发明名称
双模光子晶体光纤及其应用

摘要
双模光子晶体光纤包括基本透明的纤芯材料构成的纤芯。所述纤芯材料具有纤芯折射率和长度，并且具有纤芯直径。所述光纤还包括包层和所述纤芯材料外层的包层区域。所述包层区域具有基本透明的包层材料，其具有第一折射率。所述第一基本透明的包层材料沿其长度方向形成基本成周期排列的孔，其具有直径d，并且以间距Λ隔开。所述孔具有第二折射率，其值小于所述第一折射率。对于在大约0.45～0.65的范围之内的基本固定的d/Λ比率，对于所述间距Λ的任何值，所述孔直径d和所述间距Λ的尺寸配合，以给出独立于输入辐射波长的在所述光子晶体光纤之内的双模传播。
1. 一种双模光子晶体光纤，包括：
 透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及
 包围所述纤芯材料的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入成周期排列的孔，其具有直径 d，并且以间距 λ 隔开，其中所述孔具有第二折射率，其值小于所述第一折射率；
 其中对于 0.45－0.65 的范围之内的固定的 d/λ 比率，对于所述间距 λ 的任何值，所述孔直径 d 和所述间距 λ 的尺寸配合，以给出独立于输入辐射波长在所述光子晶体光纤之内的双模传播。

2. 如权利要求 1 所述的光子晶体光纤，其中所述纤芯直径至少为 3 μm。

3. 如权利要求 1 所述的光子晶体光纤，其中所述排列中至少一个孔是不存在的，以便其形成所述光子晶体光纤的所述纤芯。

4. 如权利要求 1 所述的光子晶体光纤，其中所述第一透明的包层材料具有均一的第一折射率。

5. 如权利要求 1 所述的光子晶体光纤，其中所述纤芯材料具有均一的纤芯折射率。

6. 如权利要求 1 所述的光子晶体光纤，其中所述纤芯材料和所述第一透明的包层材料是相同的。

7. 如权利要求 1 所述的光子晶体光纤，其中所述纤芯材料和所述第一透明的包层材料是二氧化硅。
8. 如权利要求1所述的光子晶体光纤，其中以多角形图案的方式布置所述孔。

9. 一种双模高双折射光子晶体光纤，包括：

透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，所述孔具有小于所述第一折射率的第二折射率。

其中所述排列的孔具有：

至少两个较大的孔，其具有直径d2，并且相对于所述光子晶体光纤的中心轴对称地布置；以及

多个较小的孔，其具有直径d1，并且由间距λ隔开，其中d1小于d2。

并且其中对于在0.50-0.65的范围之内的固定的d1/λ比率，所述较小的孔直径d1、所述较大的孔直径d2以及所述间距λ的尺寸配合，以给出适当波长范围之内的独立于输入辐射波长在所述光子晶体光纤之内的双模传播。

10. 如权利要求9所述的光子晶体光纤，其中所述d2/λ比率落在0.9-1.2的范围之内。

11. 如权利要求10所述的光子晶体光纤，其中所述λ落在4-7μm的范围之内。

12. 如权利要求11所述的光子晶体光纤，其中所述λ的范围将4.18-4.4μm的范围排除在外。
13. 如权利要求 9 所述的光纤晶体光纤，其中所述 d1/λ 比率落在 0.52－0.54 的范围之内。

14. 如权利要求 13 所述的光纤晶体光纤，其中所述 d2/λ 比率落在 0.97－1.2 的范围之内。

15. 如权利要求 14 所述的光纤晶体光纤，其中所述 λ 落在 5.5－6 μm 的范围之内。

16. 如权利要求 15 所述的光纤晶体光纤，其中所述输入辐射波长落在 600nm－2000nm 的范围之内。

17. 一种干涉型传感器，包括
预定长度的高折射率双模光纤晶体光纤，其包括：
透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及
包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，
其中所述排列的孔具有：
至少两个较大的孔，其具有直径 d2，并且关于所述光纤晶体光纤的中心轴对称地布置；以及
多个较小的孔，其具有直径 d1，并且以间距 λ 隔开，其中 d1 小于 d2，
并且其中对于 0.50－0.65 的范围之内的固定的 d1/λ 比率，所述较小的孔直径 d1、所述较大的孔直径 d2 以及所述间距 λ 的尺寸配合，以给出适当波长范围之内的独立于输入辐射波长在所述光纤晶体光纤之内的双模传播；

光源，用于将光引入到所述光纤晶体光纤中，以便以基模和二阶
模两种模式并且以每个所述模式之内的全部两种偏振在所述光子晶体光纤中传播，其中每种偏振的两种模式之间或每种模式的两种偏振之间的干涉受到外部扰动而变化；以及
检测器，用于检测所述光的干涉图样的所述变化，以便确定所述光子晶体光纤上的所述扰动。

18. 如权利要求 17 所述的干涉型传感器，其中所述扰动是造成所述光子晶体光纤的长度变化所施加到所述光子晶体光纤上的应变。

19. 如权利要求 18 所述的干涉型传感器，其中所述光的强度响应随所述光子晶体光纤的温度变化而变化，温度变化造成的强度变化不同于应变造成的强度变化，所述装置进一步包括用于处理第一和第二输出信号以确定所对应应变的幅度和所述温度变化的幅度的装置。

