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Abstract—When performing dynamic studies using emission
tomography the tracer distribution changes during acquisition
of a single set of projections. This is particularly true for some
positron emission tomography (PET) systems which, like single
photon emission computed tomography (SPECT), acquire data
over a limited angle at any time, with full projections obtained by
rotation of the detectors. In this paper, an approach is proposed
for processing data from these systems, applicable to either PET
or SPECT.

A method of interpolation, based on overlapped parabolas, is
used to obtain an estimate of the total counts in each pixel of the
projections for each required frame-interval, which is the total
time to acquire a single complete set of projections necessary
for reconstruction. The resultant projections are reconstructed
using traditional filtered backprojection (FBP) and tracer kinetic
parameters are estimated using a method which relies on counts
integrated over the frame-interval rather than instantaneous
values. Simulated data were used to illustrate the technique’s
capabilities with noise levels typical of those encountered in either
PET or SPECT. Dynamic datasets were constructed, based on
kinetic parameters for fluoro-deoxy-glucose (FDG) and use of
either a full ring detector or rotating detector acquisition. For
the rotating detector, use of the interpolation scheme provided
reconstructed dynamic images with reduced artefacts compared
to unprocessed data or use of linear interpolation. Estimates for
the metabolic rate of glucose had similar bias to those obtained
from a full ring detector.

Index Terms—Coincidence detection, emission tomography,
PET, SPECT, tracer kinetic modeling.

I. INTRODUCTION

USING emission tomography it is possible to record the
bio-distribution of radiopharmaceuticals within the body

and the change of these distributions with time. Dynamic im-
ages can be reconstructed and information relating to function
of the living human body can be directly visualized. Further-
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more, parametric images depicting physiological parameters,
such as the metabolic rate of glucose in tissue, can be derived
from these dynamic images using modeling procedure [1]. A
basic premise for extraction of quantitative parameters is that
the time course of tracer in tissue can be reliably recorded.
This can be achieved using stationary detectors as in the
ring geometry most commonly available for positron emis-
sion tomography (PET) and similarly designed single photon
emission computed tomography (SPECT) systems based on
detector rings [2]–[4].

Recently, there has been interest in reducing the capital cost
associated with PET studies with the introduction of systems
which acquire data over a limited angle, with rotation over
time [5], [6]. Also, coincidence studies have recently been
performed using dual opposing detectors which are conven-
tionally used for SPECT where the detectors rotate around
the patient [7]. There is an increasing interest in deriving
parametric images from these systems. In the case of SPECT
there have been significant improvements in the quantitative
accuracy of reconstruction as well as the development of
multidetector cameras which permit efficient detection. As
a consequence, acquisition of kinetic data with associated
modeling is possible on these systems and has been demon-
strated by a number of groups [8]–[11]. These systems have
similar constraints to PET systems based on rotating detectors
since, at any point in time, partial data are acquired, with
the possibility of change in radiopharmaceutical distribution
during the acquisition of the set of projections necessary for
reconstruction. The resultant reconstructed images may contain
artefacts which influence the accuracy of any subsequent
parameter estimation [12]–[14]. The reduction of acquisition
time is limited by the physical constraints of mechanical
rotation, and by the low counts acquired by a system whose
acquisition geometry limits detection efficiency.

The traditional modeling approach requires extraction of
tracer time-activity curves which are fitted using an appropriate
model to estimate the physiological parameters. An alternative
approach is to estimate physiological parameters of the process
directly from the projection data, reconstructing parametric
images directly from projections, rather than a dynamic se-
quence of images. A general approach based on the weighted
integration method was proposed for SPECT [15] and was
previously applied to PET data [16]. Others have developed
methods to recover the parameters of the time-activity curve
in each pixel directly from the projection data [17], [18]. They
have shown that they can accurately recover time-activity
curves for a simple mono-exponential model. Extension to
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more complex models may be feasible, although the solution
is likely to be computationally demanding.

In this paper, we propose an approach for estimating the
kinetic parameters from dynamic studies recorded by rotating
detector systems, either single or multidetector SPECT or
certain PET or coincidence detection systems. The method
involves interpolation across projections so as to provide an
improved estimate of the projections, closer to that obtained
for a stationary detector system. This interpolation process
is applicable either to estimation of parameters directly from
projections or to solutions involving conventional reconstruc-
tion prior to kinetic modeling. In our case the interpolated
projections are reconstructed using the conventional filtered
backprojection (FBP) algorithm and the kinetic parameters
are estimated using a modified weighted least squares cost
function. The proposed method is based on several previ-
ously validated techniques which, in combination, provide a
relatively simple and computationally efficient solution. To
evaluate performance, we use the labeled fluoro-deoxy-
glucose (FDG) model, as applied to tomographic studies of
the brain, which has well documented kinetics and potential
applications in both PET and coincidence imaging.

