发明名称
具有水分管理性能的机织物

摘要
一种机织物由疏水性和亲水性材料的通常均匀机织的结构组成，并且具有疏水性和亲水性材料的内部和外部暴露表面。内部暴露表面的区域为40％至70％疏水性材料，并且外部暴露表面的区域主要是亲水性材料。
1. 一种机织织物，其包含由疏水性和亲水性材料组成的通常均匀的机织结构，所述的机织结构具有 40%至 70%是疏水性材料的疏水性和亲水性材料的内部暴露表面，并且具有主要是亲水性材料的疏水性和亲水性材料的外部暴露表面。

2. 权利要求 1 的织物，其中所述的疏水性材料是具有疏水性能的合成纤维。

3. 权利要求 1 的织物，其中所述的疏水性材料是聚丙烯或聚酯。

4. 权利要求 1 的织物，其中所述的疏水性材料是选自棉、羊毛、丝或亚麻的天然纤维，并且其是用防水剂处理的。

5. 权利要求 4 的织物，其中所述的防水剂是 HYDROPHOBIC CF。

6. 权利要求 4 的织物，其中所述的防水剂是 SiO₂ 纳米防水剂。

7. 权利要求 1 的织物，其中所述的亲水性材料是由合成纤维制成的吸收性纱。

8. 权利要求 7 的织物，其中所述的合成纤维是 coolmax 或 coolplus。

9. 权利要求 1 的织物，其中所述的亲水性材料是由天然纤维制成的吸收性纱。

10. 权利要求 9 的织物，其中所述的天然纤维是棉、丝、羊毛或亚麻中的一种。

11. 权利要求 9 的织物，其中所述的天然纤维是用含有用于产生纳米结构的纳米粒子的亲水性整理剂处理的。

12. 权利要求 11 的织物，其中所述亲水性整理剂包含 TiO₂ 或 ZnO。

13. 权利要求 1 的织物，其中所述的机织织物结构是平纹组织、斜纹组织或缎纹组织中的一种。

14. 一种服装的制品，其包括根据权利要求 1 的构成织物。

15. 一种尿布，其包括根据权利要求 1 的构成织物。

16. 一种家庭用品，其包括根据权利要求 1 的构成织物。
具有水分管理性能的机织物

[0001] 本发明涉及机织物，以及用于将汗或水分从皮肤中通过毛细作用带走的织物。

[0002] 对于使服装，特别是运动服装、尿布和大小便失禁的服装等穿着和使用更舒适和更健康存在持续的要求。即使相当多的水分或液体可能由于穿着者在正常使用中释放出来。已知的是提供复合纺织材料，其包含具有相应适宜特征的材料的不同层，所以水分或液体从与穿着者皮肤接触的材料内表面迅速地迁移或排出。在尿布的情况下，液体可以保留在第二外层中，或比方说，在运动服装的情况下，在只有一层时，通常从材料的外表面蒸发掉。已知的纺织材料的实例可以发现于美国专利6,509,285,6,504,6,427,493,6,341,505,6,277,469,5,315,717,5,735,145和4,411,660中。

[0003] 但是，特别是对于多层材料，困难继续存在，因为它们是笨重的并且不舒适的，或者确实难以进行流行式样设计。此外，即使该材料在开始使用时可以保持穿着者的皮肤相对干燥和舒适，但是一旦吸收层变得饱和或相对潮湿，水分或液体可以迁移回使用者的身体。目前使用的复合材料，特别是在它们是多层的情况下，通常是不能再次使用的。

[0004] 本发明的一个目的在于提供一种具有改善的水分管理性能的机织物。

[0005] 根据本发明，提供一种机织物，其包含由疏水性和亲水性材料组成的通常均匀的机织结构，所述的机织结构具有40％至70％是疏水性材料的疏水性和亲水性材料的内部暴露表面，并且具有主要是亲水性材料的疏水性和亲水性材料的外部暴露表面。

