼
d�=du d�=dv½ � represent the largest and smallest lengths

obtained when mapping unit-length vectors from the
domain D to the surface S, i.e., the largest and smallest
local stretch over all directions in the domain [25]. In a
triangular mesh, � is piecewise linear and its Jacobian J� is
constant over each triangle.

Based on the singular values � and � of J�, Hormann and
Greiner [14] derive a functional to measure the angle
deformation Xi between a triangle Ti in 3D mesh and its
2D version:

Xi ¼
�i
�i
þ �i

�i
:

Recently, Degener et al. [4] have developed a functional
for measuring the area deformation �i between them:

�i ¼ �i�i þ
1

�i�i
:

Therefore, we can obtain the maximum distortions, the
average distortions, and the variances of both the angle and
area deformations over the entire mesh fTigKi¼1:

X1 ¼ maxðXiÞ; i ¼ 1; � � � ; K

�XX ¼ EðXiÞ ¼
XK
i¼1

�iXi;

�2
X ¼ EððXi � �XXÞ2Þ ¼

XK
i¼1

�iðXi � �XXÞ2;

�1 ¼ maxð�iÞ; i ¼ 1; 2; � � � ; K
��� ¼ Eð�iÞ ¼

XK

i¼1
�i�i;

�2
� ¼ Eðð�i � ���Þ2Þ ¼

XK
i¼1

�ið�i � ���Þ2;

where K is the number of triangles in the mesh; X1, �XX, and
�2

X denote the maximum distortion, the average distortion,
and the variance of the angle deformations over the entire
mesh; �1, ���, and �2

� denote the maximum distortion, the
average distortion, and the variance of the area deforma-
tions over the entire mesh. The probability �i is computed
by the area ratio,

�i ¼ AðTiÞ
XK
i¼1

AðTiÞ
,

;

where AðTiÞ is the area of triangle Ti in the 3D mesh. Note
that �1, ���, and �2

� vary with the size of the parameter
domain. To normalize them, without loss of generality, we
first scale the parameter domain so that its area equals the
surface area of the 3D mesh.

An ideal parameterization makes use of not only the
smallest average distortions, but also the smallest variances
of the angle and area deformations. Hence, we introduce a
synthesized metric to jointly investigate them:

� ¼ �XX1þ�2
X ���1þ�2

� :

For convenience of computation, we can rewrite the
synthesized distortion metric into the logarithmic format:

�log ¼ ð1þ �2
XÞ log2

�XXþ ð1þ �2
�Þ log2

���:

The synthesized distortion over the entire mesh can be
minimized by iteratively reducing the local synthesized
distortion over the neighborhood incident to each internal
vertex. Since �XX � 2 and ��� � 2, a lower bound of �log is 2 for
any parameterization.

4 THE COEFFICIENT-OPTIMIZING ALGORITHM

Here, we first introduce some notations. xi ¼ fxi; yi; zig and
ui ¼ fui; vig denote the coordinates of a vertex Vi in the
3D mesh and its 2D version in the parameter domain,
respectively. ði; jÞ represents the edge connecting Vi and Vj,
and E denotes the set of all the edges in the mesh. A,
referred to as a Laplace operator [10], is an n� n matrix
containing aij, where n is the number of internal vertices in
the mesh. V �

i and V �i denote the set of triangles and the set
of vertices, respectively, incident to Vi.
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Assume, by relabeling vertices if necessary, that fVigni¼1

are the internal vertices and fVigNi¼nþ1 are the boundary
vertices in any counterclockwise sequence, where N is the
number of all the vertices in the mesh. It is known [9] that
each internal vertex Vi can be represented with the convex
linear combination of its neighbors for a one-to-one
parameterizetion, that is,

ui ¼
Xn

j¼1;j6¼i
�ijuj þ

XN
j¼nþ1

�ijuj; �ij
¼ 0; if ði; jÞ 62 E
> 0; if ði; jÞ 2 E

�
; and

XN
j¼1;j6¼i

�ij ¼ 1;

where �ij, 1 � j � N and j 6¼ i, are the coefficients for the
convex linear combination; uj, 1 � j � n, is the coordinates
of one internal vertex Vj in the parameterization P ; and uj,
nþ 1 � j � N , is the coordinates of one boundary vertex
that is pinned in the whole minimizing process. The
representation above can be rewritten into the sparse matrix
format: Aðu1; � � � ;unÞT ¼ ðb1;b2Þ, where aij ¼ 1 if i ¼ j and,
otherwise, aij ¼ ��ij, 1 � i; j � n;

b1 ¼
XN
j¼nþ1

�1juj; � � � ;
XN
j¼nþ1

�njuj

 !T

and

b2 ¼
XN
j¼nþ1

�1jvj; � � � ;
XN
j¼nþ1

�njvj

 !T

:

It can be easily divided into two linear systems and solved
using the Conjugate Gradient methods.