20. 如权利要求 17 所述的干涉型传感器，其中所述 d_1/λ 比率落在 0.52－0.54 的范围之内。

21. 如权利要求 20 所述的干涉型传感器，其中所述 d_2/λ 比率落在 0.97－1.2 的范围之内。

22. 如权利要求 21 所述的干涉型传感器，其中所述 λ 落在 5.5－6 μm 的范围之内。

23. 如权利要求 22 所述的干涉型传感器，其中所述输入辐射波长落在 600nm－2000nm 的范围之内。

24. 如权利要求 17 所述的干涉型传感器，其中所述 λ 的范围将 4.18－4.4 μm 的范围排除在外。

25. 一种用于将光信号的光频从第一光频转移到第二光频的光移
频器，包括

双模光子晶体光纤，其包括：

透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，其具有直径 d，并且以间距 Λ 隔开，其中所述孔具有小于所述第一折射率的第二折射率；

其中对于 $0.45-0.65$ 的范围之内的固定的 d/Λ 比率，对于间距 Λ 的任何值，所述孔直径 d 和所述间距 Λ 的尺寸配合，以给出独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且被选择用来使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中耦合模式的光频转移量等于声弯曲波的频率，并且其中非耦合模式的频率未被改变。

26. 一种用于将光信号的光频从第一光频转移到第二光频的光移频器，包括

高双折射双模光子晶体光纤，其包括：

透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，

其中所述排列的孔具有：

至少两个较大的孔，其具有直径 d_2，并且相对于所述光子晶体光纤的中心轴对称地布置；以及
多个较小的孔，其具有直径 d1，并且以间距 Δ 隔开，其中 d1 小于 d2。

并且其中对于 0.50—0.65 的范围之内的固定的 d1/Δ 比率，所述较小的孔直径 d1、所述较大的孔直径 d2 以及所述间距 Δ 的尺寸配合，以给出适当波长范围之上的独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且被选择用来使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中耦合模式的光频转移量等于声弯曲波的频率，并且其中非耦合模式的频率未被改变。

27. 如权利要求 26 所述的光移频器，进一步包括：光源，用于将所述第一光频的光信号引进到所述光子晶体光纤中；以及滤模器，其位置在所述光传播的方向上并位于所述发生器之前，用于去除所述基模和二阶模式中的一个。

28. 如权利要求 26 所述的光移频器，其中所述发生器包括换能器，其耦合到所述光子晶体光纤，用于激励产生声弯曲波，所述声弯曲波的声频等于所述第一光频和所述第二光频之差。

29. 如权利要求 26 所述的光移频器，进一步包括模式选择器，其放置于所述光子晶体光纤的输出端，用于选择性输出所述第二光频的光信号。

30. 如权利要求 26 所述的光移频器，其中所述 d1/Δ 比率落在 0.52—0.54 的范围之内。

31. 如权利要求 30 所述的光移频器，其中所述 d2/Δ 比率落在 0.97
1.2 的范围之内。

32. 如权利要求 31 所述的光频器，其中所述 λ 落在 5.5－6 μm 的范围之内。

33. 如权利要求 32 所述的光频器，其中所述输入辐射波长落在 600nm－2000nm 的范围之内。

34. 如权利要求 26 所述的光频器，其中所述 λ 的范围将 4.18－4.4 μm 的范围排除在外。

35. 一种用于从至少两种光波长的光信号中滤出其中一种波长的光波长滤波器，包括
 双模光子晶体光纤，其包括：
 透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及
 包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一条透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，其具有直径 d，并且以间距 Δ 隔开，其中所述孔具有小于所述第一折射率的第二折射率；
 其中对于 0.45－0.65 的范围之内的固定 d/Δ 比率，对于间距 Δ 的任何值，所述孔直径 d 和所述间距 Δ 的尺寸配合，以给出独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及
 发生器，其耦合到所述光频以便产生在所述光频中传播的声弯曲波，所述声弯曲波的能量被限制在所述光频之内，所述弯曲波的波长是频率和传播速度的函数，并且所述弯曲波的所述波长被选择在预先选定的波长处使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中所述弯曲波的所述波长和所述基模和二阶模式之间的模式匹配长度相匹配，并从而在所述光子晶体光纤的输出处生成所述基模和二阶模式中的另一个的预先选定波长的光信号。
36. 一种用于从至少两种光波长的光信号中滤出一种波长的光波长滤波器，包括
 高双折射双模光子晶体光纤，其包括：
 透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及
 包围所述纤芯材料的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，
 其中所述排列的孔具有：
 至少两个较大的孔，其具有直径 d_2，并且关于所述光子晶体光纤的中心轴对称地布置；以及
 多个较小的孔，其具有直径 d_1，并且以间距Λ相隔，其中 d_1 小于 d_2，
 并且其中对于 $0.50-0.65$ 的范围之内的固定的 d_1/Λ 比率，所述较小的孔直径 d_1、所述较大的孔直径 d_2 以及所述间距Λ 的尺寸配合，以给出适当波长范围之上的独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及
 发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且所述弯曲波的所述波长被选择用来以预先选择的波长使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中所述弯曲波的所述波长和所述基模和二阶模式之间的模式拍频长度相匹配，并从而在所述光子晶体光纤的输出处产生所述基模和二阶模式中的另一个的预先选择的波长的光信号。

