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Abstract—When performing dynamic studies using emission more, parametric images depicting physiological parameters,
tomography the tracer distribution changes during acquisition such as the metabolic rate of glucose in tissue, can be derived
of a.ts'”gle set of ?rOJeCt'Onf{ TrF‘)'ET'S partt'C”'a”yht.r”he r.‘l’(r So.mel from these dynamic images using modeling procedure [1]. A
Eﬁi'téﬁneiﬁ?s'iféﬂncmﬁﬂgp tgngogra)pﬁzs(ggég')l,cab(;uﬁeSI(;]th basig premise for extractiop of guantitative pargmeters is that
over a limited angle at any time, with full projections obtained by ~the time course of tracer in tissue can be reliably recorded.
rotation of the detectors. In this paper, an approach is proposed This can be achieved using stationary detectors as in the
for processing data from these systems, applicable to either PET ring geometry most Comm0n|y available for positron emis-
or SPECT. sion tomography (PET) and similarly designed single photon

A method of interpolation, based on overlapped parabolas, is o
used to obtain an estimate of the total counts in each pixel of the €Mission computed tomography (SPECT) systems based on

projections for each required frame-interval, which is the total detector rings [2]-[4].
time to acquire a single complete set of projections necessary Recently, there has been interest in reducing the capital cost

for reconstruction. The resultant projections are reconstructed gssociated with PET studies with the introduction of systems

using traditional filtered backprojection (FBP) and tracer kinetic \ichy acquire data over a limited angle, with rotation over
parameters are estimated using a method which relies on counts .

integrated over the frame-interval rather than instantaneous M€ [, [6]. Also, coincidence studies have recently been
values. Simulated data were used to illustrate the technique’s performed using dual opposing detectors which are conven-
capabilities with noise levels typical of those encountered in either tionally used for SPECT where the detectors rotate around
PET or SPECT. Dynamic datasets were constructed, based onthe patient [7]. There is an increasing interest in deriving
Kinetic parameters for fluoro-deoxy-glucose (FDG) and use of oo metric images from these systems. In the case of SPECT
either a full ring detector or rotating detector acquisition. For L . . s
the rotating detector, use of the interpolation scheme provided there have been significant improvements in the quantitative
reconstructed dynamic images with reduced artefacts compared accuracy of reconstruction as well as the development of
to unprocessed data or use of linear interpolation. Estimates for multidetector cameras which permit efficient detection. As
the metabolic rate of glucose had similar bias to those obtained 5 consequence, acquisition of kinetic data with associated
from a full ring detector. modeling is possible on these systems and has been demon-

Index Terms—Coincidence detection, emission tomography, strated by a number of groups [8]-[11]. These systems have

PET, SPECT, tracer kinetic modeling. similar constraints to PET systems based on rotating detectors
since, at any point in time, partial data are acquired, with
I. INTRODUCTION the possibility of change in radiopharmaceutical distribution

- . . during the acquisition of the set of projections necessary for
SING emission tomography it is possible to record th econstruction. The resultant reconstructed images may contain

bio-distribution of radiopharmaceuticals within the bOd%rtefacts which influence the accuracy of any subsequent

and the change of these distributions with time. Dynamic im- . . S
: . . parameter estimation [12]-[14]. The reduction of acquisition

ages can be reconstructed and information relating to functipn . =~ . . . . .
- . . . ime is limited by the physical constraints of mechanical

of the living human body can be directly visualized. Further-_, . ;
rotation, and by the low counts acquired by a system whose
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more complex models may be feasible, although the solution B Frame-interval
is likely to be computationally demanding.

In this paper, we propose an approach for estimating t
kinetic parameters from dynamic studies recorded by rotati
detector systems, either single or multidetector SPECT @
certain PET or coincidence detection systems. The methé
involves interpolation across projections so as to provide
improved estimate of the projections, closer to that obtaine
for a stationary detector system. This interpolation proces
is applicable either to estimation of parameters directly from
projections or to solutions involving conventional reconstruc- X! x,
tion prior to kinetic modeling. In our case the interpolated
projections are reconstructed using the conventional filtered Projection-samples
backprojection (FBP) algorithm and the kinetic parametersy. 1. Definition of frame-interval, projection-interval, and projec-
are estimated using a modified weighted least squares digstsample. The solid curve simulates the actual tracer uptake curve. The
function. The proposed method s based on several preffl,neck Tardles resent I prosen saples e e aken 2
ously validated techniques which, in combination, provide \gherei = 0,1,2,3. The timest; wherei = 0, 1,2, 3, define the boundaries
relatively simple and computationally efficient solution. Tdetween adjacent frames.
evaluate performance, we use fi&r] labeled fluoro-deoxy-

glucose (FDG) model, as applied to tomographic studies @f 16 occupying a projection-interval. We refer to these

the brain, which has well documented kinetics and potentigl proiection-samples. For a stationary detector, where the
applications in both PET and coincidence imaging. projection-interval equals the frame-interval, the projection-
sample is the total counts acquired for the frame-interval,

