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Abstract 
Quantitative PET studies can provide zn-uzuo 

nieasurements of dynamic physiological and biochemical 
processes in humans. A limitation of PET is its inability 
to provide precise anatomic localisation due to relatively 
poor spatial resolution when compared to MR imaging. 
Manual placement of regions of interest (ROIs) is 
commonly used in the clinical and research settings 
in analysis of PET datasets. However, this approach 
is operator dependent and time-consuming. Semi- or 
fully-automated ROI delineation' (or segmentation) 
methods offer advantages by reducing operator error 
and subjectivity and thereby improving reproducibility. 
In this work, we describe an approach to automatically 
segment dynamic PET images using cluster analysis, 
and we validate our approach with a simulated phantom 
study and assess its performance in segmentation of 
dynamic lung data. Our preliminary results suggest that 
cluster analysis can be used to automatically segment 
tissues in dynamic P E T  studies and has the potential to 
replace manual ROI delineation. 

I. INTRODUCTION 
Nuclear medicine imaging modalities such as PET 

and SPECT, are able to  measure functional changes 
in local tissues by analysing the underlying tissue 
time-activity curves (TACs) that are extracted after 
the manual placement of regions of interest (ROIs) in 
particular sites of activity. The process of tissue TAC 
extraction is referred to  as ROI analysis. This approach 
is widely used in clinical and research settings, but it 
is operator dependent, time-consuming and may not 
be reproducible. To reduce such subjectivity, semi- 
or fully-automated methods for ROI delineation (or 
segmentation) are desirable. 

However, automatic segmentation for three- 
dimensional data is not a trivial task. .4 number of 
methods for segmentation of MR datasets have been 
reported in the literature [l-31. In MR imaging, it is 
relatively easy to identify, in the brain, grey matter, 
white matter, CSF, and extracranial tissues. But 
segmentation in PET and SPECT is more difficult 
because in addition to  inherent poorer spatial resolution, 
there is statistical noise due to scatter, signal attenuation 
and patient motion during scanning. 

Multivariate data analysis techniques have been 
applied in PET and SPECT studies. Principal 
component analysis (PCA) is perhaps the most frequent 
approach [4,5]. PCA explains the variance-covariance 
structure in multivariate data by linearly transforming 

the original set of variables into a smaller set of 
uncorrelated (orthogonal) variables. In this scheme, 
the higher order components are important as they 
explain the major variation in the data, while lower 
order components are unimportant as they mainly 
contain noise. Since t,he lower order components 
are unimportant, they are discarded without causing 
significant loss of information. Thus, dimensionality 
reduction (or data compression) can be achieved using 
the PCA technique. Factor analysis (FA) can be thought 
of as a generalisation of PCA as it produces factors 
closer to the true underlying tissue TACs. I t  has been 
used to extract the time course of blood activity in the 
left ventricle of the heart from PET images [ G ]  and 
to  analyse myocardial perfusion in PET studies [7]. 
FA segments the dynamic sequence of images into a 
number of structures which can be represented by 
functions. Each function represents one of the possible 
underlying physiological kinetics in the sequence of 
images. The whole sequence of images can then be 
represented by a weighted sum of functions. The first 
step of FA involves performing PCA on the sequence 
of images. Mathematical transformations such as 
positivity constraints and rotation of the factors are then 
performed so that the functions convey physiological 
meanings. 

Cluster analysis is another multivariate approach 
and it has been used in psychiatry and sociology for 
many years. One of the major aims of cluster analysis 
is to partition a large number of objects according to 
certain criteria into a smaller number of clusters that 
are mutually exclusive and exhaustive such that the 
objects within a cluster are similar to each other while 
objects in different clusters are dissimilar [SI. Cluster 
analysis has potential value in classifying PET data, 
because the cluster centroids are derived from many 
objects (tissue TACs) and an improved signal-to-noise 
ratio can be achieved [9]. Apparent advantages are the 
fast generation of parametric images and reduction in 
storage space. In this work, we describe an approach 
to automatically segment dynamic PET images using 
cluster analysis, and we validate it using a simulated 
dynamic 2-["C]thyniidine PET study with a slice of the 
Zubal phantom [lo] and assess it with a dynamic lung 
[lsF]fluorodeoxyglucose (FDG) PET study. 

