An Ultrasound Indentation System for Biomechanical Properties Assessment of Soft Tissues In-Vivo

Yong-Ping Zheng, Student Member, IEEE, and Arthur F. T. Mak*

Abstract—An ultrasound indentation system for biomechanical assessment of soft tissues in vivo was developed. The pen-size, hand-held probe was composed of an ultrasound transducer and a load cell. The ultrasound transducer was at the tip of the probe serving also as the indenter. The thickness and deformation of the soft tissue layer were determined from the ultrasound echo. A compressive load cell was connected in series with the ultrasound transducer to record the force response. A validation experiment was performed on porcine tissues. Force and deformation acquired with the present system was in good comparison with those obtained from a Housfield material testing machine. Material constants were obtained via a curve-fitting procedure by predicting the force transient response from the deformation-time data using a quasilinear viscoelastic model. In addition, deformation in the fat and in the muscle could be differentiated. The potential applications of this type of indentation probes are many. The specific application of this current development is for stump tissue assessment in the design of prosthetics.

I. INTRODUCTION

Biomechanical properties of tissues are known to vary from site to site and change with age and pathological conditions. These properties are known to be time-dependent, i.e., viscoelastic, and direction-dependent, i.e., anisotropic. Organizationally, biological tissues are arranged in various hierarchy to form structures and organs. Their properties can be different depending on whether they are measured in-vivo or in-vitro, in situ or as an excised specimen. For the lack of quantitative biomechanical tools for in-vivo assessment, palpation is still widely used to evaluate firmness of soft tissues in common clinical practice. The aim of our study is to develop a clinical apparatus to assess the biomechanical properties of soft tissue on bony substratum.

Several generations of in-vivo soft tissue indentation assessment devices have been developed for various applications over the years [1]–[8]. Schade first developed an apparatus for the study of edema [1]. Kirk et al. utilized a similar approach to compare the elastic properties of skin and subcutaneous tissues in young and old individuals [2]. Ziegert et al. performed indentation creep experiments on the thin layer of soft tissues covering the anterior medial aspect of human tibia [3]. Lewis et al. developed a subcutaneous fat thickness caliper device to assess subcutaneous edema [4]. Vannah et al. designed an indentation device with a holding shell to conduct indentation tests on the calf area of human subjects [5]. Recently, a computer controlled indentation apparatus was proposed by Mak et al. for the study of biomechanical properties of the below knee stump tissues and of the tissues of normal young adults [6]. A pneumatic indentation system using a copper bellows was developed by Ferguson-Pell et al. to study the physiological responses associated with pressure sores [7]. Horikawa et al. developed a portable equipment to study the hardness of muscular tissues using a laser distance monitor to determine the displacement of the indenter [8]. Although the technique required the tissue surface to be relatively flat, this was an attempt to design a relatively compact and portable system for soft tissue indentation.

The above indentation devices measured the epidermal displacement in concert with the displacement of the indenter [1]–[9]. The thickness of the tissue was not monitored. The stiffness measured in this manner would reflect not only the material properties of the tissues but also some geometric effects. In the present assessment methodology, ultrasound technique was employed to determine the change of the thickness of the soft tissue layer in the indented site as a function of time. With this approach and with the help of some theoretical models, one could separate the geometric effects from the indentation data and extract from the data the genuine material properties of the tissue layers.

Diagnostic ultrasound techniques in terms of B-scan backscatter imaging and Doppler blood flow measurement in vessels and heart have proven to be successful biomedical applications of the ultrasound technology. Ultrasound was also used to monitor the internal displacement such as that of heart wall and fetal lung [10]. Recently, much research has been directed to the imaging of strain and tissue elasticity [11]–[21]. There are mainly two kinds of techniques to obtain those images, based on the two traditional diagnostic applications of ultrasound, respectively. One method imposed an external source of forced vibration and used the Doppler technique to determine the internal vibration of soft tissue and to generate the relevant image [11]–[14]. This vibration technique was proposed by Krouskop et al. for application in stump assessment [11]. A single ultrasound transducer was employed in their study, and the soft tissue on the lateral side of an above-knee amputee’s residual limb was tested. Another method consisted of the application of an external indenter, usually the ultrasound transducer itself. Standard B-scan...
In the present paper, an autotracking method was developed to track the ultrasound echo train to obtain continuous measurement of tissue deformation [28]. A quasilinear viscoelastic model was employed to perform curve fitting to extract the material constants from the data. Our aim was to develop an easy-to-use indentation probe and a simple protocol for assessing the biomechanical properties of soft tissue layers in-vivo.

