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Beamformer configuration design in
reverberant environments

Zhibao Li and Ka-Fai Cedric Yiu

Abstract

Many speech-related products rely on the deployment of microphone arrays and standard regular

configurations are often used. In enhancing speech quality, the placement of microphones is indeed an

important factor. Moreover, for indoor applications, the room acoustics further increases the difficulty.

In this paper, these problems are addressed. First, we define the LCMV beamformer design problem

using estimated room impulse responses with reverberation. Then, we study the performance limit

on the filter length and formulate the configuration design problem. Finally, we employ a hybrid

descent method with the genetic algorithm for solving the design problem. Numerical examples

demonstrate the effectiveness of the proposed method.

Keywords: Microphone array configuration, reverberation, LCMV beamforming, hybrid de-

scent method.

I. INTRODUCTION

Beamforming techniques have been employed extensively in speech communication sys-

tems, teleconferencing, speech recognition, and hearing aids [3], [14]. Beamformers act as

spatial filters to extract a target from a mixture of signals captured by a set of micro-

phones. Many beamforming techniques were developed under the assumption that channels

are modelled by delays and attenuations. For instance, the minimum variance distortionless

response (MVDR) beamformer originally proposed in [5] consists of minimizing the overall

interference-plus-noise power subject to a gain constraint in the speaker direction. The linearly

constrained minimum variance (LCMV) beamformer [9], [13] generalizes the idea with

multiple constraints imposed. When the performances of these beamforming techniques are

investigated, it is well-known that the filter length plays an important role; however the

performance limit begins to plateau out for long enough filters. As proven in [12], unless
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the number of microphones grows significantly, the target response might not be achieved

satisfactorily. On the other hand, for a fixed size array, the performance can still be improved

drastically if the configuration is carefully chosen [11]. Furthermore, for indoor applications,

it is also necessary to match the microphone array configuration with the specific auditory

scene. Indeed, in designing the products embedded with microphones, it is essential to find

suitable beamforming filters to enhance the desire signal. In addition, it is a common practice

to employ regular configurations in the products without considering different microphone

arrangements. For example, there are products on acoustic measurements which deploy regular

shapes such as planar wheel arrays, spherical arrays and rectangular arrays. They can be

applied for environmental noise measurements or for indoor applications for sound reception.

However, optimization of these products have not been considered in the literature for different

environments.

If the microphone locations are restricted to vary within certain dimensions and areas, sev-

eral optimization problems have been formulated. For example, if microphones are displaced

linearly in a one-dimensional manner, it essentially reduces to the array thinning technique

[24], [25], [31], [32]; different algorithms have been developed, including evolutionary pro-

gramming [7], [17], genetic algorithm [6], [16], simulated annealing algorithm [8], [34], [35]

and pattern search algorithm [29]. For applications inside a vehicle, microphones are restricted

to be in several dedicated areas and an evolutionary algorithm has been proposed in [2]. In

formulating the general multi-dimensional design problem, a nonlinear optimization problem

using the L2-norm was proposed in [11], which allows microphones to move around in a

multi-dimensional solution space in search of better configurations. However, the objective

function is highly nonlinear and is essentially nonconvex with respect to the location variables;

the problem is further complicated by the influence of the filter length. By considering the

performance limit for sufficiently long filters, a reduced optimization problem with micro-

phone locations being the only set of decision variables was proposed [11]. Also, a hybrid

descent method using the genetic algorithm was developed in [21] to provide a more general

solution technique to the problem.

For indoor applications in a reverberant environment, reverberation makes the transfer

function estimation for sound wave propagation more complicated and costly. Room acoustics

can be estimated by geometric based models, such as the ray tracing method and the image-

source method (ISM) [1], [4], [19], [33], and have been applied for indoor beamformer

design [20], [22]. During the configuration design process, the room acoustics must be re-

calculated whenever the configuration changes. A fast implementation of the ISM proposed

in [18] provides the required tool for synthesizing the room impulse responses (RIRs) in

an efficient manner, requiring only a fraction of the computation time comparing with the
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original approach. In this paper, the fast-ISM technique is adopted and the RIRs information

is embedded into the LCMV beamformer design problem. By optimizing on the frequency

response function directly to obtain the performance limit on the filter length, a pure location

optimization problem is formulated. A suitable hybrid descent method with the genetic

algorithm is developed to tackle the design problem.