37. 如权利要求 36 所述的光波长滤波器，进一步包括：光源，用于将第一光频的光信号引进到所述光子晶体光纤中；以及滤模器，其
位置在所述光传播的方向上，位于在所述发生器之前，用于去除所述基模和二阶模式中的一个。

38. 如权利要求 36 所述的光波长滤波器，其中所述发生器包括换能器，其耦合到所述光子晶体光纤，用于产生声弯曲波，所述声弯曲波的声频等于所述第一光频和第二光频之间的差。

39. 如权利要求 36 所述的光波长滤波器，进一步包括模式选择器，其耦合到所述光子晶体光纤的输出，用于选择性输出第二光频的光信号。

40. 如权利要求 36 所述的光波长滤波器，进一步包括静态模式转换器，其耦合到所述光子晶体光纤的输出，用于切换所述光信号的所述模式。

41. 如权利要求 40 所述的光波长滤波器，进一步包括滤模器，其耦合到所述静态模式转换器，用于选择性输出所述预先选择波长的光信号。

42. 一种用于切换至少第一和第二波长的光信号的光波长可调谐的光开关，包括
 双模光子晶体光纤，其包括：
 透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及
 包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，其具有直径 d，并且以间距 Δ 隔开，其中所述孔具有小于所述第一折射率的第二折射率；
 其中对于 0.45—0.65 的范围之内的固定的 d/Δ 比率，对于间距 Δ 的任何值，所述孔直径 d 和所述间距 Δ 的尺寸配合，以给出独立于输
入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且所述弯曲波的所述波长被选择用来以预先选择的波长使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中所述弯曲波的所述波长匹配所述基模和二阶模式之间的模式相位长度，并从而在所述光子晶体光纤的输出处产生所述基模和二阶模式中的另一个的预先选择波长的光信号。

43. 一种用于切换至少第一和第二波长的光信号的光波长可调开关，包括

高双折射双模光子晶体光纤，其包括：

透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，

其中所述排列的孔具有：

至少两个较大的孔，其具有直径 d2，并且关于所述光子晶体光纤的中心轴对称地布置；以及

多个较小的孔，其具有直径 d1，并且以间距 Λ 隔开，其中 d1 小于 d2。

并且其中对于 0.50-0.65 的范围之内的固定的 d1/Λ 比率，所述较小的孔直径 d1，所述较大的孔直径 d2 以及所述间距 Λ 的尺寸配合，以给出适当波长范围之上的独立于输入辐射波长的在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波
长是所述频率和所述传播速度的函数，并且所述弯曲波的所述波长被选择用来以预先选择的波长使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中所述弯曲波的所述波长匹配所述基模和二阶模式之间的模式拍频长度，并从而在所述光子晶体光纤的输出处生成所述基模和二阶模式中的另一个的预先选择波长的光信号。

44. 如权利要求43所述的光波长可调开关，进一步包括：光源，用于将第一光频的光信号引诱到所述光子晶体光纤中；以及滤波器，其位置在所述光传播的向上并位于所述发生器之前，用于去除所述基模和二阶模式中的一个。

45. 如权利要求43所述的光波长可调开关，其中所述发生器包括换能器，其耦合到所述光子晶体光纤，用于激励产生声弯曲波，所述声弯曲波的声频等于所述第一光频和第二光频之间的差。

46. 如权利要求43所述的光波长可调开关，进一步包括模式选择耦合器，其用于根据所述光信号的模式在两个输出端口输出所述光信号。

47. 一种双模光子晶体光纤，包括：

透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一透明的包层材料，其具有第一折射率，并且其中所述第一透明的包层材料沿着其长度嵌入周期排列的孔，其具有直径d，并且以间距\(\Lambda \)隔开，其中所述孔具有第二折射率，其小于所述第一折射率；

其中对于固定的\(d/\Lambda \)比率，对于所述间距\(\Lambda \)的任何值，所述孔直径\(d \)和所述间距\(\Lambda \)的尺寸配合，以给出独立于输入辐射波长在所述光子晶体光纤之内的双模传播。
48. 如权利要求47所述的光纤，其中所述d/Λ比率落在0.45－0.65的范围内。
双模光子晶体光纤及其应用

技术领域

本发明涉及双模光子晶体光纤结构及其应用。

背景技术

双模光纤具有广泛的应用，例如模式转换器、模式选择耦合器、声光移频器、声光可调滤波器、波长可调光开关、分插复用器以及干涉型光纤传感器等等。在传统的圆对称阶跃折射率光纤中通常存在截止波长。对于低于截止波长的工作波长，在这样的传统单模光纤中能够实现双模传输。另外，两个转让给斯坦福大学董事会的 1989 年 5 月 23 日发布的名称为“光纤模式间耦合单边带移频器”（美国专利号 4,832,437）和 1990 年 4 月 10 日发布的名称为“使用具有非圆形纤芯的双模光波导的设备”（美国专利号 4,915,468），披露了使用椭圆形纤芯光纤的双模应用，并且在此并入作为参考。