II. ULTRASOUND INDENTATION SYSTEM

The schematic diagram of the present ultrasound indentation system is shown in Fig. 1. The ultrasound transducer was used not only to transmit and receive ultrasound waves, but also to serve as the indenter. Several Panametrics ultrasound transducers of 0.25-inch dia./5 MHz, 0.25-inch dia./10 MHz, and 0.175 inch dia./10 MHz could be connected to our probe. The ultrasound transducer of 0.25-inch dia./5 MHz was used in the experiments described in following sections. A low-profile Entran compressive load cell calibrated for a 10-N range was connected in series with the ultrasound transducer via a plexiglass “plug-in” socket, which made it easy to change ultrasound transducers of different size and frequency. A perspex rod was attached to the other surface of the load cell for hand-holding. The pen-size, hand-held probe is shown in Fig. 2. A load cell driver/amplifier (model PS-30A-2 from Entran) was used to drive the load cell, and the output signal was digitized by a 12-b analogue–digital (AD) converter. A Panametrics model 5052UA ultrasound pulser/receiver was utilized to drive the ultrasound transducer and to amplify the received signal. A Sonix 100-MHz high-speed 8-b AD converter was employed to digitize the amplified ultrasound echo train.

A software was developed in Microsoft C and its user-interface is shown in Fig. 3. During the indentation process, the ultrasound signal was shown in real time in the main window at the bottom of the screen, the two windows at the
top showed the deformation transient, the force transient or force/deformation curve. The minimum period between two contiguous data points in the top windows was 0.08 s in the current setting. All the data could be recorded in a file for further off-line study, the whole procedure could be played back continuously or in incremental time step. More than one pair of cursors within the ultrasound wave train could be set for auto-tracking the echo peaks during the indentation procedure. The ultrasound echo wave will move back or forward when the soft tissue layer is indented or recovered. The software calculated the deflection of the time of flight of the ultrasound echo wave with the reference of the wave peak. The pair of cursors would auto-track the moving echo peak during tissue indentation and recovery. The original tissue thickness and the subsequent change of thickness, i.e., deformation of the tissue, could be derived from the time information.

With the 100-MHz 8-b AD converter, the accuracy of the time measurement was 10 ns. The accuracy of the deformation determined by the indentation system was better than 0.02 mm, with the ultrasound frequency above 5 MHz and the amplitude of ultrasound signal larger than 10% of the full dynamic range. A 12-b AD converter was used to digitize the force signal, the accuracy of force result was better than 0.003 Newton within the 10-Newton range.

III. SYSTEM VALIDATION

We used a Hounsfield material testing machine to validate the ultrasound indentation system. The hand-held probe was placed in line with the load cell of the Hounsfield material testing machine. Fig. 4 shows the apparatus. The experiment was performed on a layer of porcine tissue with initial thickness of about 24 mm. An ultrasound velocity of 1540 m/s was assumed for the tissues. The Hounsfield material testing machine was controlled by a special PC-based software developed in-house. Force and deformation data were read from the machine by the software via the RS232 port. Similar data were also acquired with the ultrasound indentation system. One set of the validation results is shown in Fig. 5. The whole procedure consisted of several indentation-holding-recovery phases imposed via the Hounsfield control panel. The rate imposed varied from 0.5 mm/s to 1 mm/s. The largest force was about 5 N corresponding to about 20% strain of the entire layer. It was found that data from the Hounsfield machine and the new indentation system agreed very well.

IV. EXTRACTION OF MATERIAL PARAMETERS

A number of in-vitro experiments were done on porcine tissues using this ultrasound indentation system. The tissue layer had dimensions of 10 cm × 10 cm × 2.5 cm. The tissues were kept moist by saline dripings throughout the experiments. The ultrasound signal was reflected from the interface between the soft tissue layer and the surface of the container. Fig. 6 shows the force-deformation curve of a typical indentation-holding-recovery procedure. The biomechanical response obviously demonstrated nonlinear and time-dependent viscoelastic behaviors. A quasilinear viscoelastic (QLV) model of soft tissue was used to extract the relevant material parameter from the experimental data [26]. According to the model, the force response can be derived from

\[T(t) = T^{(e)}[\lambda(t)] + \int_0^t T^{(e)}[\lambda(t - \tau)] \frac{\partial G(\tau)}{\partial \tau} d\tau \]

where, \(T(t) \) is the force response at time \(t \), \(T^{(e)}(\lambda) \) is called the elastic response, \(G(t) \), a normalized function of time, is called the reduced relaxation function, and \(\lambda(t) \) is the deformation history. In our current study, the elastic response was taken to be a third-order polynomial function, and the relaxation function was assumed to be a single exponential function as follows:

\[
G(t) = 1 - a(1 - \exp(-t/t_e)) \\
T^{(e)}(\lambda) = C_1 \lambda + C_2 \lambda^2 + C_3 \lambda^3
\]

where, \(a, t_e, C_1, C_2, \) and \(C_3 \) represent the five parameters of the model. Fig. 7 shows the curve-fitting result of the force response. Reasonable good agreement between the experiment data and the model simulation was obtained. The set of parameters for this particular tissue layer was determined to be

\[
a = 0.5620, \quad t_e = 1.6483 \text{ (s)}, \quad C_1 = 0.1946 \text{ (N/mm)} \\
C_2 = 0.0213 \text{ (N/mm^2)}, \quad C_3 = 0.0125 \text{ (N/mm^3)}.
\]