The rest of the paper is organized as follows. In Section II, we define the configuration

design problem by using the estimated RIRs based on the fast image-source method. In

Section III, we study the performance limit on the filter length of the LCMV beamformer

by solving the optimal frequency response function directly. In Section IV, after eliminating

the filter length effect, we develop a hybrid descent method using the genetic algorithm to

tackle the configuration design problem. In Section V, several numerical examples are given

to evaluate the effectiveness of the proposed method. Conclusion is given in Section VI.

II. MICROPHONE ARRAY CONFIGURATION DESIGN

Assume the indoor environment is a rectangular room with N sources settled at rn, n =

0, ...., N−1. Sound wave propagation in the room is governed by the room impulse responses

(RIRs) (Fig. 1) from all source points to the microphone array, which can be estimated by

the image-source method.
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Fig. 1: A typical example of the RIR.

Without loss of generality, let r0 be the source point of the signal of interest (SOI) while the

others are the source points of interferences (INT). For a given M -elements microphone

array located at λ = (r1, r2, . . ., rM) ∈ Λ ⊂ R3×M , suppose the frequency domain

transfer functions describing the acoustics are denoted by Hn,m(λ, ω), signals captured by
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the microphone array are represented by

Xm(ω) =
N−1∑
n=0

Hn,m(ω)Sn(ω) + Vm(ω), m = 1, . . . ,M. (1)

Assume there is an L−tap FIR filter behind each microphone with coefficients wm = [wm(0),

wm(1), . . ., wm(L − 1)]T , m = 1, . . . ,M , if signals received by this microphone array are

sampled synchronously at the rate of fs per second, then the frequency responses for the

frequency component ω are

Wm(ω) = wTmd0(ω), m = 1, . . . ,M, (2)

where d0(ω) is defined as

d0(ω) = [e
−jω
fs

(−τL), e
−jω
fs

(1−τL), ..., e
−jω
fs

(L−1−τL)]T , (3)

and 0 ≤ τL ≤ L− 1 is the group delay. Therefore, the beamformer output for each frequency

under the array placement λ is given by

Y (ω) =
M∑
m=1

Wm(ω)Xm(ω) = WH(ω)X(ω) (4)

where W (ω) = [W1(ω) . . . WM(ω)]T denotes the beamformer response vector and X(ω) =

[X1(ω) . . . XM(ω)]T is the received signal.

Notice that the beamformer output Y (ω) is a function of the microphone array placement

λ and filter coefficients w = [w1, w2, . . . , wM ]T . To measure the error between the output

and the desired SOI signal Sd(ω), we define a merit function as

F (λ,w) =
1

||Ω||2

∫
Ω

||WH(ω)X(ω)− Sd(ω)||22dω, (5)

where Ω is the interesting frequency region. Hence, we can propose the microphone array

configuration design problem as follows:

min
λ∈Λ,w∈RM×L

F (λ,w)

s.t. ||ri − rj||2 ≥ ε0, i, j = 1, 2, . . . ,M, i 6= j,
(6)

where F (λ,w) is defined in (5), ε0 > 0 is a constant to separate the set of microphone

elements for proper functioning. This design problem (6) can be considered as a bi-level

optimization problem with placement variables λ and filter coefficients w. Clearly, the op-

timal filter coefficients w will change whenever perturbing the locations λ. Moreover, the

performance of the beamformer output Y (ω) is affected by the filter length L. In the following,

we introduce the performance limit on the filter length to estimate the optimal beamformer

output Y (ω) in order to avoid the effect of filter length.
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III. PERFORMANCE LIMIT OF LCMV BEAMFORMER

For a given λ, the optimal beamformer output Y (ω) will be achieved when the filter

length L→ +∞. While the beamformer design with very long filters are very computationally

costly, there is an equivalent relationship between infinite length filters and frequency response

functions according to (2). The exact frequency responses Wm,opt(ω), m = 1, . . . ,M are

associated with the infinite length filters [10] in the following lemma.

Lemma 1. Given a space spanned by the set of functions defined from d0(ω) (3) as

B = {e
−jω
fs

(−τL), e
−jω
fs

(1−τL), ..., e
−jω
fs

(L−1−τL)}. (7)

For any complex valued function u(ω) + jv(ω) ∈ C, where u(ω), v(ω) ∈ R, if u(ω) and

v(ω) are continuous, absolute integrable and differentiable, then this complex valued function

u(ω) + jv(ω) can be linear represented by the base B at L → +∞, that is there exists a

real sequence {cl, l = 0, 1, . . . , +∞} such that

u(ω) + jv(ω) = lim
L→+∞

L−1∑
l=0

cle
−jω
fs

(l−1). (8)

Proof. See [10] for the details.

