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ABSTRACT

In this paper we proposed a novel stereo recti cation method
for dual-PTZ-camera system, which is called spherical recti-
cation. This method can be divided into two parts, of ine

pre-settings and online recti cation. The of ine pre-settings
include camera calibration and building the spherical coor-
dinate system. The online recti cation only requires the pan,
tilt and zoom values and does not need any image information
such as feature points. So, compared with traditional recti -
cation approaches, our method is more convenient and time-
saving.

Index Terms— Stereo vision

1. INTRODUCTION

Stereo vision plays an important role in extracting 3D scene
structure, in which the simplest case, dual-stereo vision, has
been deeply studied for decades. The traditional standard
stereo vision assumes that the stereo system satisfy nonverged
geometry [1], i.e, the epipolar lines are parallel to each other.
However, this assumption does not hold for many stereo sys-
tems. Stereo recti cation is a method to make arbitrary stereo
image pairs (i.e., with verged geometry) to become nonverged
geometry [1]. Most algorithms of stereo recti cation are based
on epipolar constraint to map the epipolar lines to image scan
lines and ensure the same scan lines in two images correspond
to a speci c epipolar line pair. This step is not necessary in
stereo vision, but it is very useful in that it makes the search
for corresponding image features to be con ned to one di-
mension, and, hence, make the problem simpli ed [2].

Many stereo recti cation approaches have been proposed
in the past years [3]. Most of them are homography based
(also called planar recti cation) [4, 5]. Simplicity is a typi-
cal merit for this kind of approaches, while one of the short-
comings is that it does not preserve distances along epipolar
lines. [6, 7] use more general warping functions to solve this
problem. [6] proposed a cylinder recti cation approach in-
stead of the planar one, and [7] proposed a polar recti cation
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method, which only requires the fundamental matrix. These
approaches could preserve distances along epipolar lines but
always be computationally expensive and do not preserve lines.

As PTZ cameras have been widely used in visual surveil-
lance system for its exibility of perspective and scale chang-
ing, dual-PTZ-camera system might be utilized instead of tra-
ditional dual-camera system. The dual-PTZ-camera system
could obtain both global and local image features, and if stereo
vision could be applied in dual-PTZ-camera system, the ap-
plication scope will become much broader. But as far as
we know, few articles considered stereo vision for dual-PTZ-
camera system. We believe that a proper recti cation ap-
proach might help solving this problem. In dual-PTZ-camera
system, traditional recti cation approaches as listed above could
not be directly used, because rst it’s dif cult to guarantee
the precision under some large difference between cameras’
FOV, and second, when PTZ parameters change, the recti -
cation parameters should be calculated over again. That will
be time consuming and unstable for real applications.

In this paper, we propose a spherical recti cation approach
to deal with dual-PTZ-camera system. We rst use the cam-
era model to map the image plane to a virtual spherical sur-
face according to current PTZ parameters, and then the recti-
cation is applied directly from the sphere to recti ed plane.

The sphere is independent of PTZ parameters, so when PTZ
parameters change, we only need to nd the corresponding
region on the spherical surface, and use the pre-calculated
recti cation parameters to wrap the sphere to the goal plane.
As this method could avoid the recomputation of recti ca-
tion parameters, it is convenient for PTZ image pairs’ stereo
recti cation. Following the idea of preserving the distance
along epipolar line in [6, 7], we improve the basic spherical
recti cation algorithm so that it could maintain the dispari-
ties between two images, and so, traditional stereo matching
procedure can be followed to estimate the depth of the scene.

2. PTZ CAMERA MODEL AND CALIBRATION

Calibration of PTZ camera plays an important role in the vi-
sion computing by using PTZ cameras. Our method is sim-
ilar to [8] which is inherently feature-based, but our method
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combines the parameters inquired from active camera so that
our method much more simple, and the precision is related to
the precision of parameters inquired from active camera. For
simplicity, we do not consider either focal length or radial
distortion.

2.1. PTZ camera model

We chose to use a common camera model as below (In our
study, we use SONY EVI D70 camera which can be well rep-
resented by this model.),

x̃ = κK[ R −Rt ]X̃,K =

⎡
⎣ αf s u0

f v0
1

⎤
⎦ , (1)

where x and X are image coordinates and world coordinates,
respectively; symbol ’˜ ’ means homogeneous coordinate. α
and s are the camera’s pixel aspect ratio and skew respec-
tively; f is the equivalent focal length measured in pixel;
(u0, v0) is the principal point in the image. In order to sim-
plify the PTZ camera model, we assume:

(1) The center of rotation of the camera is xed;
(2) For PTZ camera, t = 0 ;
(3) Aspect ratio α = 1, and skew s = 0;
(4) Principal point (u0, v0) is replaced by the zoom center

[9] approximately.
According to the assumptions, the camera model can be

written as
x̃ = κKRX, (2)

where the intrinsic K could write in diagonal form by trans-
lating the origin of image to (u0, v0).

