
  

  

Abstract— Parametric FDG-PET data offer the potential for 
an automated identification of the different dementia 
syndromes. Principal component analysis (PCA) can be used for 
feature extraction in FDG-PET. However, standard PCA is not 
always successful in delineating the features that have the best 
discrimination ability. We report a genetic algorithm-based 
method to identify an optimal combination of eigenvectors so 
that the resultant features are capable of successfully separating 
patients with suspected Alzheimer’s disease and frontotemporal 
dementia from normal controls. We compared our approach 
with standard PCA on a set of 210 clinical cases and improved 
the performance in separating the dementia types with an 
accuracy of 90.0% and a Kappa statistic of 0.849. There was 
very good agreement between the automated technique and the 
diagnosis given by clinicians. 

 

I. INTRODUCTION 

ITH the increasing ageing of the population, dementia 
has become an important world-wide public health 

problem. Positron emission tomography (PET), a functional 
imaging modality, can detect subtle changes in cerebral 
metabolism before there are changes on anatomical imaging 
and before a clinical diagnosis of probable dementia is made 
[1]. However, the interpretation of PET images remains a 
challenge  because the changes can be subtle early in the 
course of the disease and there can be some overlap with 
other dementia types [2]. 

Alzheimer’s disease (AD) and frontotemporal dementia 
(FTD) are two of the more common types of dementia [1, 3] 
and investigators have developed several methods to 
automatically separate these patients from healthy subjects. 
The methods in the literature have two main steps:- feature 
extraction and classification. The features that are considered 
include voxel values, gradients, simple statistics, histogram, 
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fractal dimension [4, 5] and the T-map [6]. The features can 
be calculated from the whole brain, regions of interest (ROIs) 
and sinogram data [7]. The classification methods range from 
K-mean clustering [8], to artificial neural network (ANN) [9, 
10] and a support vector machine (SVM) [11, 12]. 

PET scanning provides the additional advantage of 
deriving quantitative parametric images. In our previous 
work [13] we showed that voxel values of 18FDG-PET 
parametric images are more robust than histograms, local 
statistics and gradients calculated from ROIs in identifying 
different conditions. Due to the huge number of voxels, 
dimensionality reduction is an essential prerequisite for 
classification when using voxel values as features. Principal 
component analysis (PCA) is the most common 
dimensionality reduction technique that is used [14]. PCA 
performs a linear transformation of data to a lower 
dimensional space spanned by a few eigenvectors of the 
covariance matrix of the data. These few eigenvectors are 
determined by sorting all eigenvectors in order of decreasing 
eigenvalue and choosing the first L  eigenvectors which give 
an accumulative energy ν  above a defined threshold, such as 
90%. Although PCA maximizes the variance of the 
transformed data, it is not optimized for class separability 
[15], since larger eigenvalues do not necessarily guarantee 
the corresponding eigenvectors contain the "most important" 
aspects of the data in terms of classification. 

Our aims were to remedy the disadvantage of PCA and 
provide a holistic solution for selecting an optimal 
combination of eigenvectors so that the resultant features 
have the best discrimination ability. Our eigenvector 
selection and weighting method is based on the genetic 
algorithm and is directed at maximizing the agreement 
between the result of automated dementia classification and 
the diagnosis given by experienced neurologists. Finally, we 
compared the proposed approach to standard PCA on a set of 
clinical PET images. 

II. METHODS 

A. Data Preparation 
We selected 210 neurological studies from the PET 

archive, including 80 cases of AD, 60 cases of FTD, 35 cases 
of non-dementia, and 35 cases of healthy volunteers. Both the 
non-dementia and healthy cases were used as normal 
controls. 

All studies were performed on an ECAT 951/R whole body 
PET scanner (Siemens/CTI, Knoxville, TN., U.S.A.). 
Approximately 400 MBq of 18F-FDG was infused at a 
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constant rate over a 3-min period to study in-vivo metabolism 
of glucose. Two arterialised-venous blood samples were 
taken at 10 min and 45 min post injection to calibrate the 
population-based input function [16]. PET scanning 
commenced at least 30 min after tracer injection with a scan 
duration of twenty minutes. 

The autoradiographic method [17] was used to calculate 
parametric images of cerebral metabolic rate of glucose 
consumption (CMRGlc). The constructed CMRGlc images 
were spatially normalized to a PET brain template provided 
by the SPM2 package (Wellcome Trust Centre for 
Nueorimaging, London, U.K.) [18] to reduce anatomical and 
intensity variations and to ensure a meaningful voxel-wise 
comparison between the images. 