From Lemma 1, we define the frequency response Wm(ω) = um(ω)+jvm(ω) as the variables

directly to estimate the optimal beamformer output, which represents the performance limit

on the filter length. By substituting the received signals Xm(ω) to different channels (1), we

can rearrange the beamformer output as

Y (ω) =
M∑
m=1

Wm(ω)H0,m(ω)S0(ω) +
N−1∑
n=1

M∑
m=1

Wm(ω)Hn,m(ω)Sn(ω) +
M∑
m=1

Wm(ω)Vm(ω). (9)

Therefore, the subproblem for optimal beamforming output is converted to finding the optimal

frequency responses Wm,opt(ω), such that the first part of the above sum reconstructs our

desired signal, while suppressing the last two parts of the sum. For the ideal performance on

dereverberation, interference suppression and noise reduction, the desire optimal frequency

responses are to satisfy the following conditions
M∑
m=1

Wm(ω)H0,m(ω) = GD(ω),

M∑
m=1

Wm(ω)Hn,m(ω) = 0, n = 1, . . . , N − 1,

M∑
m=1

Wm(ω)Vm(ω) = 0,

(10)
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where GD(ω) denotes the direct path transfer function from the SOI point to the beamformer

output reference point. In LCMV beamforming, the frequency responses Wm(ω) are adjusted

based on the statistics of the sensor array measured signals, the expression to be minimized

is the power of the background noise and the cost function can be defined as

E(W (ω)) = ||WH(ω)V (ω)||2, (11)

where V (ω) = [V1(ω) V2(ω) . . . VM(ω)]T is the received noise vector. If we formulate

the conditions on dereverberation and interference suppression as constraints, the frequency

domain LCMV beamformer design problem can be established as

min
W (ω)∈CM

E(W (ω))

s.t. HH(ω)W (ω) = G(ω),
(12)

where the constraint matrix H(ω) is constructed by the corresponding conditions on dere-

verberation and interference suppression in (10), defined as

H(ω) =


H0,1(ω) H1,1(ω) · · · HN−1,1(ω)

H0,2(ω) H1,2(ω) · · · HN−1,2(ω)
...

... . . . ...

H0,M(ω) H1,M(ω) · · · HN−1,M(ω)

 , (13)

and G(ω) = [GD(ω) 0]T is the response vector.

The problem (12) provides a general framework on the design of LCMV beamformer

with respect to the frequency response functions. It is defined on the complex field with the

complex variables Wm(ω), m = 1, . . . ,M . To formulate the specific real field optimization

model for the proposed LCMV beamformer design problem (12), we separate the complex

transfer functions Hn,m(ω), n = 0, 1, . . . , N − 1, noise components Vm(ω) and frequency

response variables Wm(ω), m = 1, . . . ,M into real and imaginary parts. By denoting

HRe
n,m(ω) = real(Hn,m(ω)), H Im

n,m(ω) = imag(Hn,m(ω)),

V Re
m (ω) = real(Vm(ω)), V Im

m (ω) = imag(Vm(ω)),

WRe
m (ω) = real(Wm(ω)), W Im

m (ω) = imag(Wm(ω)),

GRe
D (ω) = real(GD(ω)), GIm

D (ω) = imag(GD(ω)),

and stacking the real and imaginary parts WRe
m (ω) and W Im

m (ω) of frequency response into

a new real variable vector χm(ω) = (WRe
m (ω) WRe

m (ω))T , we can rewrite the beamforming
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conditions (10) as
M∑
m=1

(
HRe

0,m(ω) −H Im
0,m(ω)

H Im
0,m(ω) HRe

0,m(ω)

)
χm(ω) =

(
GRe
D (ω)

GIm
D (ω)

)
,

M∑
m=1

(
HRe
n,m(ω) −H Im

n,m(ω)

H Im
n,m(ω) HRe

n,m(ω)

)
χm(ω) =

(
0

0

)
, n = 1, . . . , N − 1,

M∑
m=1

χm(ω)T

( V Re
m (ω)

−V Im
m (ω)

)(
V Re
m (ω)

−V Im
m (ω)

)T

+

(
V Im
m (ω)

V Re
m (ω)

)(
V Im
m (ω)

V Re
m (ω)

)T
χm(ω) = 0.