II. THEORY FOR THE PROPOSEDMETHOD

A. A Common Nomenclature for PET and SPECT Dynamics

To introduce the proposed approach it is useful to establish
a nomenclature which is common to both PET and SPECT,
specific to rotating detector systems as opposed to stationary
systems. The usual mode of acquisition (typical of rotating
camera SPECT systems) involves acquisition of projections
at individual angular positions with rotation of the detectors
between subsequent projection angles. It is useful to distin-
guish between the time taken to acquire a single projection
and the time taken to acquire all projections which constitute
a single rotation (or, more exactly, which would contribute
to a single reconstruction). A dynamic sequence consists of
multiple rotations. We define the following terms.

Frame-intervalis the period of time for a complete rotation
or acquisition of one complete set of projections (contributing
to a single reconstruction). For example, a single head camera
rotating over 360 degrees between timesand would
acquire all projections in the frame-interval We use
this term with reference toframes in the dynamic sequence
as commonly used in nuclear medicine. For a stationary
detector all projections are normally acquired simultaneously
for the complete frame-interval. However, in a rotating detec-
tor system, each individual projection occupies aprojection-
interval which, for a single head camera equals the [frame-
interval/number of angles]. The data for different projections
will be acquired sequentially in each frame-interval. In the
general case, neither the frame-interval nor the projection-
interval are constant for sequential rotations. For any under-
lying tracer kinetics a time-activity curve can be postulated
for a single pixel in the projection domain. At a given angle
the acquisition over multiple rotations results in a set of
measured samples of the underlying time-activity curve, each

Fig. 1. Definition of frame-interval, projection-interval, and projec-
tion-sample. The solid curve simulates the actual tracer uptake curve. The
solid black rectangles represent the projection samples which are taken as
the count rates average over the projection-intervals centered at timesXi,
wherei = 0; 1; 2; 3. The timesti wherei = 0; 1; 2; 3; define the boundaries
between adjacent frames.

sample occupying a projection-interval. We refer to these
as projection-samples. For a stationary detector, where the
projection-interval equals the frame-interval, the projection-
sample is the total counts acquired for the frame-interval,
though normally considered as a sample at the midpoint of
the interval. In the case of the rotating detector the projection-
sample is the total counts for the projection-interval. However,
the total counts for the frame-interval for that projection pixel
can only be determined by interpolation between projection-
samples. We further define the selection of frame-intervals for
the complete multirotation study asframe-samplingto remove
any ambiguity with projection-sampling. Fig. 1 illustrates the
definition of frame-interval, projection-interval and projection-
sample.

B. Basis of the Method

To accurately estimate kinetic parameters from a dynamic
study normally necessitates acquisition of multiple short
frames, particularly near the start of the study. These short
frames tend to be noisy and may occupy considerable disk
space. If instead longer acquisition times are used, then there
is likely to be tracer redistribution during early frame-intervals
which may result in artefacts. Our proposed approach is to
use the minimum number of frames, minimizing disk space
and processing time. An interpolation technique is used to
minimize the influence of tracer redistribution on the results.
Fundamental to the approach is the adoption of a strategy
where parameters are estimated, based on total counts over
the frame-interval [19]–[25], rather than using the normal
assumption that measurements represent estimates of the
instantaneous mid-interval values. Using the modified premise,
a more accurate interpolation scheme can be defined in
projection space [26] so that conventional reconstruction (e.g.,
using FBP) is feasible with reduced artefacts. The interpolation
scheme adopted, unlike others, e.g., use of Simpson’s rule
[27], is not limited to acquisition with equal frame-intervals.
Consideration of the optimal frame-sampling required for a
specific model provides a solution with the minimum possible
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Fig. 2. Linear interpolation of projection data. For illustration purpose, this
figure magnifies the early part of Fig. 1. For linear interpolation, we use
straight lines (dotted lines) to interconnect the measured projection-samples
at xi and approximate the area under the solid curve for the relevant
frame-interval (say, [t0; t1]) by the area under the straight lines (i.e.,A1+A2).

number of frame-samples, with different duration for each
frame [28]. The suggested approach is practical, requiring a
small number of rotations of the detector system, each rotation
of different duration. The detailed steps and techniques are
outlined below.

C. Estimation of Projections by Interpolation

The first step of the proposed approach is to estimate as
accurately as possible, the total counts in each pixel of the
projection data for each frame-interval so that more reliable
dynamic images can be reconstructed. The simplest technique
to achieve this is by linear interpolation [29] as illustrated in
Fig. 2. For each pixel in the projection domain, we assume
linear change of activity between projection-samples. We can
then calculate the total counts within each frame-interval by
summing the appropriate areas. We divide the total area by the
corresponding frame-interval to obtain an average count-rate.
It is recognized that this approach may be inaccurate for certain
curve shapes (as illustrated). An alternative approach, based
on the integration of overlapped parabolas, has therefore been
developed [26]. The method is applicable to nonuniformly
sampled measurements and can be efficiently computed.