B. PCA Eigenvector Computation 
After spatial normalization, the CMRGlc image volume 

has a dimension of 91×109×91 and a voxel size of 2×2×2 
mm3. To reduce computational and spatial complexity, each 
dimension was down-sampled by a factor of 3, preceded by 
smoothing with a Gaussian filter (FWHM =8mm). 
Background and the cerebrospinal fluid (CSF) region were 
removed based on the regions defined in the MNI brain 
phantom [19]. As a result, a total of 8065 voxels are sampled 
from each CMRGlc image volume. The voxel value feature 
set of all images is denoted by a matrix NDA ×  ( 8065=D  and 

210=N ). The mean for each voxel across the studies was 
subtracted to yield the mean-subtracted matrix B   

huAB ⋅−=                                 (1) 
where u  is the mean of each row of A, and h  is a N×1  
row vector of all 1’s. Finally, the singular value 
decomposition (SVD) [14] is applied to the covariance matrix 
of B  to calculate its eigenvalues { }Dλλλ ,,, 21 L  and the 
corresponding eigenvectors { }DΧΧΧ ,,, 21 L . 

C. Eigenvector Selection and Weighting 
From the calculated eigenvectors, we select a few to 

construct the transformation matrix 
{ }

*21
,,,* DiiiNDT ΧΧΧ=× L .                    (2) 

The voxel value feature set is then projected into the *D - 
dimensional space in the following way 
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where the column vector σ  is the main diagonal of the 
co-variance matrix of B . The optimum of eigenvector 
selection is assessed using the performance of classification 
obtained from the projected features. The classification 
performance is characterized by the accuracy and the Kappa 
statistic [21], which are calculated with the neurologists’ 
diagnosis as the correct diagnosis. To efficiently utilize all the 
available studies, a 10 fold cross validation was performed. 
Each time, 90% of the studies in each category are used as 
training set, while the remaining 10% are used for 
assessment. This is repeated 10 times to ensure all studies 
contribute to the evaluation once. Since the training set is 

relatively small, the support vector machine (Lib SVM [20]) 
is adopted as the classifier in this research. 

Selecting a set of eigenvectors to ensure the best 
classification performance is an optimization problem that 
can be solved by using the genetic algorithm (GA). Since 
most of the 8065 eigenvectors resulting from SVD are in fact 
trivial to classification, we initially sort them in order of 
decreasing eigenvalue and choose the first 100 as potential 
candidates. We then construct a binary coding GA (bGA) to 
further select eigenvectors from these candidates. In the bGA, 
each solution is represented as a 100-bit binary number, 
where 1 means the corresponding eigenvector is selected and 
0 means it is discarded. A solution’s fitness is defined as the 
Kappa statistic of the classification resulting from it. The new 
generation of population is created by several genetic 
operators, including best solution inheritance, roulette wheel 
selection, one-point crossover, random mutation, and gene 
modification. Since the classifier prefers lower 
dimensionality of the feature space, gene modification is 
designed to produce new solutions by modifying the current 
best one, discarding 1 to 3 selected eigenvectors which make 
the least contribution to the fitness. To avoid the optimization 
process being trapped in a local maximum, the proposed bGA 
adopts a variable mutation probability, given as follows 
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where pmα  is the increasing rate of mutation probability , 
( )n

mp   and ( )n
mf  are the mutation probability and highest 

fitness of the n th generation. When the mutation probability 
reaches its threshold pmT , it will be reset to its initial value 

( )0
mp  to prevent the bGA from degenerating to random 

searching. Another operator will be triggered when the 
evolution has been halted for more than 4 generations. In this 
case, all individuals whose fitness equals to the highest fitness 
will be replaced by their offspring produced by mutating. 
This operator aims to diversify genes in the population and 
thus speed up the evolution. Finally, the evolution will 
terminate when a predetermined number of generations is 
reached. 

Each eigenvector characterizes a specific pattern in the 
brain and hence can be considered as an “eigenbrain” as 
shown in Fig. 3. Since various regions have different 
importance to dementia classification, the significance of 
eigenbrains should be different ie higher weights should be 
given to eigenvectors or eigenbrains which highlight regions 
which provide strong differentiation between the study types. 
Therefore, we assign each selected eigenbrain a weight and 
hence modify the transformation matrix given in Eq. (2) as 
follows 

{ }
**2211

,,,'
DD iiiiiiT ΧΧΧ= ωωω L .                   (5) 

We adopt a real-valued GA (rGA) [21] to optimize the 
weight vector { }

*21
,,,

Diii ωωω L . In the rGA, a solution 
consists of 100 real numbers, each of which takes a value 
from [ ]2,2β− . A positive number represents a weight 
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while a negative number means the corresponding eigenbrain 
is discarded. The bias coefficient β  interprets the prior that 
solutions with good performance usually select a small 
number of eigenbrains. The fitness function and the 
termination condition are the same as those of bGA. 