II. THEORY FOR THE PROPOSEDMETHOD though normally considered as a sample at the midpoint of

the interval. In the case of the rotating detector the projection-
sample is the total counts for the projection-interval. However,
ﬁ1e total counts for the frame-interval for that projection pixel
To introduce the proposed approach it is useful to establighn only be determined by interpolation between projection-

a nomenclature which is common to both PET and SPECJamples. We further define the selection of frame-intervals for

specific to rotating detector systems as opposed to stationg{¥ complete multirotation study &sme-samplingo remove

systems. The usual mode of acquisition (typical of rotatinghy ambiguity with projection-sampling. Fig. 1 illustrates the

camera SPECT systems) involves acquisition of projectioggfinition of frame-interval, projection-interval and projection-
at individual angular positions with rotation of the detectorsample.

between subsequent projection angles. It is useful to distin-
guish between the time taken to acquire a single projection )
and the time taken to acquire all projections which constitufes Basis of the Method
a single rotation (or, more exactly, which would contribute To accurately estimate kinetic parameters from a dynamic
to a single reconstruction). A dynamic sequence consistsstfidy normally necessitates acquisition of multiple short
multiple rotations. We define the following terms. frames, particularly near the start of the study. These short
Frame-intervalis the period of time for a complete rotationframes tend to be noisy and may occupy considerable disk
or acquisition of one complete set of projections (contributingpace. If instead longer acquisition times are used, then there
to a single reconstruction). For example, a single head camexréikely to be tracer redistribution during early frame-intervals
rotating over 360 degrees between timgsand ¢; would which may result in artefacts. Our proposed approach is to
acquire all projections in the frame-interjal — ¢¢]. We use use the minimum number of frames, minimizing disk space
this term with reference tdramesin the dynamic sequenceand processing time. An interpolation technique is used to
as commonly used in nuclear medicine. For a stationaminimize the influence of tracer redistribution on the results.
detector all projections are normally acquired simultaneoudijundamental to the approach is the adoption of a strategy
for the complete frame-interval. However, in a rotating detegvhere parameters are estimated, based on total counts over
tor system, each individual projection occupieprajection- the frame-interval [19]-[25], rather than using the normal
interval which, for a single head camera equals the [framassumption that measurements represent estimates of the
interval/number of angles]. The data for different projectionisstantaneous mid-interval values. Using the modified premise,
will be acquired sequentially in each frame-interval. In tha more accurate interpolation scheme can be defined in
general case, neither the frame-interval nor the projectioprojection space [26] so that conventional reconstruction (e.g.,
interval are constant for sequential rotations. For any undeising FBP) is feasible with reduced artefacts. The interpolation
lying tracer kinetics a time-activity curve can be postulatestheme adopted, unlike others, e.g., use of Simpson’s rule
for a single pixel in the projection domain. At a given angl§7], is not limited to acquisition with equal frame-intervals.
the acquisition over multiple rotations results in a set dfonsideration of the optimal frame-sampling required for a
measured samples of the underlying time-activity curve, easpecific model provides a solution with the minimum possible

Proiectio&interval Time Activity Curve

e N

1

A. A Common Nomenclature for PET and SPECT Dynamic
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Fig. 3. Interpolation of projection data using the overlapped parabolas

Fig. 2. Linear interpolation of projection data. For illustration purpose, thisethod. This figure magnifies the early part of Fig. 1. For overlapped
figure magnifies the early part of Fig. 1. For linear interpolation, we uggarabolas, the area under the solid curve is estimated by averaging the area
straight lines (dotted lines) to interconnect the measured projection-samplgsler two parabolas, For examplé; is the average of the area under the
at z; and approximate the area under the solid curve for the relevamto parabolas fitted with (origingo, x1) and xo., z, 22), for the interval
frame-interval (say,tp, t1]) by the area under the straight lines (i.45,4+A42). [21 — to] and Ay is the average of the area under the two parabolas fitted
with (g, z1,22) andxy, x9, 23), for the interval {; — 2 ]. (z3 is not shown
in this figure.) Then, the total area under the solid line withig, ;] is

number of frame-samples, with different duration for eachpproximated byd; + As.

