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ABSTRACT Functional imaging techniques such as 
Positron Emission Tomography (PET) has the potential 
for early diagnosis of malignant tumors. However, 40- 
50% of Hepatocellular Carcinoma (HCC). a common 
malignancy worldwide. can hardly be detected by the 
widely used '*FF-2-fluoro-2-deo~~-D-glucose (FDG) PET. 
"C-acetate PET has recently been found effective for 
detecting HCC. To perform quantitative analysis to obtain 
the diagnosis infonnation, legions of interest (ROIs) are 
needed to be extracted. Manual placement of ROIs is 
subject to operator's skill and time-consuming. 
Furthermore, the small sizes of some Rots inake the task 
even more difficult. In this paper, we propose an approach 
to segment the dynamic IC-acetate PET liver images 
automatically. The curves extracted from some segmented 
ROIs are then fitted to the presented "C-acetate liver 
model. Finally, the parameter K. which Ius been validated 
as an indicator for detecting HCC. can be calculated. 
Keywords: Cluster analysis, SegmentatioR 
Hepatocellular Carcinoma (HCC), Positron Emission 
Tomography (PET). parameter K. 

INTRODUCTION 

Hepatocellular Carcinoma (HCC) is a common cause of 
cancer deaths. However, most cases of HCC are 
discovered late and less than 10% are cured with surgical 
resection. Overall 5-year survival rate is less than 5% [l], 
[Z]. Dynamic Positron Emission Tomography (PET) has 
beenextensively used lo quante  in vivo the physiological 
and biochemical processes in humans, which could 
achieve early diagnosis of malignant tumors. However, 
40-50% of HCC couldn't be detected by the widely used 
'sF-2-fluoro-2deo~-D-glucose (FDG) PET. It is clearly 
not acceptable in countries where this tumor is one of the 
top 3 causes of cancer death. "C-acetate PET Ius 
recently been conducted and found to be a complementary 
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Figurel: CT demonstrates a hypervascular lesion in thc L lobe of 
liver (status post R lobectomy for HCC): FDG imaging shows no 

abnormal FDG uptake; "C-acetate imaging shows increased 
metabolism. 

tracer to FDG in PET imaging of HCC [3] [4]. Fig. 1 
demonstrates a case of recumnt HCC in the left lobe of 
liver after right lobectomy CT shows hypewascularity 
within the tumor. FDG-PET imaging shows 110 abnormal 
FDG uptake by the tumor, w2hereas "C-acetate PET 
imaging shows increased metabolism. 

To get a better understanding of the characteristics of "C- 
acetate in HCC liver images, quantitative dynamic 
modeling has been conducted 141. The tracer time-activity 
curve in blood (BTAC) is used as the input function in the 
kinetic model. BTAC is usually represented by a sequence 
of arterial or arterialized blood samples [5], [6]. which is 
in general very invasive and requires esm perjonnel and 
processing time. Moreover, the liver bas a dual source of 
blood supply: the hepatic artely (HA) and the portal vein 
(Pv)_ it is highly invasive and virtually impossible in 
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clinical settings to count the radioactivity of the p o ~ a l  
venous blood by direct catheterization and sampling. 
Therefore, regions-of-interest (ROIs) delineation of HA 
and PV is required from the dynamic PET images. 
However. PET cannot provide precise anatonuc 
localization due to its relatively poor spatial resolution and 
high noise level. Manual placement of ROIs is subject to 
operator's skill and lacks of reproducibilily. It is also time 
consuming [7]. Furthennore, the sizes of both HA ,and PV 
are vely small, which inakes the delineation even more 
difficult. Therefore, automatic segmentation should be our 
prelinunaly step for enhancement of visnalimtion and 
ROI analysis. In addition, automatic segmentation could 
provide consistent and reproducible results and an overall 
reduction in time for data analysis [7]. 

Clustering algorithms achieve region segmentation by 
paltitioning the image into sets of clusters of pixels that 
have slrong similarity in the feature space [8]. This 
approach has been used with some success in 
segmentation of PET images. For dynamic PET images, 
each pixel of a slice could be represented by a time- 
activity cunre (TAC). In our study. cluster analysis is used 
to segment the dynamic PET images by merging a number 
of TACs according to their shapes and rnagnitndes into a 
small number of distinct characteristic classes so that the 
TACs within a cluster showing the greatest similarity to 
each other but are dissimilar to those extracted from other 
clusters [7]. However, for liver study, the tracer arriving at 
the PV is delayed and dispersed in comparison with that 
of llie HA 191, which makes its activily in PV similar to 
that in the normal liver tissue. If the number of clustels is 
insmcient. the region of PV would be merged into the 
surrounding hepatic parenchyma and cannot be 
distinguishable: if tbe number of clusters is adequate to 
identify the PV, several "meaningless" clusters would 
appear. A two-step segmentation method based on 
clustering algorithm and with the combination of spatial 
and temporal information provided by the dynamic PET 
liver images, is proposed as well in this paper. 