III. RESULTS 
The bGA-based eigenbrain selection is first carried out and 

the resultant optimal solution is included in the initial 
population of rGA. In our experiments, the initial mutation 
probability ( )0

mp , mutation probability threshold pmT , 
mutation probability increment, pmα , and bias coefficient β  
are empirically set to be 0.01, 0.05, 1.09, and 5, respectively. 
Although inappropriate parameters may slow down the 
convergence, the GA algorithm is generally not sensitive to 
these parameters. The indexes and weights of the obtained 
optimal combination of eigenbrains are listed in Table 1. In 
Fig. 1, the classification performance of the features derived 
from these eigenbrains is compared with that of standard 
PCA, which selects the eigenvectors (or eigenbrains) with the 
highest eigenvalues. For PCA, the classification performance 
initially improves with increasing number of eigenbrains. 
However, as the number of selected eigenbrains exceeds 12, 
although the accumulated energy continues to increase, the 
performance tends to worsen. This clearly illustrates that the 
accumulated energy is not the optimal criterion for eigenbrain 
selection. Fig. 1 reveals that the proposed eigenbrain 
selection and weighting method outperforms PCA in 
dementia classification. By weighting the contribution of 
each selected eigenbrain, we achieved a classification 
accuracy of 90.0% and a Kappa statistic of 0.849, a very good 
agreement between the automated classification result and the 
diagnosis given by neurologists. 

Since GA is likely to be trapped in local maximum, we run 
the proposed feature selection and weighting algorithm 15 
times. The mean weight of each eigenbrain and the average 
classification performance are depicted in Fig. 2. It shows that 
there are 17 significant eigenbrains with weights above 0.8.  

When displaying the absolute voxel values of some 
eigenbrains in Fig. 3, the “highlighted” area represents the 
region to which the feature resulted from this eigenbrain 
mainly responds. For example, the features derived from the 
6th eigenbrain characterize the information of right temporal 
lobe, and the features produced by the 3rd eigenbrain mainly 
reflect the situation in frontal lobe and occipital lobes. The 
frontal, temporal, parietal, occipital  lobes and the 

hippocampal formation are important structures in AD and 
FTD [23, 24]. We calculate the average absolute voxel values 
of these tissues in each eigenbrain and interestingly find that 
the largest averages are mostly found in the eigenbrains 
selected by our approach. Fig. 4 compares these largest 
averages with the average absolute voxel values of the 
corresponding eigenbrain. It reveals that the majority of these 
tissues are “highlighted” by the selected eigenbrains. This 
result demonstrates that the output of the proposed eigenbrain 
selection approach is largely in accord with the pathological 
knowledge. 

IV. CONCLUSION 
We investigated the automated differentation of AD and 

FTD from normal subjects from the perspective of selecting 
an optimal combination of eigenbrains to derive the features 
that had the best differentiation ability. Compared with the 
standard PCA algorithm, the proposed eigenbrain selection 
and weighting method improves the performance of dementia 
classification. However, the spatial resolution of current 

 
TABLE I 

INDEX AND WEIGHTS OF SELECTED EIGENBRAINS 

Method Index or Weights 

bGA 1 2 3 4 6 7 10 12 14 20 25 28 41 46 55 60 78 85 86 
bGA + 
rGA 

W1=0.8867, w2=1.2420, w3=1.0051, w4=0.7875, w6=0.5441, 
w7=0.4773, W10=0.9996, w12=1.0100, w14=1.0040, 
w20=0.7378, w25=0.7995, w28=1.0159, W41=0.9958, 
w44=0.2296, w46=0.8186, w47=0.1513, w55=1.0049, 
w60=0.5466, W78=1.0002, w85=1.0057,w86=0.5825 

Fig. 1 Performance comparison between PCA and proposed feature 
selection method. 

Fig. 2 Average weight of each Eigenbrain and the average 
classification performance 
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eigenbrains is relatively low to limit the complexity. Our 
future work is aimed at improving the resolution of 
eigenbrains and mining the information embedded in the 
eigenbrains. 
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Fig. 3 Absolute voxel values of the 24th slice (top) and the 37th (bottom) 
of 12 selected eigenbrains. The number at bottom right is the index of 
each eigenbrain. 
 

Fig. 4 Comparison of the average absolute voxel values. 
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