frame [28]. The suggested approach is practical, requiring a

small number of rotations of the detector system, each rotatigherey(2)(¢) is a second-order equation fitted to the projection
of different duration. The detailed steps and techniques gmples(z;_1, ¢, j41)-

outlined below. Calculate the weighting coefficients,, as

C. Estimation of Projections by Interpolation @ = (tip1 + tip — 1)/ [2(tip2 — ti1)]-

The first step of the proposed approach is to estimate asand overlapping the integralSi(l) and 5§2>, we obtain
accurately as possible, the total counts in each pixel of the
projection data for each frame-interval so that more reliable S =(1- ai)Sgl) + aisgﬂ.
dynamic images can be reconstructed. The simplest technique
to achieve this is by linear interpolation [29] as illustrated in This provides an estimation on the total courfs, within
Fig. 2. For each pixel in the projection domain, we assuni@e segment from; to z;;. The total counts within the segment
linear change of activity between projection-samples. We cHfM «; t0 ¢4, are similarly calculated using the appropriate
then calculate the total counts within each frame-interval Bfojection-samples. The total counts between timesidz; ;.
summing the appropriate areas. We divide the total area by € calculated as the summation of the integrals of these two
corresponding frame-interval to obtain an average count-ra$€gments. These total counts are then divided by the corre-
It is recognized that this approach may be inaccurate for cert&iending frame-interval to obtain an average count-rate for
curve shapes (as illustrated). An alternative approach, ba$e@ frame-intervalt;; —¢;]. The above interpolation process
on the integration of overlapped parabolas, has therefore béerpplied to every pixel of the projections. The resultant
developed [26]. The method is applicable to nonuniformijrojection data, which better approximate the projections for
sampled measurements and can be efficiently computed. & stationary detector system, can then be used to reconstruct
The approach is illustrated in Fig. 3. We require to estimatBe dynamic images using FBP.
the total counts between times and ¢;;, with projection-
samples for a given projection angle at tim@s z.,---,x,, D. Tracer Kinetic Modeling
wheren is the number of frame-intervals. For the projection- After we obtain a dynamic set of reconstructed images, the
sample atz; located in the frame-interval between and next step is to perform physiological parameter estimation.
ti+1, @ parabola is fitted to the projection samples onventional modeling is based on the use of instantaneous
(#j-2,2j-1,2;). Integrating the function of this parabolagyrve values whose estimation may include significant error

from ¢; to x;, we obtain in the situation where the mid-interval estimates have been
2 derived by taking the average over the frame-interval [19].

S0 = / y () dt Instead we make use of a modified approach which is based

ti on the area under the curve [20], [21]. This approach differs

h W /gy d-ord tion fitted to th act from the traditional technique in that a modified weighted least
wherey™(¢) is a second-order equation fitted to the projec IO§'quares cost function or residual sum of squares (RSS) is
samples(xj_Q,xj__l,xj). defined.

Ob\g(iancan also fit another parabola i@, 1,z;,z;+1) and Traditionally, RSS is defined as

L
T 12
s@= [Ty a RSS= 3 wi[u(t) - =(h)]

i
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where L is the number of samplesy; is a weighting factor,
y(t;) is the instantaneousnodel-predicted count-rate at time
t;, 2(t;) is the measured sample which is usually assumed to
be the average count-rate for the frame-intefys4;) centered
at ¢;. The RSS denotes the residual differences between the
measured tissue time activitiegt;), and the estimated tissue
time activitiesy(¢;). The curve fitting procedure that we used
in our simulation is the nonlinear least square (NLS) approach.
When the NLS method is used, the model parameters are
varied using the Levenberg—Marquardt algorithm until the RSS
reaches its minimum. Once the optimized model parameters
are obtained, the physiological parameter can be estimated.
The problem for such RSS is that, when the dynamics
change rapidly,At; must be sufficiently small, otherwise
z(t;) may not be a good approximation of the instantaneous
measurement &. In other words, we typically need a large
number of frame-samples when the activity changes rapidly. ' Time
To avoid this requirement, the RSS is modified to be