A tlm-comnpartment four-parameter (4P) kinetic model 
for evaluation of "C-acetate metabolism in liver is then 
adopted to fit the curves of the segmented regions of HCC 
and non-tumor liver tissue. The physiological parameter K. 
which is defined as K1*k3/(k,+k,), is introdnced as the 
indicator for the detection of HCC. 

METHODS 

Darn Acquisition 

The hyo-step segnentation method has been applied to 
clinical dynamic IC-acetate PET liver images. An ECAT- 

EXACT 47 PET scanner (CTUSiemens, Inc., TN, USA) is 
used for 2D dynamic itnage acquisition. Full sets of 
dvnamic data in one single position, covering the liver 
dome and apical half of the left wnuicle to the inferior 
part of liver, are obtained for 10 min immediately 
following bolus IV injection of "C-acetate. Sampling 
acquisition sequence is as follows: 4 sec frames x IO_ 10 
sec frames x 8: 30 sec frames x 2; 60 sec frames x 3 and 
120 sec frames x 2_ a total of 25 fmmes. 

Segnientation Scheme 

Our aims of the segmentation are to differentiate image 
pixels of the pathological regions: HCC, fmm other liver 
masses. at the same time extract the specific anatomic 
stmctures: HA and PV from the dynamic 'IC-acetate PET 
liver images. The segmentation is performed 
independently on each slice. The basic idea of the 
segmentation method is to utilize clustering algorithm to 
merge all the pixels' TACs according to their shapes and 
magnitudes into a small number of distinct characteristic 
clusters. The cluster centroid is the average of,all pixels' 
TACs in the cluster. Assume that there are totally n 
pixels' TACs of p time frames in the dynamic PET data 
and in  distinct characteristic curves (m << n). Each pixel's 
TAC belongs to only one of the tn curves. The clustering 
algorithm can segment the dynamic PET data into in  

curves automatically based on a least squares distance D 

where zi is the ith pixel's TAC in the PET data; p, is the 
centroid of jth cluster [7]. Each pixel's TAC is allocated 
to its nearest cluster centroid according to 

(2) 
where z, is the /th pixel's TAC in the PET data; p j  and 
are the ith and jth cluster centroid respectively. The 
cluster centroids will be updated by averaging all pixels' 
TACs in the cluster after each round of allocation based 
on (2) to minimize D. Then, the n TACs are needed to be 
reallocated according to the new cluster centroids. The 
allocation and updating iteration wouldn't cease until no 
TAC is needed to be reallocated from a cluster to another. 

In the first step of the segmentation. we aim to extract the 
PV. which has very similar characteristic with the 
surrounding liver tissue. An option to cluster the similar 
objects is to increase the number of clusters. Therefore, 
we perform the segmentation on the dynamic "C-acetate 
PET liver images with a relatively large number of 
clusters k by using the above-mentioned method. k is 
assigned to a value that the PV can be distinguished from 
its surroundings. The segmented PV may be validated by 
the spatial idormation: its invariable anatomical position 

Ilz, -,u,lr < llz, -,uJ i. j = 1,2 ,... m,i # j 
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Figure 2: The segmentation result ofone slice of clinical 
dynamic "C-acetate PET liver images using cluster analysis. A 

=HA, K= kidney, L = liver, S = spleen, T = HCC. 

being posterior to the pancreatic head that shows the most 
intense physiological uptake of "C-acetate, or by direct 
reference to the CT h a  es Since PV couldn't be 
recognized clearly on the "C&3ate PET liver images, 
contrast enhancement techniques are conducted to help 
validate the segmentation result. After the first round of 
segmentation, the PV would be identified; all the clusters 
will be labeled and isolated. The remaining clusters are 
then put into a queue. In this stage. the PET images are 
over-segmenied. 

In the first step of segmentation, each cluster has equal 
significance to the result, however it is unnecessary to 
retain all the other clusters and some clusters are even 
"meaningless". Therefore, in the second step, cluster 
analysis is again performed, but only to the pixels belong 
to the clusters inside the queue. This time, the number of 
clusters is set to be 8 as apriori according to 17). Since the 
cluster of the PV is labeled and isolated. it won't affect the 
result of the second step segmentation. In additioq it will 
not be interfered. Finally, 9 clusters are obtained and all 
the ROIs needed for the quantitative analysis of the "C-  
acetate PET liver images could be extracted. 