(14)

By stacking all the matrices and vectors together, we establish the transformed LCMV

beamformer design problem for solving optimal frequency responses as

min
χ(ω)∈R2M

χ(ω)TRV V (ω)χ(ω)

s.t. H̄T (ω)χ(ω) = Ḡ(ω),
(15)

where χ(ω), RV V (ω), H̄(ω) and Ḡ(ω) are the vectors and matrices corresponding to con-

ditions (14). As a result, for each of the frequency ω, this problem can be tackled by the

quadratic programming technique and obtain the optimal beamformer output Yopt(ω) for a

given λ by substituting Wm,opt(ω) into (4).

IV. HYBRID DESCENT METHOD

Based on the performance limit estimation of the LCMV beamformer, we have estimated

the optimal beamformer output for measuring the fitness of the given λ irrespective of the

filter length. The original configuration design problem (6) with respect to placement variables

λ and filter coefficients w is converted firstly into a new optimization problem as

min
λ∈Λ,W (ω)∈CM

F̄ (λ,W (ω))

s.t. ||ri − rj||2 ≥ ε0, i, j = 1, 2, . . . ,M, i 6= j,
(16)

where F̄ (λ,W (ω)) is the merit function (5) with the frequency responses determined by

optimization problem (15). Considering in a bi-level manner, the optimal frequency responses

Wopt(ω) for (15) are fixed for a given λ. Consequently the configuration design problem (16)

is reduced to

max
λ∈Λ

F(λ) = F̄ (λ,Wopt(ω))

s.t. ||ri − rj||2 ≥ ε0, i, j = 1, 2, . . . ,M, i 6= j.
(17)

The modified design problem (17) consists of the subproblem (15) for solving optimal

frequency responses Wopt(ω) and the main problem for solving the optimal placement λopt.

For the subproblem (15), the objective function is convex with respect to the variables W (ω),
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and the optimal solution can be solved effectively. Whereas, for the optimal placement,

the merit function F(λ) has the placement variables λ nested inside the corresponding

subproblem (15). It is a nonconvex optimization problem with respect to λ and cannot be

tackled by gradient-based technique alone. Therefore, we introduce the genetic algorithm and

propose a hybrid descent method as follows:

Algorithm 1.

1. Given positive parameters ε1 > 0 and ε2 > 0, generate an initial placement λ0, and solve

the subproblem (15) with λ = λ0 to obtain the optimal frequency response Wopt(ω) for the

objective value as F(λ0). Set k = 0.

2. Take λk as one of the candidate point for the genetic algorithm, and execute Q iterations

until a point λk̄ is obtained with the property F(λk̄)−F(λk) ≤ −ε1.

3. Solve for the local minimum of F(λ) by using a gradient-based minimization method with

λk̄ as the input point to get λk+1, such that the objective function has a certain degree of

decline, F(λk+1)−F(λk̄) ≤ −ε2.

4. Set k := k + 1, return to Step 2 until convergence.

In step 2 of Algorithm 1, the fitness function value for genetic algorithm is set to be the

optimal value of the subproblem (15), and the genetic algorithm composes of five key steps

as follows:

1. Population representation – The real-valued placement variables λ are initialized to con-

struct the chromosomes and store an entire population in a single matrix with all chromosomes

are of equal length.

2. Fitness assignment – The fitness values are derived from the optimal value of (16) via

ranking or scaling.

3. Selection – Selection functions select a given number of placements from the current

population, according to their fitness, and return a column vector to their indices.

4. Crossover – Crossover operators recombine pairs of individuals with given probability to

produce offspring.

5. Mutation – Mutation operators apply random changes to individual parents to form

offspring.

The overall procedure is outlined as follows:

Genetic algorithm

(a) Generate the initial placement chromosomes Λk via the last local optimal placement λk,
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evaluate (17) for all the individuals to obtain F(λ),λ ∈ Λk.

(b) Rank F(λ),λ ∈ Λk, if F(λk̄)−F(λk) ≤ −ε1, stop; otherwise, go to next step (c).

(c) Select the individuals Λk
1 by using certain selection functions to be parents.

(d) Combine two parents to form offspring Λk
2 for the next generation by using the crossover

operator.

(e) Apply random changes to individual parents to form offspring Λk
3 by using mutation

operator.

(e) Evaluate (17) for all of the new individuals Λk
3; get F(λ),λ ∈ Λk

3 and return to (b).