然而，使用传统的圆形或椭圆形纤芯光纤的缺点在于，这些传统的光纤通常只在非常有限的波长范围内支持双模传输。为了开发适合于更宽波长范围内双模器件，需要不同的双模光纤或具有不同结构参数的光纤。这不可避免地增加了光纤设计和制造工艺的复杂性。

因此，本发明的目的是提供具有相对较宽的工作波长范围的改进的双模光纤及其应用，或者至少向公众提供有用的选择。

发明内容

作为本发明的一个方面，双模光子晶体光纤包括基本透明的纤芯材料的纤芯。所述纤芯材料具有纤芯折射率和长度，并且具有纤芯直
径。所述光纤还包括包围所述纤芯材料的长度的包层区域。所述包层区域具有第一基本透明的包层材料，其具有第一折射率。所述第一基本透明的包层材料沿着其长度嵌入基本周期排列的孔，其具有直径d，并且以间距Δ隔开。所述孔具有第二折射率，其小于所述第一折射率。对于大约0.45－0.65范围之内的基本固定的d/Δ比率，对于间距Δ的任何值，孔直径d和间距Δ的尺寸配合，以给出独立于输入辐射波长在光子晶体光纤之内的双模传播。

根据本发明的第二方面，高度双折射双模光子晶体光纤包括：
基本透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及
包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一基本透明的包层材料，其具有第一折射率，并且其中所述第一基本透明的包层材料沿着其长度嵌入基本周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，其中所述排列的孔具有：
至少两个较大的孔，其具有直径d2，并且关于所述光子晶体光纤的中心轴基本对称地布置；以及
多个较小的孔，其具有直径d1，并且由间距Δ隔开，其中d1小于d2，
并且其中对于大约0.50－0.65的范围之内的基本固定的d1/Δ比率，所述较小的孔直径d1、所述较大的孔直径d2以及所述间距Δ的尺寸配合，以给出适当波长范围之上的独立于输入辐射波长在所述光子晶体光纤之内的双模传播。

根据本发明的第三方面，干涉型传感器包括：
预定长度的高双折射双模光子晶体光纤，其包括：
基本透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及
包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第
一基本透明的包层材料，其具有第一折射率，并且其中所述第一基本透明的包层材料沿着其长度嵌入基本周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，

其中所述排列的孔具有：

至少两个较大的孔，其具有直径 \(d_2 \)，并且关于所述光子晶体光纤的中心轴基本对称地布置；以及

多个较小的孔，其具有直径 \(d_1 \)，并且由间距 \(\Lambda \) 隔开，其中 \(d_1 \) 小于 \(d_2 \)，

并且其中对于大约 0.50－0.65 的范围之内的基本固定的 \(d_1/\Lambda \) 比率，所述较小的孔直径 \(d_1 \)、所述较大的孔直径 \(d_2 \) 以及所述间距 \(\Lambda \) 的尺寸配合，以给出适当波长范围之内的独立于输入辐射波长在所述光子晶体光纤之内的双模传播；

光源，用于将光引进到所述光子晶体光纤中，以便以基模的和二阶模的两种模式并且以每个所述模式之内的全部两种偏振在所述光子晶体光纤中传播，其中每种偏振的两种模式之间或每种模式的两种偏振之间的干涉受外部扰动而变化；以及

检测器，用于检测所述光的干涉图中的所述变化，以便确定所述光子晶体光纤上的所述扰动。

根据本发明的第四方面，用于将光信号的光频从第一光频转移到第二光频的光移频器包括：

双模光子晶体光纤，其包括：

基本透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一基本透明的包层材料，其具有第一折射率，并且其中所述第一基本透明的包层材料沿着其长度嵌入基本周期排列的孔，其具有直径 \(d \)，并且以间距 \(\Lambda \) 隔开，其中所述孔具有小于所述第一折射率的第二折射率；

其中对于大约 0.45－0.65 的范围之内的基本固定的 \(d/\Lambda \) 比率，对于间距 \(\Lambda \) 的任何值，所述孔直径 \(d \) 和所述间距 \(\Lambda \) 的尺寸相配合，以给
出独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便器产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且被选择用来使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中耦合模式的光频转移量等于声弯曲波的频率，并且其中非耦合模式的频率未被改变。

根据本发明的第五方面，用于将光信号的光频从第一光频转移到第二光频的光移频器包括：

高双折射双模光子晶体光纤，其包括：

基本透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一基本透明的包层材料，其具有第一折射率，并且其中所述第一基本透明的包层材料沿着其长度嵌入基周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，