[0006] 优选地，疏水性材料是聚丙烯。

[0007] 优选地，疏水性材料是聚酯。

[0008] 优选地，疏水性材料是选定棉、羊毛、丝或亚麻的天然纤维，并且其是用防水剂处理的。

[0009] 优选地，防水剂是HYDROPHOBIC CF。

[0010] 优选地，防水剂是SiO_{2}纳米防水剂。

[0011] 优选地，亲水性材料是由合成纤维制成的吸收性纱。

[0012] 优选地，合成纤维是coolmax或coolplus。

[0013] 优选地，亲水性材料是由天然纤维制成的吸收性纱。

[0014] 优选地，天然纤维是棉、丝、羊毛或亚麻中的一种。

[0015] 优选地，天然纤维是用含有用于产生纳米结构的纳米粒子如TiO_{2}和ZnO的亲水性整理剂处理的。

[0016] 优选地，机织物结构是平纹组织、斜纹组织或缎纹组织中的一种。

[0017] 可以将该织物用于服装的成分，所述的服装包括运动服、便服、制服和裤子。它还可以用于尿布或家庭用品如床单、罩和枕头的成分。

[0018] 本发明的更多方面从下面仅以实例的方法给出的描述中将变得明显的。

[0019] 现在本发明的实施方案将参考附图进行描述，在附图中：

[0020] 图1图示了根据本发明的机织物的粗斜棉纱的结构。

[0021] 图2图示了根据本发明的机织物的聚丙烯的结构。

[0022] 图3是机织物的典型测量曲线。
图 4 至 11 图示了聚丙烯或 coolmax 的内表面的不同百分比的点与区域如何影响织物的单向传递的测量结果以及总的水分管理性能。和
图 12 是织物的典型测量曲线，所述织物中的疏水性纱是由纳米防水剂预先处理过的纯棉。
根据本发明的一个优选实施方案，用于外衣的具有水分管理性能的单层机织物包括内表面和外表面。内表面在使用时靠近穿着者的皮肤穿着，并且具有小比例的疏水性区域或结构点和低比例的亲水性区域或结构点。在优选的实施方案中，疏水性区域占内表面的 40% -70%。外表面，远离穿着者皮肤安置，具有高比例的亲水性区域或结构点。亲水性纤维 /纱将任何液体或水分从织物的内侧传递至外侧。
在内表面上的低比例亲水性点 /区域允许液体水的迅速吸收，并且可以通过毛细作用带走液体水，而在内表面上的高比例疏水性点 /区域可以保持该表面相对干燥，并且防止液体水通过毛细作用带回到内表面。
术语疏水性和亲水性是相对术语，并取决于具有不同表面张力、接触角、截面形状、纤维直径、化学和物理整理等的纤维和纱的选择。因此，应当理解的是，术语”疏水性”和”亲水性”作为相对的术语被用于说明书和权利要求书中。这表明，例如，机织物是由相对于彼此是疏水性和亲水性的材料制成的，而不是与规范或某些工业标准相比，必须具有这种性能。
对于织物，可以选择大范围的疏水性纱。这种纱可以是合成纱，如聚丙烯类等，或通过使用化学或纳米技术以提高它们的疏水性能而整理的天然纤维。实例包括用 Ciba 的 HYDROPHOBOL CF 防水剂或 Zoushan Mingri 纳米技术公司的防水剂整理的棉纱。在优选的实施方案中，将聚丙烯选择用于疏水性纱。
同样，亲水性纱可以选自大范围的合成纱或纤维。实例包括 coolmax、coolplus、天然纱 /纤维如棉，或用亲水性整理剂如 FZ 试剂，通过使用化学或纳米技术以改变它们的亲水性能而整理的纱。在优选的实施方案中，将 coolmax 选择用于亲水性纱。
织物的水分管理性能取决于在内表面上的疏水性区域或点的比例。对于与纯棉亲水性纱一起使用的聚丙烯疏水性纱，在内表面上的聚丙烯结构点的范围对于最佳水分管理应当为 40% 至 70%。
开发和测量了一系列具有不同百分比的疏水性点 /区域的机织物。作为实例，设计出如图 1 和 2 所示的织物结构， WMMFO06。经纱是 100D 聚酯。图 1 中的织物结构是 20S 纯斜棉纱，并且图 2 中的织物结构是 83.3dtx 聚丙烯。图形排列是聚丙烯：棉：聚丙烯＝ 1：1：1。组织的含量是棉 45%、聚丙烯 25%、聚酯 30%，并且结构是 100DX(20S+83.3dtx)/55.1ends/cm²/90ends/cm。