Now, the coefficient-optimizing algorithm for mesh
parameterization is given as follows:

Step 1: Given a threshold " > 0 and an initial one-to-one
parameterization P 0, the distortion over the entire mesh M
corresponding to P 0 is �0

logðMÞ. Set the number of iterations
and the current number of “redo” operators to be q ¼ 0 and
r ¼ 0, respectively. Suppose the maximum number of
continuous “redo” operators is MaxR (in our experiments,
MaxR ¼ 5).

Step 2: For each internal vertex Vi with the parameter-
ized coordinates uqi and the coefficients �qij, perform three
operations:

Step 2.1: In the neighborhood V �
i , fix its neighboring

vertices and find a new position u0i to make the local
distortion �qlogðV �

i Þ minimal by searching the line along a
randomly given direction [25].

Step 2.2: Compute the new combination [7]:

u0i ¼ �0i;d1
uqi;d1

þ �0i;d2
uqi;d2

þ � � � þ �0i;dku
q
i;dm

, where m is the

degree of Vi and uqi;dk , 1 � k � m, are the coordinates of one

neighboring vertex Vi;dk 2 V �i in the parameterization Pq.
Step 2.3: Update. Note that we update the coefficients

incident to Vi rather than the coordinate position. That is,

�qþ1
ij ¼

�0i;dk ; if j ¼ dk
�qij; otherwise:

�

Step 3: Obtain the new Laplace operator [10], Aqþ1, and the
right-hand vectors, bqþ1

1 and bqþ1
2 according to the new

coefficients, �qþ1
ij . Then, compute the new parameterization

Pqþ1 with the new coordinates fuqþ1
i g

n
i¼1 by solving the

2D vector Laplace equation: Aqþ1ðu1; � � � ;unÞT ¼ ðbqþ1
1 ;bqþ1

2 Þ.
Step 4: Compute �qþ1

log ðMÞ, the new distortion over the
entire meshM corresponding to Pqþ1, and get the difference,
�q ¼ �qlogðMÞ � �

qþ1
log ðMÞ. If �q � ", then q ¼ q þ 1, r ¼ 0 and

go to Step 2. If 0 � �q < " and r < MaxR, then q ¼ q þ 1,
r ¼ rþ 1 and go to Step 2. If 0 � �q < " and r �MaxR,
then stop the iterative process. If �q < 0 and r < MaxR,
then Pqþ1 ¼ Pq, q ¼ q þ 1, r ¼ rþ 1 and go to Step 2. If �q <
0 and r �MaxR, then Pqþ1 ¼ Pq, q ¼ q þ 1 and stop the
iterative process.

Note that the coefficient-optimizing algorithm can also
be used to minimize the average stretch [25] by replacing
�logðMÞ with L2ðMÞ and to minimize the combined energy
[4] by replacing �logðMÞ with Eð�Þ. We think it can be
generalized to minimize other nonlinear distortions, except
the maximum distortion.

It is guaranteed by the coefficient-optimizing algorithm
that the parameterization holds one-to-one if the boundary
is mapped to a convex shape since the local optimizations
are restricted to the kernel of the neighborhoods and the
coefficients transferred to the Laplace solver are positive.

There is, however, no theoretical guarantee that the
coefficient-optimizing algorithm will reduce the global
distortion after each iteration since the local attributes are
used for the global optimization. However, it is rarely the
case that, after one iteration, there is no improvement. Even
if it does occur, the random search scheme can handle it
effectively using the “redo” operator. That is, if the
distortion after the current iteration is larger than that after
the previous iteration, we reuse the data from the previous
iteration to perform the next iteration.

In order to find the best possible solution, we also
employ a termination condition based on multiple con-
firmations. That is, the whole iterative process terminates if
and only if all of several continuous times of iterations fail
to reduce the distortion or if their reductions are smaller
than the predefined threshold, ". A termination condition
based on multiple confirmations also assists the position-
optimizing algorithm. This is because the random search
scheme is not always highly efficient; consequently, if the
termination condition depended on just one confirmation,
the minimizing process may stop too early.

5 EXPERIMENTS AND COMPARISONS

In this section, we will discuss and compare several tested
models topologically equivalent to a disk, as shown in Fig. 3,
the different distortion metrics, and the minimizing
methods used for mesh parameterization. The unit square
is used as the parameter domain and the boundary vertices
of each model are fixed on the boundary of the square.