Region 1

Activity

Time

Region 2

/ Activity

Time

Region 3

Activity

-
|

Fig. 4. Simulated phantom. The activity in the left ellipse (Region 1), right

I ellipse (Region 2), and the circle (Region 3) simulate the tracer kinetics of
— —2 brain white matter, grey matter, and an intermediate value. The tracer time
RSS = Z wi [y(tl) - Z(tl)} activity curves are shown at the top right, middle right, and bottom right,
=1 respectively.
wherey(t;) = (1/6t1) [as, y(t) dt is the average model pre-
. ! . . TABLE |
dicted count-rate over the frame-interval;. In this case
approximation error will be eliminated. It has been shown [28] - - _ , -
that, bY U.Sing the above modified fitting algorithm, only f_ou"iaigm e [0.1050 0.0 0,060 5.0068 0.0329
dynamic images are necessary to estimate the metabolic ratellipse [0.0540 0.1090 0.0450 0.0058 0.0157
0.0780 0.1195 0.0535 0.0063 0.0241

of glucose using the four-parameter FDG model. In this caS&™
At; may be relatively large.

bottom right respectively. The outer largest ellipse has constant
lll. SIMULATION METHOD activity. The transport rate constants, — k4, for the three

As indicated earlier we have chosen to validate the propod&gions were obtained from [1] and are listed in Table I.
method using the FDG model [1] which involves three com- FOr simplicity, K' = ki «k3 /(k2+ks3), which is proportional
partments. The FDG concentration measured in blood pIasFﬁéhe metabolic rate of glucose, is used as our final estimation
is normally used as the input function for the model. WEeSUlt to compare the performance for different methods.
generated the input function numerically using a model for AS indicated earlier, it has previously been demonstrated
the input function, a commonly adopted approach [30]-[32]. that the FDG kinetics can ad_equately be estimated by acquiring
our simulation, we used a plasma time-activity curve (PTAGQUr frame-samples. According to [28], the four frames are of
model which has been previously validated [33] and used #{ferent duration and they are, in minutes, [0,2.7], [2.7,15.7],
several previous simulation studies [34]-[36]. We assume tH&p-7:77-1], [77.1,120]. For each of these frame-intervals 32
the time delay of the input function model is equal to zer®rojections, each with 64 bins, were simulated.

The mathematical expression of this simplified input function Activity was simulated as the total counts detected over the
model Cp(t) is given as follows: complete frame-intervals as in conventional PET using a ring

of detectors (Type A) and the counts corresponding to the

Cp(t) = (A1t — Ay — Az) exp(A1t) projection-interval for a specific projection, assuming rotation

+ Asexp(Qat) + Az exp(Ast) of the detector (Type B). The simulation did not include
attenuation, scatter or distance dependent detector response.
The projection data were scaled to count densities which
AL =851.1, A, =121.88, A3=20.81 [uCi/ml] might be expected for multidetector SPECT (with 0.02—0.05 k
. . . . counts/s in the last frame-interval), coincidence imaging (with
Av=—4134, Ar = 01191, Ay = 00104 [L/minl. 0% 7 o0 ounts/s in the last frame-interval), and PET (with
The proposed method was tested using the phantom shalm?2 k counts/s in the last frame-interval). Poisson noise was

in Fig. 4 which contains three regions with different kineticsaadded to the projection data.

Activities in the left ellipse, right ellipse and the circle were Four methods for analysis were compared. The data ac-

simulated to represent the kinetics which are typical of braguired with full ring geometry (Type A above) were recon-
white matter (Region 1), grey matter (Region 2) and astructed using FBP and kinetic modeling was performed on
intermediate value (Region 3). The resulting tracer timé¢he reconstructed images using the modified RSS (Method
activity curves are shown at the top right, middle right andl). This method has fully recorded projection data for each