11. MATERIALS AND METHODS 

A .  Segmen.tat%on, Scheme 
The segment,ation met,liod is based on cluster analysis. 

Our aim is to classif)- a number of tissue TACs according 
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to  their shape and magnitude into a smaller number of 
distinct characteristic classes that  are mutually exclusive 
so that the tissue T.4Cs within a cluster are similar to 
one another but are dissimilar to  those drawn from other 
clusters. The clusters (or clustered ROIs) represent the 
locations in the images where the tissue TA 
similar kinetics. The kinetics associated with a 
(i.e. ciuster centroid) is the average of TACs 
cluster. Suppose that  there exists k characterist 
in the dynamic P E T  data matrix, M ,  which has m 
tissue TACs and n time frames with k << m and that 
any tissue TAC belongs to  only one of the k curves. The 
clustering algorithm then segments the dynamic PET 
data into k curves automatically based on a weighted 
least-squares distance measure, V, which is defined as 

k m 

where zi E Rn is the i-th tissue TAC in the data; 
pj E 9" is the centroid of cluster Cj; and W E Rnxn 
is a square matrix containing the weighting factors on 
the diagonal and zero for the off-diagonal entries. The 
weighting factors in W were chosen to  be proportional 
to the scanning intervals of the experiment. 

There is no explicit assumption on the structure of 
data and the clustering process proceeds automatically 
in an unsupervised manner. The minimal assumption 
for the clustering algorithm is that the dynamic PET 
data can be represented by a finite number of kinetics. 
As the number of clusters, k ,  for a given data set is 
usually not known a pr ior i ,  k is usually determined by 
trial and error [8]. In addition, the initial cluster centroid 
in each cluster is initialised randomly to  ensure that all 
clusters are non-empty. Each tissue TAC is then allocated 
to  its nearest cluster centroid according to  the following 
criterion: 

\ ,  * z l E C i  ' d i , j = l , 2  , . . . ,  k ,  i # j  

where zl E Rn is the 1-th tissue TAC in M ;  pz E Rn 
and pj  E !Rn are the i-th and j - th  cluster centroid, 
respectively; and C, represents the i-th cluster set. The 
centroids in the clusters are updated based on equation 
(2) so that (1) is minimised. The above allocation and 
updating processes are repeated for all tissue TACs 
until there is no reduction in moving a tissue TAC from 
one cluster to another. On convergence, the cluster 
centroids are mapped back to  tlie original data space 
for all voxels. An improved signal-to-noise ratio can be 
achieved because each voxel in the mapped data space 
is represented by one of the cluster Centroids each of 
which possesses a higher statistical significance than an 
individual TAC. The algorithm is similar to  the k-means 
type Euclidean clustering algorithm [ l l ] .  However, this 
latter algorithm requires that the data are normalised 
and it does not guarantee that the within-cluster cost 
(and thus the total cost) is minimised since no testing is 
performed to  check whether there is any cost reduction 
if an object is moved from one cluster to  another. 

~ 

18-127 

B. Phantom Study 
TO examine the validity of the segmentation 

scheme, we simulated a dynamic 2-[11C]thymidine (a 
marker for cell proliferation) PET study [12]. Typical 
2-[11 Clthymidine kinetics for different tissues were 
derived from 8 patients. The data were acquired on 
an ECAT 931 scanner (CTI/Sieniens, Knoxville, TN).  
The dynamic P E T  data  were acquired over 60 min 
with a typical sampling schedule (10 x 30 sec, 5 x 
60 sec, 5 x 120 sec, 5 x 180 sec, 5 x 300 sec) and 
the tracer TAC in blood was measured with a radial 
artery catheter following tracer administration. Images 
were reconstructed using filtered back-projection (FBP) 
with a Hann filter cut-off at the Nyquist frequency. 
ROIs were drawn over the PET images to obtain tissue 
T,4Cs in bone, bone marrow, blood pool, liver, skeletal 
muscle, spleen, stomach and tumour. Impulse response 
functions (IRFs) corresponding to  these tissues were 
determined by spectral analysis of the tissue TACs [13]. 
The average IRFs for each common tissue type were 
obtained by averaging the spectral coefficients across 
the subjects and convolved with a typical arterial input 
function, resulting in typical TACs for each tissue. The 
TACs were then assigned to  the corresponding tissue 
types in a single slice of the Zubal phantom [lo] which 
included blood vessels, bone, liver, bone marrow, muscle, 
spleen, stomach, and a large and small tumour in the 
liver (see Figure 1). A dynamic sequence of sinogranis 
was obtained by forward projecting the images into 
3.13 mm bins on a 192 x 256 grid. Poisson noise and 
blurring were also added to  simulate realistic sinograms 
acquired on an ECAT 95lR scanner. Noisy dynamic 
images were then reconstructed using FBP (Hann filter 
cut-off a t  the Nyquist frequency). Figure 2 shows the 
metabolite-corrected arterial blood curve and noisy 
2-[11 Clthymidine kinetics in some representative tissues. 