(b) ( C )  

Figure 3. (a) The segmentation result of another slice of clinical 
dynamic "C-acetate PET images using cluster analysis directly. 

(b) result of our first step segmentation; (c) final result ofour 
two-step segmentalion. A -HA, L = liver. P = PV; T = HCC. 

replaced by the HA data in this study. Preliminary studies 
[a] show that the fonvard clearance K=KI*kd(kz+k3) of 
the non-FDG-avid type of HCC is significantly higher 
than that of normal tissue @I <0.05), so the parameter K 
could be used to detect HCC. When k4 is assumed to be 
zero, K value can be estimated by Patlak analysis [IO]. 
The ratio of cd%, (tracer concentration in tissue) and the 
vascular input function cb(0 can be calculated by 

(4) 

The data points chosen are within the period from 1.5 min 
to 10 min. 

The results of our previous validation study show that the 
threesoinpartinent 4P kinetic model (without k4), 
including a hepatic blood volume (HBV) term. is suitable 
for describing 'IC-acetate kinetics in liver [4]. The ROW 
c u n w  of HCC and non-tutnar liver tissue obtained by our 
segmentation are fitted to the model. Both the extracted 
cuwes of HA and PV would be used as the model inputs. 
Since the radioactivity spillover from the surrounding 
tissue to the PV is significant, especially at the later part 
of the study when the mcer concentration in tissue is 
much higher than dlat in the PV. Munk el al. [SI suggested 
that the diffcrem between the two blood TACs is most 
pronounced mund the peak and immediately after the 
bolus injection. After some time they are virtually 
identical. Therefore, the last five measuremenfs ,of the 
TACs of the PV from the dynamic PET liver images are 

RESULTS AND CONCLUSION 

Fig. 2 shows a typical segmentation result of one slice of 
clinical dynamic "C-acetate PET liver images using 
cluster analysis. As seen in Fig. 2, except PV, other 
anatomical structures such as HA, HCC, liver, kidney, 
spleen, etc, could be recognized clearly. The number of 
clusters used is 8. Fig. 3 demonstrates our proposed two- 
step segmentation results of another slice of clinical 
dynamic "C-acetate PET liver images in comparison with 
the segmentation results by using cluster analysis directly. 
From Fig. 3a. it could be seen that the liver. HA, HCC 
could be identified, but the PV are merged into the 
surrounding hepatic parenchyma. The results are also of 8 
clusters. 2 1  clusters are adopted in our first step 
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Figure 4. TACs extracted from the results of the proposed hvo- 
step segmentation method, Pure solid line stands for the curve of 
HA; solid line marked by triangle is for the PV, square for HCC 

and asterisk for the non-tumor liver tissue. 

segmentation whose result is show in Fig. 3b. The PV can 
be differentiated clearly, however. some anatomical 
structures are distorted and some clusters are even 
”meaningless” compared to Fig. 3a. Fig. 3c illustrates the 
result after our two-step segmentation using 9 clusters 
totally. The PV still could be seen; other ROls in Fig. 3a 
also appear in Fig. 3c and their respective locations and 
shapes are nearly unchanged when compared with Fig. 3a. 
Therefore, all the ROIs needed for the quantitative study 
could be extracted. Fig. 4 shows the TACs of the clusters 
of HA, PV, HCC and non-tumor liver tissue obtained 
from the segmentation results. The extracted HCC and 
non-tumor liver tissue curves are then fitted to the three- 
compartment 4P model. The linear Pallak analysis is used 
to estimate the parameter K, which is formulated by 
K1*kJ(k2+k3). Results are given as the estimated value 5 
standard deviation (SD). The estimated K value of the 
non-tumor liver tissue is 0.174 k 0.025 ml/min/mnl; 
whereas the estimated K value of HCC is 0.355 ? 0.061 
ml/miu/id. The functional parameter K did show 
significant difference between the non-FDG-avid type of 
HCC and the Ron-tumor liver parenchyma. Therefore. 
parametric image of the estimated K value generated from 
the dynamic ”C-acetate PET liver images could be used 
for HCC detection. 

The approach presented in this paper could segment the 
dynamic “C-acetate PET liver images automatically. All 
the ROIs for the quantitative study of ”C-acetate liver 
characteristics could be obtained by using the proposed 
two-step segmentation method. This segmentation may 
also be useful as a preprocessing step before fast 
generation of parametric images. Pardmetric image of the 
physiological parameter K could characterize the regional 
consumption of acetate by HCC and non-tumor tissue of 

the liver, which could be a powerful tool to detect HCC 
automatically. Additionally. the proposed two-step 
segmentation method inay open a window for automatic 
detection of other PET studies. 
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