where, as previously published [33]:
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oot of Normatieation Fatio represents the tracer activity in the left ellipse which has
14 kinetic parameters simulating brain white matter. For the right
column of Fig. 7 the highest peak represents the tracer activity
of the right ellipse which simulates brain grey matter. For all
081 R six figures, the solid line represents data simulated for full ring
P T Grey atter detectors. The dotted line represents the data using a rotating
o4 , , I R nite Mtter detector: (a) and (b) with no interpolation, (c) and (d) using
intermeciate Value linear interpolation, and (e) and (f) using overlapped parabolas
e for interpolation. As can be seen, the use of overlapped
o 8 16 21 %2 40 48 S 64 72 80 @8 95 104 112 120 parabolas for interpolation provides significant improvement
) compared to linear interpolation, resulting in close agreement
Fig. 5. The normalization ratio at different angles. The dashed line, dottmth the result obtained for a ring detector system.
line, and solid line are the ratio for grey matter, white matter, and an Based on the dynamic images reconstructed using the
intermediate value. four different methods, the modified modeling technique was
used for parameter estimation. The results for estimation of

frame-interval. For the data acquired with a rotating detectBetabolic rate of glucose (K) are illustrated in Fig. 8(a) and
(Type B above), the data were reconstructed and analyz@d where the bias and CV for K are displayed graphically.
without interpolation (Method 2). For this Type B datasef?s would be expected, use of rotating detectors can introduce
curve integrals on projections were also determined usiRiS to parameter estimates. Although linear interpolation
interpolation (linear versus overlapped parabolas), prior to FEovides lower CV there is significant bias in the parameter
reconstruction and modeling with the modified RSS approaggtimates for all three regions in the phantom. The proposed
(Methods 3 and 4). In the case of overlapped parabolas, projéterpolation method based on overlapped parabolas provides
tion data were normalized to account for systematic errors ${nilarly low bias to the results obtained with a ring detector
the interpolation. To determine the appropriate normalizatig¥stem although the CV was higher than that obtained using
factors, true time-activity curves for a full ring detector systerin€ar interpolation and in fact comparable to rotating detectors
were simulated for the range of expected model parametéfhout interpolation.
(typical of grey to white matter). The integrated counts for
each frame-interval were compared to the integral estimated
from the projection-samples which would be obtained from
a rotating detector. The ratio of these integrals was used toThere is increasing interest in analysis of kinetic data
normalize the projections. Fig. 5 shows the normalization ratiince the range of potentially useful tracers is expanding
calculated at different angles. The dashed line, dotted line afed suitable detection systems are becoming more affordable.
the solid line represent ratios for grey matter, white mattétowever the accurate estimation of tracer kinetic parameters
and the intermediate value respectively. The systematic erftgm low-cost tomographic systems, which typically do not
was found to be reasonably independent of the underlyihgve a full ring of detectors, is not straight-forward. Several
kinetic parameters and therefore normalization was basgiups have suggested approaches for determining kinetic
on the values obtained using the intermediate set of kinefiarameters directly from projections to overcome the problems
parameters (as per the third row of Table I). associated with rapidly changing activity. These approaches
K, which is proportional to the metabolic rate for glucosegan provide unbiased parameter estimates for simple models
was estimated for the four different methods at different sinput their general applicability has yet to be demonstrated.
ulated count densities. For each count density, the simulatiofse approach suggested here is intrinsically simple, based
were carried out for one hundred independent trials to obtairainly on the integrals of counts during the time course of
average performances for each method. The percentage erfotgacer rather than the instantaneous values. This provides
in K compared to the true parameters (bias) and the coefficiéhe basis for the interpolation method for which the total
of variation (CV) of the estimated K’'s were determined.  counts in the frame interval is directly estimated, a modified
parameter fitting algorithm and a frame-sampling scheme
which would appear to be favorable for the situation where
rotating detector systems are used. The proposed techniques
Fig. 6 illustrates the first reconstructed frame of the simare not computer intensive compared with methods where
lated dynamic study for the four methods: (a) ring detectonsiodeling is performed directly from projections and they
(b) rotating detectors with no interpolation, (c) linear interpaherefore have appeal for general clinical application. Using
lation, and (d) interpolation using overlapped parabolas. Thebe proposed method, artefact-free dynamic images, reflecting
images are noise-free to better illustrate the artefacts prestémt bio-distribution of radiopharmaceuticals within the body,
when activity changes rapidly. Both linear interpolation andre available. Direct comparison of the proposed methods with
interpolation based on overlapped parabolas provide qualigdternative techniques will be the subject of future investiga-
tively improved reconstruction. The curves in Fig. 7 represetibn and has not been included in this paper.
selected profiles through the same images as illustrated. Fofhe simulation results presented here are intended to be
the left column of Fig. 7 the lower peak of the curvedlustrative rather than conclusive. FDG has been chosen,