The approach is illustrated in Fig. 3. We require to estimate
the total counts between times and , with projection-
samples for a given projection angle at times
where is the number of frame-intervals. For the projection-
sample at located in the frame-interval between and

, a parabola is fitted to the projection samples at
. Integrating the function of this parabola

from to we obtain

where is a second-order equation fitted to the projection
samples .

We can also fit another parabola via and
obtain

Fig. 3. Interpolation of projection data using the overlapped parabolas
method. This figure magnifies the early part of Fig. 1. For overlapped
parabolas, the area under the solid curve is estimated by averaging the area
under two parabolas, For example,A1 is the average of the area under the
two parabolas fitted with (origin,x0; x1) and x0; x1; x2), for the interval
[x1 � t0] and A2 is the average of the area under the two parabolas fitted
with (x0; x1; x2) andx1; x2; x3), for the interval [t1�x1]. (x3 is not shown
in this figure.) Then, the total area under the solid line within [t0; t1] is
approximated byA1 + A2.

where is a second-order equation fitted to the projection
samples

Calculate the weighting coefficients, , as

And overlapping the integral, and , we obtain

This provides an estimation on the total counts, within
the segment from to The total counts within the segment
from to are similarly calculated using the appropriate
projection-samples. The total counts between timesand
are calculated as the summation of the integrals of these two
segments. These total counts are then divided by the corre-
sponding frame-interval to obtain an average count-rate for
the frame-interval The above interpolation process
is applied to every pixel of the projections. The resultant
projection data, which better approximate the projections for
a stationary detector system, can then be used to reconstruct
the dynamic images using FBP.

D. Tracer Kinetic Modeling

After we obtain a dynamic set of reconstructed images, the
next step is to perform physiological parameter estimation.
Conventional modeling is based on the use of instantaneous
curve values whose estimation may include significant error
in the situation where the mid-interval estimates have been
derived by taking the average over the frame-interval [19].
Instead we make use of a modified approach which is based
on the area under the curve [20], [21]. This approach differs
from the traditional technique in that a modified weighted least
squares cost function or residual sum of squares (RSS) is
defined.

Traditionally, RSS is defined as

RSS
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where is the number of samples, is a weighting factor,
is the instantaneousmodel-predicted count-rate at time

is the measured sample which is usually assumed to
be the average count-rate for the frame-interval centered
at . The RSS denotes the residual differences between the
measured tissue time activities, , and the estimated tissue
time activities . The curve fitting procedure that we used
in our simulation is the nonlinear least square (NLS) approach.
When the NLS method is used, the model parameters are
varied using the Levenberg–Marquardt algorithm until the RSS
reaches its minimum. Once the optimized model parameters
are obtained, the physiological parameter can be estimated.

The problem for such RSS is that, when the dynamics
change rapidly, must be sufficiently small, otherwise

may not be a good approximation of the instantaneous
measurement at . In other words, we typically need a large
number of frame-samples when the activity changes rapidly.
To avoid this requirement, the RSS is modified to be

where is the average model pre-
dicted count-rate over the frame-interval In this case
approximation error will be eliminated. It has been shown [28]
that, by using the above modified fitting algorithm, only four
dynamic images are necessary to estimate the metabolic rate
of glucose using the four-parameter FDG model. In this case

may be relatively large.

III. SIMULATION METHOD

As indicated earlier we have chosen to validate the proposed
method using the FDG model [1] which involves three com-
partments. The FDG concentration measured in blood plasma
is normally used as the input function for the model. We
generated the input function numerically using a model for
the input function, a commonly adopted approach [30]–[32]. In
our simulation, we used a plasma time-activity curve (PTAC)
model which has been previously validated [33] and used in
several previous simulation studies [34]–[36]. We assume that
the time delay of the input function model is equal to zero.
The mathematical expression of this simplified input function
model is given as follows:

where, as previously published [33]:

Ci/ml

min

The proposed method was tested using the phantom shown
in Fig. 4 which contains three regions with different kinetics.
Activities in the left ellipse, right ellipse and the circle were
simulated to represent the kinetics which are typical of brain
white matter (Region 1), grey matter (Region 2) and an
intermediate value (Region 3). The resulting tracer time-
activity curves are shown at the top right, middle right and

Fig. 4. Simulated phantom. The activity in the left ellipse (Region 1), right
ellipse (Region 2), and the circle (Region 3) simulate the tracer kinetics of
brain white matter, grey matter, and an intermediate value. The tracer time
activity curves are shown at the top right, middle right, and bottom right,
respectively.