C. Human Study 
The clustering algorithm has been applied to  a range 

of FDG-PET studies and we illustrate its use with a 
dynamic lung study. The dynamic lung FDG-PET study 
was performed on a male patient with an aggressive 
pleural tumour in the left lung. Ethical permission was 
obtained from our Institutional Review Board. The 
PET study was commenced after intravenous injection 

Figure 1: A slice of the Zubal phantom. B = blood vessels; b 
= bone; L = liver; M = marrow; Mu = muscle; S = spleen; 
St = stomach: T = tumour. 
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Figure 2:  Simulatecl noisy 2-["C]th~fmidine kinetics in some 
i epresentative regions. -4 nietabolite-corrected arterial blood 
cuive which was used to siniulat 'Clthymidine kinetics 
in different tissues is also shown. 

of 487 MBq of FDG. Emission data were acquired on a 
ECAT 951R whole-body PET tomograph (CTI/Siemens, 
Knoxville, TN) over 60,min (22 frames, 6 x 10 sec, 4 x 
30 sec, 1 x 2 min, and 11 x 5 min). Twenty-one arterial 
blood samples were taken from the pulmonary artery to 
form a input function for kinetic modelling. Separate 
foci of increased FDG uptake are seen on the right side 
of the midline in lymph nodes despite the increased 
uptake at the tumour in the left lung near the chest wall. 

111. RESULTS 

A .  Phantom Study 
Figure 3 shows the segmentation results using 

different numbers of clusters, k ,  in the clustering 
algorithm. The number of clusters is actually varied 
from 3 to 13 but only some representative samples are 
shown. In each of the images in Figure 3(a)-(f), different 
grey levels are used to represent the cluster locations. 
Figure 3 shows that when the number of clusters is 
small, segmentation of the data is poor. With k = 3, the 
liver, marrow and spleen merge to form a cluster and 
the other regions merge to form a single cluster. With 
5 5 k 5 7, the segmentation results improve because the 
blood vessels and stomach are visualised. However, the 
hepatic tumours are not seen and the liver and spleen 
are classified into'the same cluster. With k = 8, the 
tumours are visualised and almost all of the regions are 
correctly identified [Figure 3(d)]. Increasing the value of 
k to 9 gives nearly the same segmentation as in the case 
of k = 8 [Figure 3(e)]. Further increasing the value of k ,  
however, may result in poor segmentation because the 
actual number of tissues present in the data is less than 
the specified number of clusters. Homogeneous regions 
are therefore defragmented to satisfy the constraint on 
the number of clusters [Figure 3(f)]. Thus, 8 or 9 clusters 
appear to provide reasonable segmentation of tissues in 
the slice and this number agrees with the various tissues 
present in the data. 

Figure 4 plots the average iiiean squared error (AISE) 
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Figure 3: Tissue segmentation obtained with different number 
of clusters. (a) I; = 3, (b) k = 5 ,  ( c )  k = 7, (d) k = 8, (e)  
k = 9, ( f )  k = 13. 

Figure 4: 
number of clusters. 

Average mean squared error as a function of 

across clusters as a function of I C .  The average MSE 
decreases monotonically, as it drops rapidly (IC < 8), then 
decreases less rapidly (8 5 k 5 9) before reaching a 
plateau ( k  2 10). From the trend of the plot, there is 
no significant reduction in the average MSE with IC > 12. 
Furthermore, the decrease in the average MSE is nearly 
saturated with k 2 8. These results confirm the findings 
of the images in Figure 3, suggesting 8 or 9 as the optimal 
number of clusters for this dataset. 