12
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V. DISCUSSION

IV. RESULTS
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@) (b) (© (d)
Fig. 6. Reconstructed images for the first frame-interval using the four different methods: (a) ring detectors, (b) rotating detectors wigtodatianter
(c) rotating detectors with linear interpolation, and (d) rotating detectors with interpolation using overlapped parabolas. These imagesfage twis
better illustrate the artefacts present when activity changes rapidly.
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Fig. 7. Selected profiles through the images reconstructed using rotating detectors with different interpolation methods. The solid linesés aliefigu

from the data simulated for ring detectors. The dotted lines represent the profiles through the image reconstructed using rotating detecterenyith dif
methods: (a) and (b) without interpolation, (c) and (d) linear interpolation, and (e) and (f) interpolation based on overlapped parabolas. &hd lower
higher peaks of the curves on the left column simulate the tracer activity of Region 1 and Region 3, respectively. The highest peak on the right column
simulates the tracer activity of the Region 2. These images correspond to noise-free data.
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Fig. 8. (a) Percentage error of estimated K for the three regions and (b) CV of estimated K for the three regions.

given the interest in its application on low cost coincidencgample point value. As has been stated above, this has direct
detection systems or rotating PET systems. The geometryrefevance to the proposed methods as it facilitates the use of
detection simulated is intended to illustrate the worst-casptimized frame-sampling to reduce the number of detector
situation rather than to exactly simulate the detection geometotations. The technique does not rely on having equally
of a particular PET or SPECT system. Indeed the detectispaced frame-samples but is generally applicable for any
geometry more closely resembles a rotating SPECT systesampling scheme. This paper does not address the question of
for which the proposed methods have relevance. The papemw this technique compares with other nonlinear approaches
does not address other physical constraints on the accuraxyinterpolation. It also does not explore the limits of the
of measurement such as attenuation, scatter or, in the cesgnique’s application. However it is well demonstrated that,
of PET, random coincidences. Simplifications in the overdibr the case of FDG, which is widely used in clinical practice,
simulation were considered necessary to isolate the influenties technique provides results which are similar to those
which were the primary concern in this paper (i.e., possibilitgbtained for a stationary ring detector.
of tracer movement in a single rotation). The input function One problem with the interpolation method is the difficulty
can be accurately measured in patients based on countingnohandling points near the start of the study. The reason for
arterial blood samples (although less invasive methods ahés is that two of the three points used for fitting the parabola
desirable). We did not examine the influence of input functicare very close together (the first point at time zero). As a
shape on the results of this study, however we do not anticipagsult the best-fit parabola can deviate significantly from the
that the input function would be a dominant factor, as, ittue curve. Our results (Fig. 5) demonstrate that the problem
general, relatively small differences in input function shape small except for a small number of projections. There are
occur between individuals for a given tracer. alternative approaches to solve this problem (e.g., constraint in
The method of interpolation used in this paper has sevethé turning value of the parabola could be applied). However
appealing properties compared to some other interpolationthis paper we have chosen to adopt a normalization method
schemes. First, it provides a valid integral rather than vehich applies a correction based on the range of errors which
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could be anticipated for the family of possible kinetic curves.
This method provided a practical solution with good results

7]
Further work would be necessary to compare aIternatlez
strategies.

The simulation uses a frame-sampling scheme which pah
ticularly favors relatively low efficiency detection such as in
SPECT. It has been demonstrated that the choice of four frame-
samples is sufficient for accurate determination of the kineti€’)

parameters for FDG. The use of four frame-samples has appeal
since this minimizes the data storage requirements as well as
minimizing the time required for reconstruction.

Parameter estimates for data acquired using a rotating dete

[

tor were very close to those obtained using a stationary ring
detector. However the coefficient of variation for parametef{l]
estimates was larger. It is clear that interpolation, based on
noisy projection-samples, introduces an uncertainty in the

derived frame-sample counts used to determine the paramé{élr

estimates. This resulted in an increased CV, particularly in the
case of low count density.

[13]

VI. CONCLUSIONS

[14]

In this paper, we proposed a novel approach for reconstrygs,
tion of dynamic images and determination of tracer kinetic

parameters using data acquired from a rotating detector syst
The method involves the use of an interpolation method whi

provides an improved estimate of the total counts within each

frame-interval, together with application of an integral-bas
model-fitting algorithm. The reliability of the proposed metho

7]

i
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