V. NUMERICAL EXAMPLES

A. Performance indicators

To verify the effect of configuration designs, some indicators are needed to measure the

performance of the beamformer outputs. There are many objective measures in the literature

for evaluating the performance of speech enhancements [23]. Popular indicators include the

segmented SNR (SNRseg) [15], the PESQ score [30], the KurtR measure [36], [38], the NRR

and the LLR measure [28]; these measures are demonstrated to be consistent in [38]. In our

experiments, we simply use the SNRseg the PESQ measure. In addition, we also define the

generalized signal-to-noise, -interference and -reverberation ratio (SNIRR) for measuring the

performance of speech quality degraded by reverberation, interference and background noise.

And the segmental SNIRR measure can be defined similarly as

SNIRRseg =
10

Q

Q−1∑
q=0

log10

||S(q)||2

||S(q)− Ŝ(q)||2
dB, (18)

where S(q) and Ŝ(q) represent the direct captured speech signal when the source signal is

active alone without reverberation and the enhanced speech in the q-th time frame, respectively.

The calculations are thresholded in interval [−20dB, 35dB] to discard non-speech frames.

For the PESQ score, it is recommended by ITU-T for speech quality assessment of 3.2kHz

handset telephony and narrow-band speech codecs [26], [27]. It is obtained by a linear

combination of the average disturbance value Dind and the average asymmetrical disturbance

value Aind

PESQ = 4.5− 0.1Dind − 0.0309Aind. (19)

The range of the PESQ score is 0.5 to 4.5, although for most cases the output range will be

a MOS-like score, i.e., a score between 1.0 and 4.5.
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The segmental SNIRR and the PESQ score are all pointed to the performance of speech

quality. Specific indicators for measuring the performance on dereverberation, interference

suppression and noise reduction can also be introduced similar to [37]. They are

SuppINT =

∫ π
−π PYI (w)dw

Cd
∫ π
−π PSI

(w)dw
, SuppNOI =

∫ π
−π PYN (w)dw

Cd
∫ π
−π PSN

(w)dw
, (20)

where the constant Cd is defined as

Cd =

∫ π
−π PYS(w)dw∫ π
−π PSS

(w)dw
,

and PSS
(w), PSI

(w) and PSN
(w) denote the spectral power estimate of the unfiltered signals

when the source, interference and background noise active alone, respectively, while PYS(w),

PYI (w) and PYN (w) denote the spectral power estimate of the filtered signals when the source,

interference and background noise active alone, respectively. For dereverberation, we can

define as

SuppREV =

∫ π
−π PYR(w)dw

Cd
∫ π
−π PSR

(w)dw
, (21)

where PSR
(w) and PYR(w) denote the spectral powers estimate of the unfiltered and filtered

reverberant signals active alone, respectively.

B. Acoustic environments

Assume the microphone array is deployed as an indoor product. A simple rectangular

room with dimension 12m × 6m × 3m is defined for modelling. A fraction of sound wave

are absorbed by the walls, floor and ceiling. These are the energy loss from the room and

the fractional loss is characterized by several absorption coefficients, whereas, the overall

effect can be represented by the reverberation time T60. The SOI is imposed in (0, 0, 1m),

one interferer is placed at (0, 1m, 1m), and the noise is located at (0,−1m, 1m). The centre

of the room is the origin. Note that the noise location is not used directly during beamformer

design. An illustration of the room setup is depicted in Fig. 2. All the RIRs from the source

points to sensor array are estimated by the fast-ISM simulator [18]. Three different kinds of

room acoustics: T60 = {0.05s, 0.1s, 0.2s} are studied. A male speech is employed as the SOI

signal, while a female speech is used as the interference (INT). Both of them have 8000Hz

sampling frequency. White noise is assumed to be the NOI.

We define a 9-elements microphone array settled in the plane Λ = {1m ≤ x ≤ 5m,−2.5m ≤
y ≤ 2.5m, z = 1m} as the feasible region to capture the SOI, INT and NOI signals, and use

one of the microphone as the reference point. Commonly deployed beamformer configurations,

such as uniform linear array λLin, will be used for comparison.
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Fig. 2: Setup of the acoustic room system.

C. Optimal configurations

We first apply the proposed design method with T60 = 0s, which corresponds to the scenario

of open area without reverberation. The optimal configuration λopt,1 is shown in Fig. 3(a).