其中所述排列的孔具有：

至少两个较大的孔，其具有直径 d2，并且关于所述光束光子晶体光纤的中心轴基本对称地布置；以及

多个较小的孔，其具有直径 d1，并且以间距 \(\Lambda \) 隔开，其中 \(d_1 \) 小于 \(d_2 \)，

并且其中对于大约 0.50－0.65 的范围之内的基本固定的 \(d_1/\Lambda \) 比率，所述较小的孔直径 \(d_1 \)、所述较大的孔直径 \(d_2 \) 以及所述间距 \(\Lambda \) 的尺寸配合，以给出适当波长范围之内的独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且被选择用来使光从所述基
模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中耦合模式的光频转移量等于声弯曲波的频率，并且其中非耦合模式的频率未被改变。

根据本发明的第六方面，用于滤波至少两种光波长的光信号的光波长滤波器包括：

双模光子晶体光纤，其包括：

基本透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一基本透明的包层材料，其具有第一折射率，并且其中所述第一基本透明的包层材料沿着其长度嵌入基本周期排列的孔，其具有直径 d，并且由间距 Δ 隔开，其中所述孔具有小于所述第一折射率的第二折射率；

其中对于大约 0.45 - 0.65 的范围之内的基本固定的 d/Δ 比率，对于间距 Δ 的任何值，所述孔直径 d 和所述间距 Δ 的尺寸配合，以给出独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且所述弯曲波的所述波长被选择用来以预先选择的波长使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中所述弯曲波的所述波长匹配所述基模和二阶模式之间的模式拍频长度，并从而在所述光子晶体光纤的输出处产生所述基模和二阶模式中的另一个的预先选择波长的光信号。

根据本发明的第七方面，用于滤波至少两种光波长的光信号的光波长滤波器包括：

高双折射双模光子晶体光纤，其包括：

基本透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具
有纤芯直径；以及
包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一基本透明的包层材料，其具有第一折射率，并且其中所述第一基本透明的包层材料沿着其长度嵌入基本周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，
其中所述排列的孔具有：
至少两个较大的孔，其具有直径 d₂，并且关于所述光子晶体光纤的中心轴基本对称地布置；以及
多个较小的孔，其具有直径 d₁，并且以间距 λ 隔开，其中 d₁ 小于 d₂，
并且其中对于大约 0.50－0.65 的范围之内的基本固定的 d₁/λ 比率，所述较小的孔直径 d₁、所述较大的孔直径 d₂ 以及所述间距 λ 的尺寸相配合，以给出适当波长范围之上的独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及
发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且所述弯曲波的所述波长被选择用来以预先选择的波长使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中所述弯曲波的所述波长匹配所述基模和二阶模式之间的模式拍频长度，并从而在所述光子晶体光纤的输出处产生所述基模和二阶模式中的另一个的预先选择波长的光信号。

根据本发明的第八方面，用于切换至少第一和第二波长的光信号的光波长可调开关包括：
双模光子晶体光纤，其包括：
基本透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及
包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一基本透明的包层材料，其具有第一折射率，并且其中所述第一基本
透明的包层材料沿着其长度嵌入基本周期排列的孔，其具有直径 d，并且由间距 λ 隔开，其中所述孔具有小于所述第一折射率的第二折射率；其中对于大约 0.45—0.65 的范围之内的基本固定的 d/λ 比率，对于间距 λ 的任何值，所述孔直径 d 和所述间距 λ 的尺寸配合，以给出独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且所述弯曲波的所述波长被选择用来以预先选择的波长使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中所述弯曲波的所述波长匹配所述基模和二阶模式之间的模式拍频长度，并从而在所述光子晶体光纤的输出处生成所述基模和二阶模式中的另一个的预先选择波长的光纤信号。

根据本发明的进一步的方面，用于切换至少第一和第二波长的光信号的光波长可调开关包括：

高双折射双模光子晶体光纤，其包括：

基本透明的纤芯材料的纤芯，其具有纤芯折射率和长度，并且具有纤芯直径；以及

包围所述纤芯材料的长度的包层区域，其中所述包层区域包括第一基本透明的包层材料，其具有第一折射率，并且其中所述第一基本透明的包层材料沿着其长度嵌入基本周期排列的孔，所述孔具有小于所述第一折射率的第二折射率，

其中所述排列的孔具有：

至少两个较大的孔，其具有直径 d2，并且关于所述光子晶体光纤的中心轴基本对称地布置；以及

多个较小的孔，其具有直径 d1，并且以间距 λ 隔开，其中 d1 小于 d2，

并且其中对于大约 0.50—0.65 的范围之内的基本固定的 d1/λ 比
率，所述较小的孔直径 d1、所述较大的孔直径 d2 以及所述间距 A 的尺寸配合，以给出适当波长范围之内的独立于输入辐射波长在所述光子晶体光纤之内的基模和二阶模式传播；以及

发生器，其耦合到所述光纤以便产生在所述光纤中传播的声弯曲波，所述声弯曲波的能量被限制在所述光纤，所述弯曲波具有频率、传播速度和波长，所述弯曲波的所述波长是所述频率和所述传播速度的函数，并且所述弯曲波的所述波长被选择用来以预先选择的波长使光从所述基模和二阶模式中的一个耦合到所述基模和二阶模式中的另一个，其中所述弯曲波的所述波长匹配所述基模和二阶模式之间的模式频移长度，并从而在所述光子晶体光纤的输出处生成所述基模和二阶模式中的另一个的预先选择波长的光信号。