Application of the clustering algorithm to  the 
simulated PET data is shown in Figure 5. The assumed 
number of clusters is eight. The signal-to-noise ratio 
of the images is markedly improved after clustering. 
In addition, the blood vessels are clearly seen in the 
frame sampled at 75 sec after clustering but not in the 
corresponding frame in the original data. In the original 
images, it is difficult to identify different tissues which 
may be due to reconstruction effects and inhomogeneous 
noise. However, the liver, spleen, muscle, marrow, 
stomach and t,umours, are clearly delineated by the 
clustering algorithm (bottom row of the figure). 

B. Human Study 
Cluster analysis was applied to the dynamic lung 

FDG-PET data and the results are shown in Figure 6. 
As there is no 0. przori knowledge about the optimum 
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Figure 5 :  Some selected frames of the simulated 2-["Clthymidine PET study. The top row shows the original reconstructed 
images, and the bottom row shows the same frames after cluster analysis. Image frames were taken at (a) 15 sec, (b) 75 sec, 
(c) 135 sec, (d) 285 sec, (e) 1020 sec, and ( f )  2850 sec postinjection. Individual images were scaled to their own maximum. 

Figure 6: Tissue segmentation of the dynamic lung FDG-PET data in three selected slices - 4 (top row), 19 (middle row) and 
24 (bottom row) with different number of clusters: (a) k = 4, (b) k = 7, (c) k = 8, (d) k = 9, (e) k = 10, (f) k = 12. 

Figure 7: Extracted tissue TACs corresponding to the 
tumour, lung and muscle, foci of increased FDG uptake, and 
the blood pool. The measured blood TAC at the pulmonary 
artery is also shown. 

number of clusters in practice, the number of clusters 
was varied from 3 to 15 so that the possible optimum 
segmentation of the data set is covered. Only some 
representative segmentations for the selected slices are 

present in the figure. 

The optimum numbers of clusters for the selected 
slices (4, 19, and 24) were found to be 8, 8, and 9, 
respectively. This is not surprising that the optimum 
number of clusters is differed for different slices because 
of the differed number of underlying anatomical 
structures and the variability of FDG accumulation in 
a given tissue. Nevertheless, the tumour (slice 4), right 
lung and muscle (slices 4, 19 and 24), blood pool (slices 
4, 19 and 24), separate foci of increased FDG uptake 
(slices 19 ancl 24), and the injection site. (slices 4, 19 
and 24) can be identified with the optimum number of 
clusters, as seen from the figure. Figure 7 shows the 
measured blood TAC at the pulmonary artery and the 
extracted tissue TACs for the tumour (from slice 4), 
lung and muscle (from slice 19), foci of increased FDG 
uptake (from slice 24), and the blood pool (from slice 
19) using the corresponding optimal value of clusters. 

IV. DISCUSSION 
We have described a tissue segnientation scheme for 

dynamic PET data using cluster analysis. The proposed 
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scheme is an attempt to overcome some of the limitations VII. REFERENCES 
associated with the conventional ROI analysis. It is able 
to provide statistically meaningful clusters because the 
entire sequence of images are analysed and different 
regions whose associated kinetics differed are extracted 

finished, the extracted TACs, i.e. the cluster 
are then mapped back onto the original data space 
all voxels. Thus, an improved signal-to-noise ratio c 
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Our clustering algorithm may be useful as a 
pre-processing step before fast generation of parametric 
images since only a few characteristic curves need 
be fitted as compared to conventional pixel-by-pixel 
parametric image generabion where many thousands 
of tissue TAC must be analysed. The computational 
advantage and time savings are apparent. In addition, 
the storage space required for the whole sequence 
of dynamic images is markedly reduced since only k 
characteristic curves and the locations of the clusters 
need be stored. This greatly facilitates data retrieval 
and data transmission via the intranetlinternet. 

V. CONCLUSIONS 
We present an approach to automatically segment 

tissues in dynamic PET images using cluster analysis. 
Our preliminary data indicate that accurate tissue 
segmentation can be achieved and may replace manual 
ROI delineation. This approach may be potentially 
useful as a pre-processing step before fast generation 
of parametric images since computational intensive 
pixel-by-pixel curve fitting is avoided. Our results have 
encouraged us to investigate the applicability of this 
approach to whole-body PET for lesion localisation 
and assessment of treatment response in a variety of 
oncological conditions. 
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