使用水分管理测试仪来测试织物的水分管理性能，以确定水分管理指数。将织物夹在两个板之间，将以同心相对成对的方式安排的导体用于测量织物电阻的变化。将一些水（或其它选择的液体）倾倒到导管中，并且测量电阻随时间的变化。以可重复的方式从该数据确定具体的指数，并且用于确定织物的水分管理特性。可以在本发明人的美国专利号 6,499,338 中找到测试仪的详细情况，机织物的典型的测量曲线示于图 3 中。
图 4 所示为聚丙烯的内表面结构点的百分比对织物单向传递性能的影响。
[0035] 图 6 所示为 coolmax 的内表面结构点的百分比对织物单向传递性能的影响。
[0036] 图 7 所示为 coolmax 的内表面结构点的百分比对织物总水分管理容量的影响。
[0037] 图 8 所示为聚丙烯的内表面区域的百分比对织物单向传递性能的影响。
[0038] 图 9 所示为聚丙烯的内表面区域的百分比对织物总水分管理容量的影响。
[0039] 图 10 所示为 coolmax 的内表面区域的百分比对织物单向传递性能的影响。
[0040] 图 11 所示为 coolmax 的内表面区域的百分比对织物总水分管理容量的影响。
[0041] 在本发明一个备选的实施方案中，用被纳米防水剂预处理过的纯棉纱代替聚丙烯
类或 coolmax 作为疏水性纱。此备选方案的典型测量曲线示于图 12 中。
[0042] 根据本发明的织物可以比普通织物如纯棉织物更容易地将液体水从内表面传送
至外表面，所以在穿着的过程中，特别是在高的出汗速度下，保持舒适的感觉。
[0043] 如果在上面的描述中，参考了具有已知等价物的整体或要素，那么这样的整体或
要素包括在内，如同其在本文中单独列出一样。
[0044] 已经描述了本发明的实施方案，但是，应当理解的是，可以在不离开本发明的精神
或后附权利要求书的范围下产生各种变体、改进或修改。
<table>
<thead>
<tr>
<th>湿润时间 (sec)</th>
<th>上表面</th>
<th>下表面</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.315</td>
<td></td>
<td>4.356</td>
</tr>
<tr>
<td>最大吸收率 (%/sec)</td>
<td>2.766</td>
<td>110.6284</td>
</tr>
<tr>
<td>最大湿润半径 (mm)</td>
<td>0.0</td>
<td>30.0</td>
</tr>
<tr>
<td>扩散速度 (mm/sec)</td>
<td>0.0</td>
<td>1.347</td>
</tr>
<tr>
<td>单向传递容量</td>
<td>361.6623</td>
<td></td>
</tr>
<tr>
<td>描述</td>
<td>RM-7MXw20-6</td>
<td></td>
</tr>
</tbody>
</table>
图 10

图 11
表格数据

<table>
<thead>
<tr>
<th>参数</th>
<th>上表面</th>
<th>下表面</th>
</tr>
</thead>
<tbody>
<tr>
<td>湿润时间 (sec)</td>
<td>119.953</td>
<td>3.635</td>
</tr>
<tr>
<td>最大吸率率 (%/sec)</td>
<td>1.0507</td>
<td>56.516</td>
</tr>
<tr>
<td>最大湿润半径 (mm)</td>
<td>0.0</td>
<td>30.0</td>
</tr>
<tr>
<td>扩散速度 (mm/sec)</td>
<td>0.0</td>
<td>0.9554</td>
</tr>
<tr>
<td>单向传递容量</td>
<td>328.5712</td>
<td></td>
</tr>
<tr>
<td>描述</td>
<td>EHT-WX0221-0</td>
<td></td>
</tr>
</tbody>
</table>