从下面详述的说明中，连同借助于示例本发明的原理来显示说明的附图，本发明的其他方面和优点将变得明显。

附图说明

图 1 是本发明的示范实施例的双模光子晶体光纤的截面图；
图 2 是显示如图 1 所示的光子晶体光纤的双模工作范围的 $\lambda/\lambda_{\text{cut}} - d/\lambda$ 图的示意性表示；
图 3 显示了图 1 的光子晶体光纤中传播的光信号的模式场图；
图 4 显示了图 1 的光子晶体光纤的基模和二阶模式之间的频移长度与波长的关系；
图 5a 是本发明的光子晶体光纤的第二种示意性截面图；
图 5b 是图 5a 的光纤芯区域的局部放大示意图；
图 6 显示了图 5a 和 5b 的光子晶体光纤中传播的光信号的模式场图；
图 7 显示了对于图 5a 和 5b 的光子晶体光纤的一种偏振态的基模和二阶模式之间的频移长度；
图 8a 是显示干涉型传感器的示意图，其中如图 5a 和 5b 所示的光子晶体光纤可用。
图 8b 显示了图 8a 中的光子晶体光纤的输出的空间强度分布；
图 8c 显示了对于三种不同输入线性偏振方向,图 8b 所示干涉图样中一侧强度变化和光纤长度伸长之间的关系；
图 8d 显示了在两种模式之间产生 2π 位相差所需的光纤伸长长度与波长之间的关系，其中圆圈表示 x 偏振，而三角表示 y 偏振；
图 9 是声光移频器的示意图，其中如图1 或 5a 所示的光子晶体光纤均可使用；
图 10 是声光可调滤波器的示意图，其中如图1 或 5a 所示的光子晶体光纤均可使用；以及
图 11 是声光波长可调开关的示意图，其中如图 1 或 5a 所示的光子晶体光纤均可使用。

具体实现方式

图 1 显示了折射率导光的光子晶体光纤 100（在下文中被称作 PCF）。通过以六角形阵列周期性地堆叠二氧化硅毛细管，并且用与这些毛细管相同外径的实心二氧化硅棒替换中心的毛细管，可以方便得制造 PCF。PCF 100 具有基本透明的纤芯材料的固体纤芯 101，其具有纤芯折射率 n 和长度 l，并且理想情况下具有至少 3μm 的纤芯直径。
PCF 100 还包括包围纤芯材料的包层区域 103。包层区域包括具有第一折射率的第一基本透明的包层材料，并且第一基本透明的包层材料沿着其长度嵌入基本周期排列的孔 105，其具有直径 d，并且以间距 Δ 隔开。孔 105 具有小于第一折射率的第二折射率。折射率导光的光子晶体光纤及其制造方法在本领域是已知的，并且已在例下述专利文献被披露：转让给英国国防部的 2001 年 12 月 25 日发布的名称为 “单模光纤”（美国专利号 6,334,019）和转让给 Qinetiq Limited 的 2003 年 8 月 5 日发布的名称为 “具有大锥形光子晶体结构的单模光纤”（美国专利号 6,603,912）。这两个专利文献都在此列为参考。

在图 1 的示范性实施例中，设计 d/Δ 比率以落入如图 2 所示的 0.45 - 0.65 的范围内。在此情况下，对于 0.45-0.65 的范围之内的基本固
定的 \(d/\Lambda\) 比率，对于间距 \(\Lambda\) 的任何值，PCF 100 支持独立于输入辐射波长的在其中的双模传播，亦即基模和二阶模式。为了说明起见，在图 3 中给出了这些模式的模式场图。在图 3（a）中，显示了基模的两种偏振的模式场。从传统的阶跃折射率光纤类推，基模在本文中被称作 \(LP_{01}\)。在图 3b 中，显示了四种二阶混和模式的模式场图。类似于传统的圆形光纤，这四种模式是近似简并 (degenerate) 的，并且在本申请中被统称作 \(LP_{11}\)。

在图 1 的示意图中，对于 \(d/\Lambda\) 比率在 0.45－0.65 的范围之内的的 PCF，双模工作波长 \(\lambda\) 由二阶混和模式 \(LP_{11}\) 模的截止波长 \(\lambda_{\text{cut}}\) 决定，亦即 \(\lambda < \lambda_{\text{cut}}\)。在图 2 中，\(\lambda_{\text{cut}}\) 由单模和双模区域之间的边界表示。例如，对于 \(d/\Lambda = 0.55\)，波长满足 \(\Lambda/\lambda > \lambda/\lambda_{\text{cut}} = 1.6\) (\(\lambda < \lambda_{\text{cut}} = \Lambda/1.6\)) 的光信号，PCF 100 支持的基模 \(LP_{01}\) 和二阶混和模式 \(LP_{11}\)。在选择间距 \(\Lambda\) 为 3 \(\mu\)m 的情况下，PCF 100 对于所有的小于 1.9 \(\mu\)m 的波长都支持两种模式，亦即 \(LP_{01}\) 模和 \(LP_{11}\) 模。在选择间距 \(\Lambda\) 为 5 \(\mu\)m 的情况下，对于同样的 \(d/\Lambda = 0.55\)，PCF 100 对于所有的小于 3.1 \(\mu\)m 的波长都支持两种模式，亦即 \(LP_{01}\) 模和 \(LP_{11}\) 模。总而言之，对于 0.45－0.65 的范围之内的固定 \(d/\Lambda\) 比率，无论间距 \(\Lambda\) 为何值，对于所有小于 \(\lambda_{\text{cut}}\) 的输入光波长，PCF 都支持双模传播。因此，PCF 通过合适的选择合适的 \(d/\Lambda\) 来实现了在宽波长范围内双模工作。