All the experiments are performed on an HP Workstation
XW6000 with a Xeon 2.8GHZ processor and 1GB DDR266
RAM. To solve a system of linear equation Ax ¼ b, we use Bi-
CGSTAB [30] with the maximum number of iterations equal
to 104 and the relative error Ax� bk k= bk k is set to 10�5. The
interior linear search method that is used for local position
optimization in the coefficient-optimizing algorithm is
similar to that used for the position-optimizing algorithm
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[25]. The convergent threshold " for the iterative minimizing
process is set to 10�4.

5.1 The Influence of the Initial Parameterization

To minimize the nonlinear distortion, we start from an initial
one-to-one parameterization. Commonly, an initial parame-
terization will be produced using a linear method. To show
the influence of the different initials on the optimized results,
we perform the experiments that use methods from Kent et al.,
including uniform [16] which is similar to Tutte’s [29] and
proportional to the edge length [16], Eck et al. [6], Floater
including shape preserving [7] and mean value [8], and
Pinkall and Polthier [22]. On all the tested models in our
experiments, the barycentric mapping methods [7], [8], [16],
[29] always produce one-to-one parameterization, while the
conformal mapping method [22] and the harmonic mapping
method [6] produce one-to-one parameterization only on the
Cathead and Fandisk models.

Table 1 summarizes the optimized results from the
different initials on the Cathead and Fandisk models. One
can see that the initial parameterization will not signifi-
cantly affect the quality of the minimization of the final
results obtained by our coefficient-optimizing algorithm,
although the algorithm ends at a different local optimal.

As Yoshizawa et al. [32] used Floater’s shape preserving
algorithm [7] for their initial parameterization, for the
purpose of comparison, we begin the following experiments
in the same way.

5.2 Performance Analysis: Minimizing Processes

This section compares the performance of three algorithms
in mesh parameterization minimization processes. The
algorithms are the position-optimizing algorithm [25], the
coefficient-diffusing algorithm [32], and the coefficient-
optimizing algorithm.

5.2.1 Processes for Minimizing the Average Geometric

Stretch

Table 2 summarizes the running time and the results for

minimizing the average stretch L2 [25] using all three

algorithms.
Both the coefficient-diffusing algorithm and the coeffi-

cient-optimizing algorithm are much faster than the

position-optimizing algorithm. The coefficient-diffusing

and coefficient-optimizing algorithms require many fewer

iterations than the position-optimizing algorithm (tens of

iterations versus hundreds, even up to thousands of

iterations). As a result, even though they require longer

for each single iteration, the coefficient-diffusing and

coefficient-optimizing algorithms are quite efficient. Note

that, on the Cat model, the results using the position-

optimizing algorithm are still far from optimal, even when

the algorithm satisfies the convergent condition (that is, the

improvements among the continuous five iterations are less

than 10�4) after 2,000 iterations.
Fig. 4 illustrates in detail the process for minimizing the

L2 stretch on the Mannequin model using these three

algorithms. The position-optimizing algorithm is very slow;

the coefficient-diffusing algorithm is the most efficient for
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Fig. 3. The models tested in our experiments, their boundaries (red), and
the pinned corners (green): (a) Cathead (#V = 110, #T = 206, A =
0.2165), (b) Cat (#V = 4,539, #T = 5,976, A = 9.6217), (c) Mannequin
(#V = 6,768, #T = 13,471, A = 16.3168), (d) Fran (#V = 4,104, #T =
7,787, A = 3.3239), (e) Fandisk (#V = 5,051, #T = 9,926, A = 4.5831),
and (f) Venushead (#V = 13,876, #T = 27,614, A=56.2422). Here, #V is
the number of vertices, #T is the number of triangles, and A is the
surface area.

TABLE 1
Influence on the Optimized Results of Different Initial

Parameterizations, Tested on the Cathead and Fandisk Models

TABLE 2
Results of Minimizing the Average Stretch

Using Different Optimizing Algorithms



producing a low-L2-stretch parameterization, but it is
unstable for finer optimization; the performance of the
coefficient-optimizing algorithm is between the two: It is
much faster than the position-optimizer and produces a
more stable finer optimization than the coefficient-diffuser.
The coefficient-optimizing algorithm thus always produces
the best results in terms of the L2 metric (see Table 2).

5.2.2 Processes for Minimizing the Synthesized

Distortion

Table 3 shows the running time and the results for
minimizing the synthesized distortion. On most of the
models tested in our experiments, the coefficient-diffusing
algorithm performs poorly at directly minimizing the
synthesized distortion �log by diffusing the local synthesized
distortions. We think the effectiveness of the coefficient-
diffusing algorithm depends on the “fluctuations” among the
local distortions incident to all the internal vertices. Employ-
ing the �log metric smooths fluctuations in the local distortions
and, as a result, the coefficient-diffusing algorithm is less
effective in directly minimizing the �log distortion.