2.2. PTZ camera Calibration

2.2.1. Zoom center estimation

Simply tracking the feature points in an image sequence with
varying zoom level (from zmin to zmax) with xed pan and
tilt parameters. In our experiment, (u0, v0) = (150.4, 127.0),
while the image coordinates is [1, 320] for x-axis and [1, 240]
for y-axis.

2.2.2. R and K estimation

The rotation matrixR can be directly calculated given pan and
tilt value which can be inquired from the camera for SONY
EVI D70. This formula can be found in many literatures about
PTZ cameras. As the intrinsic K = diag{kz, kz , 1} has only
one degree of freedom which related to the zoom value, we
use [8]’s approach to estimate K at several discrete zoom lev-
els, and then choose a proper model to t these samples. We
choose the Equ.3 as the approximate model, and the four un-
known parameters can be solved by using curve tting tools.
This model works well in our experiment.

kz = a exp(bz) + c exp(dz). (3)

3. SPHERICAL RECTIFICATION

3.1. Basic Notation
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Fig. 1. The sketch map of spherical recti cation.

Each pixel on the image plane can be mapped onto a unit
spherical surface with the center coincide with the camera op-
tic center, see Fig.1. Actually, the mapped point is the inter-
section between the sphere and the line which pass the optic
center and the given pixel on the image plane. We can de ne
following concepts:

Epipolar plane: Π(O1, O2, P ). All the epipolar planes pass
the line O1O2.
Epipolar circle: c1 and c2, the intersection curve between the
epipolar plane Π(O1, O2, P ) and the unit sphere φi.
Epipole: the intersection between the lineO1O2 and the sphere.
So there exits two epipoles, ei, e′i, i = 1, 2, for each sphere.

The spherical recti cation mainly constitutes 2 steps: rst,
use the camera model to map the image plane to the unit
spherical surface; second, warp the valid sphere region to im-
age plane which is the recti ed image.

3.2. Image Plane to Sphere

Let x = [u v]T and X = [αx βx]
T be the image coordinate

and corresponding sphere coordinate respectively. αx and βx
could be seemed as the longitude and latitude, while e and e′

are the two poles, see Fig.2. We denote Π(O,⊥ee′) as the
plane passing the sphere center and perpendicular to the line
ee′, and it intersects the sphere φ at a unit circle c⊥. Given
an arbitrary point M on c⊥, and plane Π(e, e′, X) intersects
c⊥ at two points. We choose the one which is closer to X ,
and we denote it as X ′. Then αx is de ned as the angle from
OM to OX ′, where αx ∈ [−π, π), and βx is de ned as the
angle fromOe toOX , where βx ∈ [0, π]. We call OM as the
reference vector.

In order to calculate X , we rst calculate the world co-
ordinate Yx by the camera model Yx = κR−1K−1x̃, where
κ is a scale factor and can be simply set to be 1. R and K
can be obtain from the calibration result. We normalize Yx
s.t |OYx| = 1, and then Yx is located on the unit spherical
surface. If the world coordinate of e, e′ and OM are known,
X = [αx βx]

T can be easy calculated from de nition.
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Fig. 2. The de nition of αx and βx.

3.3. Sphere to Recti ed Image

There are several ways to warp the sphere to a plane, i.e.
Xr = [u′ v′]

T
= [fα(αx) fβ(βx)]

T , and we simply choose
the linear transformation. If the valid range of αx and βx, and
the unit length Δαu and Δβu associated to one pixel in recti-
ed image are known, fα() and fβ() can be settled. In order

to reduce computation, we only examine the four corners of
the original image to decide the valid range of αx and βx. It
is more complicated to decide Δαu and Δβu, and our target
is to minimize the loss of pixel information [7], i.e. every
displacement with one unit length on the sphere surface will
cause a displacement whose length is less than 1 pixel in the
original image. From the de nition of the coordinates, Δαu
should be estimated at the location with a maximal value of
|sinβ|, and Δβu can be estimated anywhere. For the sake of
simplicity, we also only examine the four corners, see Fig. 3.

Assume C1 gets the maximum of |sinβ|, where xC1 =
(u1, v1), XC1 = (α1, β1), and C1′ is the point after applying
a small displacement on C1 s.t. XC1′ = (α′1, β1)(α

′
1 �= α)

and xC1′ = (u′
1
, v′

1
). Let d0(C1, C1′) be the distance mea-

surement between C1 and C1′ in the original image, then we
have

Δαu
.
= |α1 − α′

1
| /d0(C1, C1′).

Similarly, Δβu can be estimated at arbitrary location, such as
C3 in Fig. 3.