图 4 给出了四种二阶模式和基模之间的频分长度，频分长度被定义为以上两种模式之间的相位差变化 2 \(\pi\) 所对应的光纤长度。四条曲线相互非常接近，这是四种二阶模式的近似简并这一性质的具体体现。

图 5a 和 5b 给出了另外一种典型的 PCF 500，其具有近似对称于 PCF 的中心轴 503 的一对较大的孔 501。较大的孔 501 的直径 \(d_1\) 有大于较小的孔 505 的直径 \(d_2\)。间距 \(\Lambda\) 被定义为两个相邻的较小的孔 505 之间的间隔。
作为一个示例，d1/λ 比率被设计在 0.5－0.65 的范围内，并且与适当大小的 d2 和 λ 配合，以使得 PCF 500 支持在适当工作波长范围之内的双模传播，亦即基模 LP_{01} 和二阶模式 LP_{11}。当 d2 具有接近于 d1 的值时，LP_{11} 模的模式由类似于图 1 的 PCF 的所支持的四种二阶混台模式组成。随着 d2 增加，PCF 变得高度双折射，构成混和二阶模式 LP_{11} 模的模式的数目会减少。当 d2/λ 取值在大约 0.9－1.2 的范围内时，对于适当的波长范围，混和二阶模式 LP_{11} 模仅由两种模式组成，这两种模式沿着 x 或 y 方向近似成线性，且相互正交，如图 6 所示。这些模式沿着 y 方向具有稳定的旁瓣取向和位置，被称作 LP_{11} 偶模。

在第二示范性例子中，d1/λ 比率选定在大约 0.5－0.65 的范围内，d2/λ 比率选定在大约 0.9－1.2 的范围内，并且 λ 的取值范围在大约 4－7 μm。在本例子中，高双折射 PCF 支持 500nm－2000nm 宽带波长范围之内的双模传输，具体的波长范围由 d1/λ 、d2/λ 和 λ 来决定。此外，在第三个例子中，间距 λ 的选择范围不包含 4.18－4.4 μm 之内的值。

在另外一个示范性例子中，d1/λ 比率选定在大约 0.52－0.54 的范围内，d2/λ 比率选定在大约 0.97－1.2 的范围内，并且 λ 选定在大约 5.5－6 μm 的范围之内。在这个例子中，高双折射 PCF 支持输入光波长在 600nm－2000nm 的范围之内的双模传输。

工业实用性

1. 干涉型传感器

这样的干涉型传感器可以包括应变传感器、温度传感器以及用于测量这两者的传感器。图 8a 给出了使用图 5a 和 5b 的双模高双折射 PCF 的应变传感器的示意图。来自激光器 801 或其他光源的光通过一对透镜 805、807 和起偏器 809, 覆合到 PCF 803 中。聚焦光束轻微偏移 PCF 803 的中心，以便激发出近似等强度的基模 L_{01} 和偶次二阶模式 L_{11}。类似一般干涉理论，当光以每种模式的两种偏振传播时，每种偏
振的两种模式之间或每种模式的两种偏振之间会发生干涉，这样的干涉依会由于受到外部的扰动而产生变化。位于 PCF 的输出端安装的红外摄像机 811 用于监测来自 PCF 803 的干涉图。图 8b 显示了对应两种模式之间的位相差为 \(\Delta \phi = 2m \pi, \Delta \phi = 2m \pi + \pi/2 \) 和 \(\Delta \phi = 2m \pi + \pi \) （\(m = 0, 1, 2, \ldots \)）输出端强度分布。施加在 PCF 803 上的应变或温度变化都将导致相位差 \(\Delta \phi \) 的变化，并从而导致输出干涉光场的变化。图 8c 显示了在受到外界施加的应变的情况下在图 8b 中显示的尖峰 813 附近位置处输出光强度的变化。图 8c 中显示的三条曲线从上到下分别对应于起偏器 809 对准 x 轴、y 轴和与 x 轴成 45 度夹角的情况。图 8d 显示了对于一种特定的双模高双折射 PCF 在两种模式（\(LP_{01} \) 模和 \(LP_{11} \) 偏模）之间产生 2 \(\pi \) 相移所需的光纤伸长长度的测量结果。用圆圈和三角形标记的两条曲线分别对应于 x 和 y 偏振。