Generally, both the coefficient-optimizing algorithm and
the position-optimizing algorithm are strong to directly

minimize the synthesized distortion; however, as shown in

Table 3, the coefficient-optimizer minimizes the synthesized

distortion more effectively and faster.

5.3 Comparisons of the Distortion Metrics

Here, we will discuss the distortion metrics through the

visualized and quantitative analyses in the context of one of

the main applications of mesh parameterization, texture

mapping, in which, for each parameterization, a 128� 128

checkerboard image is mapped onto the mesh surface.
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Fig. 4. The detailed process for minimizing the average geometric

stretch using different algorithms on the Mannequin model. Here, we

have the coefficient-diffusing algorithm perform 10 iterations.

TABLE 3
Results of Minimizing the Synthesized Distortion

Using Different Optimizing Algorithms

Fig. 5. The textured model, per triangle angle deformation distribution,
and per triangle area deformation distribution tested on the Cat model
by: (a) minimizing the average stretch [25], (b) diffusing the average
stretch [32], (c) minimizing the combined energy [4], and (d) minimizing
our synthesized distortion. In accordance with the per triangle angle
(area) deformation, we assign the distortion rans of ½2; 8:68þ� (½2; 6:24þ�)
with colors from blue to red in all of the distribution figures of angle (area)
deformation. Statistical details of the maximum deformation, the
average deformation, and the variance are summarized in Table 4.



In the following experiments, we use the coefficient-

optimizing algorithm to minimize the L2 stretch [25], the

combined energy Eð�Þ [4], and the synthesized distortion

�log, and use the coefficient-diffusing algorithm [32] to

produce low-L2-stretch results.
Fig. 1 shows the textured Mannequin models. Fig. 2

shows the distributions of angle deformations and of area
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Fig. 6. The textured model, per triangle angle deformation distribution, and per triangle area deformation distribution tested on the Venushead model

by: (a) minimizing the average stretch [25], (b) diffusing the average stretch [32], (c) minimizing the combined energy [4], and (d) minimizing our

synthesized distortion. In accordance with the per triangle angle (area) deformation, we assign the distortion range of ½2; 10þ� (½2; 10þ�) with colors

from blue to red in all of the distribution figures of angle (area) deformation. Statistical details of the maximum deformation, the average deformation,

and the variance are summarized in Table 4.



deformations in the parameter domain corresponding to the
Mannequin model. Observing the “neck” region on the
Mannequin model, the results obtained by minimizing/
diffusing the L2 stretch or the Eð�Þ energy have much
larger area or angle deformations than the result obtained
by minimizing our �log distortion. Fig. 5 and Fig. 6 show the
results of tests on the Cat model and the Venushead model.
It is noticeable that the “paw” region on the Cat model and
the “neck” region on the Venushead model in the results
obtained by minimizing/diffusing the L2 stretch or the
Eð�Þ energy have larger area or angle deformations than the
corresponding regions in the results obtained by minimzing
our �log distortion.

The quantitative results obtained by minimizing/diffus-

ing the L2 stretch [25], [32], the Eð�Þ energy [4], or our �log

distortion are summarized in Table 4.
Both visual and numerical comparisons show that the

L2 stretch is more sensitive to the area deformation than to
the angle deformation. Minimizing/diffusing the L2 stretch
can perfectly preserve the triangle area at the cost of the
triangle conformality. While the Eð�Þ energy can balance
the average area deformation and the average angle

deformation, it leaves some regions with very large area

or angle deformations. Compared with these distortion

metrics, our �log distortion metric can reflect not only the

average area deformation and the average angle deforma-

tion, but also the area and angle deformation distributions.

6 CONCLUSION

This paper has studied the problem of planar parameter-

ization for 3D surface meshes, focusing on the distortion

metric and the minimizing process, and presents a new

distortion metric which synthesizes the average distortion

and the distortion distribution of both the area deformation

and the angle deformation. Experiments involving both

quantitative analyses and practical texture mapping appli-

cations show that, when compared with previous work, our

synthesized distortion metric performs satisfactorily in

terms of both the average area deformation and the average

angle deformation. Furthermore, the area and angle

deformations are distributed more uniformly among all

the triangles in the mesh.
This paper also proposes a novel coefficient-optimizing

algorithm for minimizing synthesized distortion. This

algorithm integrates the advantages of the position-opti-

mizing algorithm and of the coefficient-diffusing algorithm.

In experiments, the coefficient-optimizing algorithm is

computationally much faster than the position-optimizing

algorithm. Compared with the coefficient-diffusing algo-

rithm, the coefficient-optimizing algorithm is slower, but

more effectively seeks approximately optimal solutions, an

important quality, especially for minimizing synthesized

distortion.
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