Then the new coordinate in recti ed image is
Xp = [u′, v′]

T
= [(α− αmin)/Δαu, (β − βmin)/Δβu]

T .
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Fig. 3. The mapping from spherical coordinate to recti ed
image coordinate.

In order to make the same scan line in two recti ed im-
ages corresponding to the same epipolar plane, we have to,
rst, construct the relationship between two sphere coordi-

nates; second, choose the same Δαu and Δβu, i.e. Δαu =
max(Δαu1,Δαu2), Δβu = max(Δβu1,Δβu2).

3.4. Disparity Preserved Recti cation

The (α, β) recti cation mentioned in previous section has
achieved the basic goal of stereo recti cation, but the dis-
parity obtained by traditional stereo matching approach could
not re ect the depth of the scene, i.e. the (α, β) recti cation
could not preserve disparity. In this section we proposed an
improved method called the (α, γ) recti cation to solve this
problem.
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Fig. 4. The sketch map of depth in spherical recti cation.

Let P be a point in the scene, and the sphere coordinates
of two cameras are (α1, β1) and (α2, β2), respectively, see
Fig. 4. Obviously, (α1, β1) and (α2, β2) are located on the
epipolar plane. Assume we have found a proper reference
vector O2M2 so that α1 = α2. Let yP be the distance be-
tween P to the line O1O2, and O1P = x1, O2P = x2,
O1O2 = b. Then we have

{
x1 sinβ1 = x2 sinβ2 = yP
x1 cosβ1 − x2 cosβ2 = b

. (4)

So, yP can be solved as

yP =
b

cotβ1 − cotβ2
=

−b

γ1 − γ2
, (5)

where γi = − cotβi, i = 1, 2, and γ1 − γ2 is the dispar-
ity. Equ.5 is similar to the classical expression, which shows
the relationship between disparity and depth. As |cotβ| →
∞(β → 0 or π), the distortion of recti ed image might be
obvious, so this recti cation method could not deal with the
case that one of the epipoles located in the image.

For (α, γ) recti cation, we use similar method to estimate
αmax, αmin, γmax, γmin, Δαu and Δγu, where Δγu should
be estimated at the location when |sinβ| reaches its minimum
value.

3.5. Construction of Sphere Coordinates

Given two similar images I1 and I2 from two PTZ cameras,
we can calculate the fundamental matrix F (Harris Corner
and RANSAC method) and traditional epipoles e1 and e2.
The fundamental matrix F is a 3× 3 rank-2 matrix that maps
points in I1 to lines in I2, and F satis es Fe1 = FT e2 = 0,
where e1 ∈ I1 and e2 ∈ I2. e1, e2, O1 and O2 are collinear.
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For the ith camera, in Oi’s coordinate system, we can calcu-
late the world coordinate of ei with a scale factor, while e′i is
the symmetrical point of ei about Oi. In order to enhance the
accuracy and robustness, the mean value of several results is
more reasonable.

According to the de nition of reference vector, it is not
unique to choose OiMi. Assume α1 and α2 correspond to
the same epipolar plane, and α1 = α2 + α0, where α0 is a
constant. For convenience, we can adjust one of the reference
vector to make α0 = 0 so that the same scan line in two
recti ed images corresponding to the same epipolar plane.
Because the feature points are located on the same epipolar
plane, this could help the adjustment through a simple opti-
mization approach.

4. EXPERIMENTAL RESULTS

In our experiment, we utilize the Sony EVI D70 camera as
PTZ camera. We take the (α, β) recti cation for example.
For two images I1(PTZ1) and I2(PTZ2), we rst estimate
αmax, αmin, βmax, αmin, Δαu andΔβu to construct theα−β
coordinate system, and let Ir1 and Ir2 be the recti ed images;
second, traverse all points Sp(i, j) ∈ Ir

1
, and following a se-

ries of coordinate transformation, we can get the sphere co-
ordinate (αp, βp), the camera coordinate Xp and the original
image coordinate xp(up, vp). Choose a proper interpolation
method to estimate the gray level at xp(up, vp). This gray
level is assigned to (i, j) in Ir1 . Perform the same procedure
for Ir

2
.

We list two sets of results in Fig.5. The original image
size is 320 × 240, and the two recti ed images are normal-
ized to the same size. From the results, we can see that both
the (α, β) and (α, γ) recti cation method achieve the goal of
stereo recti cation. Comparing the two recti cation method,
we found that the density along the width of image is differ-
ent. As γ = − cotβ, whenβ is closed to π/2, the difference
between the two methods is tiny, like Fig.5(b); otherwise, the
difference become bigger, like Fig.5(a). This difference re-
ects the way to preserve the disparity-depth relationship. For

space limitation, we omit the introduction of disparity-depth
validation experiment for (α, γ) recti cation.
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