其它可替代方案。例如，偏移 PCF 803 对准的导入光纤可以替换上述耦合系统以激发近似相等强度的两种模式。直接连接到 PCF 803 的输出端的导出光纤可以用于收集部分输出光场，并且可以用光探测器通过导出光纤来检测干涉输出强度变化。在这种情况下，导出光纤同样偏移对准 PCF 的中心。进而，在这两种情况下，导入和导出光纤在对应工作波长是单模，或者是在所有工作波长下均为单模的无限单模 PCF。导入和导出光纤也可是在工作波长下的保持单模工作的普通保偏光纤或者是单模保偏 PCF。

2. 声光移频器

通过在光纤中传输的声波引起的微小弯曲导致基模和二阶模式的耦合，能够用于建造声光移频器。这已由 ’437 和 ’468 专利披露，所述专利在本申请中并入作为参考。

在图 9 的示意性声光移频器 900 中，频率 \(\omega \) 的输入光通常在图 1 或 5a 所示的双模 PCF 901 之内同时激发电模 LP_{01} 和二阶模式 LP_{11}。通过小弯曲半径的打圈的方式形成的滤波器 903 去除二阶模式，仅留下
基模 LP_{01} 继续沿着双模 PCF 901 传输。由压电陶瓷 PZT 907 和射声器 909 组成的换能器 905 用于激在光纤中传波的声弯曲波，其导致光纤的微弯，如果声波波长（微弯周期）等于 LP_{01} 和 LP_{11} 之间的波频长度，会造成基模 LP_{01} 和二阶模式 LP_{11} 之间的能量耦合。进而，二阶模式 LP_{11} 的光频与输入光频率之差等于在光纤中传播的声波频率。

在图 9 的示范性实施例中，射声器 909 正交于 PCF 901 的纵轴，并且在射声器尖端处产生纵向声波。作为替代方案，射声器也可以放置与光纤 901 同轴，并且工作在剪切模式上以便在光纤中激发弯曲波，如图 10 所示。

一对声阻尼器 911、913 用于将弯曲波限制在它们之间的特定作用区域之内。在 PCF 901 的输出处，光由发生频移的 LP_{11} 模式和剩余未发生频移 LP_{01} 模式组成。两种模式的相对幅度取决于耦合效率，其受到例如光纤特性、工作波长、声光互作用长度以及弯曲声波的幅度和频率等多种因素的影响。通过控制激发声波的幅度，在特定的工作波长下，能够自由选择从 LP_{01} 模式耦合到 LP_{11} 模式的光功率百分比。模式选择器（未画出）能够用于将频移和未频移的模式成分分开。

通过使用本申请的双模 PCF，移频器 900 能够具有比传统的设计大得多的工作波长范围。

3. 声光可调滤波器

图 9 的移频器 900 可进一步开发成如图 10 所示的可调光滤波器 1000。类似于图 9 的移频器，可调光滤波器 1000 同样具有滤模器 1003 和换能器 1005，其功能类似于图 9 对应器件。换能器 1005 控制产生声波的幅度，以便在选定的光波长下，将几乎 100%的光功率从 LP_{01} 模式耦合到 LP_{11} 模式，此时模式频移长度与声弯曲波波长相等。静态模转换器 1007 在相对较宽的波长范围内将 LP_{11} 模式转换到 LP_{01} 模式，另一个滤模器 1009 用来去除 LP_{11} 模式中的剩余的不需要的光。通过这种
方法，就形成了光带通滤波器。

由于模式拍频长度在非常广阔的波长范围之内是波长的单值函数，如图 4 和 7 所示，所以改变声波频率将改变滤波器的中心波长，从而实现可调滤波器。

此外，通过去除静态模式转换器 1007，能够将带通滤波器 1000 转换成带阻滤波器。类似也可以通过调整声弯曲波的频率来调整带阻滤波器的中心波长。

双模 PCF 的使用为声光滤波器提供了大得多的工作波长范围或可调范围，并且其模场大小可以根据不同要求设计，以实现与其他光纤或波导的低损耗耦合。

4. 声光波长可调开关

如图 11 所示，通过结合图 9 的声光移频器 900 和耦合到移频器 900 中的 PCF 1101 的输出端的模式选择耦合器 1103 可构成了声光波长可调开关 1100。在输入端，滤模器（图 11 中未画出）滤除了 LP_{11} 模式。由于模式拍频长度与波长相关，所以在特定的声频率下，只有某一特定光波长，例如 λ_{2}，其模式拍频长度匹配声弯曲波的波长时，才能从 LP_{01} 模式耦合到 LP_{11} 模式。在模式选择耦合器 1103 处，LP_{01} 模式中的光分量仍然以 LP_{01} 模式以在双模光纤 1105 中传播，而 LP_{11} 模式中的光分量则被耦合到单模光纤 1107 的基本 LP_{01} 模式。通过控制声波的频率，每个单独的波长分量都能够被选择性地耦合或切换到单模光纤 1107 中。

这可以理解为光从一个空间模式到另一个空间模式发生模式耦合时的光波波长可以被声弯曲波的频率控制。
图1

图2
图3
图4
图8a
图8b
图8c

图8d
图11