V. DEFORMATIONS IN MULTILAYERED TISSUE

To demonstrate how the same indentation probe might be used to quantify deformations in different layers of a tissue, two cursor windows were set to track two ultrasound echoes, one from the bottom surface of the porcine tissue specimen, and the other from an intermediate muscle-fat interface. Using this approach, the internal deformation in the muscle layer and the fat layer as functions of time could be monitored in real time. The movement of the indentor was prescribed in the similar pattern as in Fig. 6. The results are shown in Fig. 8. The percentage deformation was represented in deformation/thickness (%). At the start of indentation, the
percentage deformation of the fat layer increased slowly. The rate of change of the percentage deformation later increased as indentation increased. The percentage deformation of the muscle layer was higher than that of fat. The rate of change of the percentage deformation, however, decreased as indentation increased. At the end of the indentation process, the fat layer did not fully recover and a residual percentage deformation about 4% of its initial thickness still remained. The fat layer seemed to take longer to recover. The resistive force from the soft tissue decreased to zero before the indenter fully returned to its starting position. Although the tissue surface might not follow the indenting ultrasound transducer during the later part of the recovery phase, the ultrasound echo train from the internal soft tissue could still be obtained, since the gap between the transducer and tissue surface was filled by a fluid film of saline solution. The ability of the probe to pick up nonhomogeneous time-dependent deformation in different sublayers within a tissue could be useful when more precise biomechanical assessments are required for specific tissue sublayers.

VI. DISCUSSION AND FURTHER STUDIES

In vivo indentation testing is a useful method to determine the biomechanical properties of soft tissue. This paper
described a newly developed ultrasound indentation system using a pen-size indentation probe. Validation of the ultrasound indentation system was performed on porcine tissue.

To demonstrate the feasibility of using this probe in a handheld manner to collect *in-vivo* indentation data on human subjects, an indentation experiment was performed on the soft tissues covering the volar side of the first metacarpal of a human subject. The probe was hand-held and visually aligned normal to the skin surface. A few cycles of indentation were imposed manually. Ultrasound signal was reflected from the soft tissue-bone interface. Fig. 9 shows a typical set of force and deformation transients.

In the present paper, simulation using a QLV model was performed to fit the *in-vitro* indentation data on the fresh porcine tissue. Good comparison was found between the model and the experimental data. In the *in-vivo* indentation experiment, since the full deformation-time record was known from the ultrasound data, the force response could also be curve-fitted using QLV model to obtain the material parameters.

Multilayer study seems possible using this ultrasound indentation system. In our preliminary study, tissues with two layers, namely a fat and a muscle layer, were examined. In principle, more than two layers can also be examined using the ultrasound indentation system by setting more tracking cursor windows.

In the present indentation apparatus, the time of flight of ultrasound wave was used to determine the deformation of the soft tissue. The amplitude of the echo train was not so critical...
in our application so long as it was within an acceptable signal to noise ratio. The larger the width of the ultrasound beam, the longer the echo train from an interface would be. To overcome this, one could set the tracking window in the beginning of such echo train. In addition, if the internal interface which caused reflection of ultrasound wave was not flat, the reflected signal could only represent some average position of that interface [29].

If the probe is to be used in a hand-held manner, the problem of probe alignment should also be addressed. Theoretical finite element analysis showed that while probe misalignment might affect the stress distribution beneath the indenter, the effect on the total force acting on the indenter seemed to be little for misalignment up to 5° [30].

It was also expected that tissue layers with bony interface not parallel to the skin surface may compromise the amount of ultrasound reflection that could be picked up by the transducer. These issues would be examined in future reports.

The methodologies developed in the present project could be also utilized in the imaging of strain or elasticity of other soft tissues.

ACKNOWLEDGMENT

The authors would like to thank F. L. Shen and J. K. Hu for their encouraging support and H. Chan for suggestions on the selection of ultrasound transducers.

REFERENCES

Yong-Ping Zheng (S’95) was born in Ningbo, China, in September 1966. He received the B.Sc. and M.Sc. degrees in electronics and electrical engineering from the University of Science and Technology of China in 1990 and 1993, respectively. He is currently working toward the Ph.D. degree in the Rehabilitation Engineering Center at the Hong Kong Polytechnic University. His main research interests include biomechanical assessment of soft tissue in rehabilitation engineering, ultrasound instrumentation in bioengineering, and in nondestructive testing.

Arthur F. T. Mak was born in Hong Kong in 1955. He received the B.Sc. degree in engineering mechanics from the University of Illinois, Urbana-Champaign, in 1976 and the M.Sc. and Ph.D. degrees in the area of biomechanics from Northwestern University, Evanston, Ill., in 1979 and 1980, respectively. After a postdoctoral research associateship at the Rensselaer Polytechnic Institute, he joined the Departments of Bioengineering and Orthopaedic Surgery at the University of Pennsylvania, Philadelphia, in 1983. He returned to Hong Kong in 1988 and joined the now Hong Kong Polytechnic University as a Principal Project Engineer. He was promoted to full Professorship in 1995. His main research interests include tissue mechanics, orthopaedic engineering, prosthetic biomechanics, pressure sore prevention, and other areas of rehabilitation engineering.