We can see that all the microphone elements are converged to the vertical line in front of

the source point. This result is in good agreement with [11]. Then, we employ this solution

λopt,1 as the initial points for solving problems in the reverberant environment. The converged

solutions with reverberation time T60 = {0.05s, 0.1s, 0.2s} are depicted in the Fig. 3(b)-(d).

From the figures, we can see that all the converged placements are still arranged on the

vertical line in front of the source points. Moreover, the configuration starts to spread out

with reverberation. For T60 = 0.2s, one microphone is even moved close to the wall.

D. Beamformer performance

In this section, we compare the performances for different designs based on the indicators

outlined above. We use the five indicators: reverberation suppression SuppREV , interference

suppression SuppINT , noise suppression SuppNOI , segmental SNIRR and PESQ scores to

measure the overall performance. The overall results are listed in Table I. In the table, the

best results of the enhancement are in boldface, while the other designs are for comparison.

Moreover, all the designed beamformers have better performance on speech enhancement

than the common uniform linear array λLin.

For illustration, we also plot the filtered results on the reverberation suppression, interfer-

ence suppression, noise suppression and speech enhancement with T60 = 0.2s in Fig. 4. From

the results, it can be seen that the optimized beamformers can achieve effective suppressions

on reverberation, interference and noise, and finally, enhance the SOI signal.
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Fig. 3: Configurations of the converged designs.

VI. CONCLUSION

In this paper, we have studied the microphone array configuration design problem in a

reverberant environment. We have employed the room impulse responses in the design to

account for reverberation effect. Based on the LCMV beamforming technique, the config-

uration design optimization problem has been formulated. Moreover, to eliminate the filter

length effect on the designs, the performance limit on filter length has been studied for

LCMV beamformers and a design problem with only location variables has been proposed.

A hybrid descent method with genetic algorithm has been proposed for solving this nonconvex

problem. From the experimental results, we found that the optimal microphone elements are

all arranged on the vertical line in front of the source points. Moreover, the configurations

are expanded farther as reverberation increases and microphones are located closer to the

walls. The proposed method can be applied directly for product designs deploying a set of

microphones for indoor applications. As a future extension, it is of interest to study multiple

noise sources in the optimization process.
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TABLE I: Summary of the designed beamformer performances.

T60 λ SuppREV SuppINT SuppNOI

SNIRRseg PESQ

Unfiltered Filtered Unfiltered Filtered

0

λLin —– 57.6870 17.3143 -4.0122 10.1284 1.3565 2.7864

λopt,1 —– 64.5225 55.2305 -4.0533 31.5169 1.3575 4.4891
λopt,2 —– 52.3383 49.1290 -4.0533 28.9000 1.3575 4.4579

λopt,3 —– 33.2180 35.8123 -4.0526 20.6136 1.3575 3.9036

λopt,4 —– 32.5225 34.3196 -4.0526 20.0587 1.3575 3.9224

0.05

λLin 44.1851 44.2679 15.5927 -4.0912 7.7772 1.3529 2.6682

λopt,1 33.8200 46.7055 47.0113 -4.1269 24.8553 1.3527 4.4356

λopt,2 42.2344 50.7277 46.2392 -4.1269 27.3810 1.3527 4.4034
λopt,3 33.5334 32.2094 35.3161 -4.1262 20.1291 1.3527 3.7127

λopt,4 29.5846 30.2106 34.7869 -4.1262 19.1560 1.3527 3.6960

0.1

λLin 19.1569 27.9448 14.1948 -4.6129 5.7986 1.3715 2.5198

λopt,1 10.4564 24.3906 27.6087 -4.6348 10.1322 1.3765 3.0990

λopt,2 16.4976 25.4371 26.8072 -4.6427 11.7183 1.3760 3.1170

λopt,3 21.3615 29.0429 28.8280 -4.6310 14.9132 1.3740 3.1248
λopt,4 21.0103 27.7977 28.0733 -4.6313 14.0199 1.3746 3.1207

0.2

λLin 14.8547 21.3085 13.0079 -5.1495 3.9352 1.3699 2.3513

λopt,1 15.3812 20.6743 24.1998 -5.0849 8.9280 1.3739 2.8609

λopt,2 16.8513 20.7430 23.9908 -5.0849 9.0894 1.3739 2.8857

λopt,3 20.0668 24.3083 24.6788 -5.0844 10.6398 1.3740 2.8854

λopt,4 20.4096 25.2930 24.8435 -5.0845 11.1968 1.3740 2.9366
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