TABLE I

bottom right respectively. The outer largest ellipse has constant
activity. The transport rate constants, , for the three
regions were obtained from [1] and are listed in Table I.

For simplicity, which is proportional
to the metabolic rate of glucose, is used as our final estimation
result to compare the performance for different methods.

As indicated earlier, it has previously been demonstrated
that the FDG kinetics can adequately be estimated by acquiring
four frame-samples. According to [28], the four frames are of
different duration and they are, in minutes, [0,2.7], [2.7,15.7],
[15.7,77.1], [77.1,120]. For each of these frame-intervals 32
projections, each with 64 bins, were simulated.

Activity was simulated as the total counts detected over the
complete frame-intervals as in conventional PET using a ring
of detectors (Type A) and the counts corresponding to the
projection-interval for a specific projection, assuming rotation
of the detector (Type B). The simulation did not include
attenuation, scatter or distance dependent detector response.

The projection data were scaled to count densities which
might be expected for multidetector SPECT (with 0.02–0.05 k
counts/s in the last frame-interval), coincidence imaging (with
0.1–0.2 k counts/s in the last frame-interval), and PET (with
1–2 k counts/s in the last frame-interval). Poisson noise was
added to the projection data.

Four methods for analysis were compared. The data ac-
quired with full ring geometry (Type A above) were recon-
structed using FBP and kinetic modeling was performed on
the reconstructed images using the modified RSS (Method
1). This method has fully recorded projection data for each
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Fig. 5. The normalization ratio at different angles. The dashed line, dotted
line, and solid line are the ratio for grey matter, white matter, and an
intermediate value.

frame-interval. For the data acquired with a rotating detector
(Type B above), the data were reconstructed and analyzed
without interpolation (Method 2). For this Type B dataset,
curve integrals on projections were also determined using
interpolation (linear versus overlapped parabolas), prior to FBP
reconstruction and modeling with the modified RSS approach
(Methods 3 and 4). In the case of overlapped parabolas, projec-
tion data were normalized to account for systematic errors in
the interpolation. To determine the appropriate normalization
factors, true time-activity curves for a full ring detector system
were simulated for the range of expected model parameters
(typical of grey to white matter). The integrated counts for
each frame-interval were compared to the integral estimated
from the projection-samples which would be obtained from
a rotating detector. The ratio of these integrals was used to
normalize the projections. Fig. 5 shows the normalization ratio
calculated at different angles. The dashed line, dotted line and
the solid line represent ratios for grey matter, white matter
and the intermediate value respectively. The systematic error
was found to be reasonably independent of the underlying
kinetic parameters and therefore normalization was based
on the values obtained using the intermediate set of kinetic
parameters (as per the third row of Table I).

K, which is proportional to the metabolic rate for glucose,
was estimated for the four different methods at different sim-
ulated count densities. For each count density, the simulations
were carried out for one hundred independent trials to obtain
average performances for each method. The percentage errors
in K compared to the true parameters (bias) and the coefficient
of variation (CV) of the estimated K’s were determined.

IV. RESULTS

Fig. 6 illustrates the first reconstructed frame of the simu-
lated dynamic study for the four methods: (a) ring detectors,
(b) rotating detectors with no interpolation, (c) linear interpo-
lation, and (d) interpolation using overlapped parabolas. These
images are noise-free to better illustrate the artefacts present
when activity changes rapidly. Both linear interpolation and
interpolation based on overlapped parabolas provide qualita-
tively improved reconstruction. The curves in Fig. 7 represent
selected profiles through the same images as illustrated. For
the left column of Fig. 7 the lower peak of the curves

represents the tracer activity in the left ellipse which has
kinetic parameters simulating brain white matter. For the right
column of Fig. 7 the highest peak represents the tracer activity
of the right ellipse which simulates brain grey matter. For all
six figures, the solid line represents data simulated for full ring
detectors. The dotted line represents the data using a rotating
detector: (a) and (b) with no interpolation, (c) and (d) using
linear interpolation, and (e) and (f) using overlapped parabolas
for interpolation. As can be seen, the use of overlapped
parabolas for interpolation provides significant improvement
compared to linear interpolation, resulting in close agreement
with the result obtained for a ring detector system.

Based on the dynamic images reconstructed using the
four different methods, the modified modeling technique was
used for parameter estimation. The results for estimation of
metabolic rate of glucose (K) are illustrated in Fig. 8(a) and
(b) where the bias and CV for K are displayed graphically.
As would be expected, use of rotating detectors can introduce
bias to parameter estimates. Although linear interpolation
provides lower CV there is significant bias in the parameter
estimates for all three regions in the phantom. The proposed
interpolation method based on overlapped parabolas provides
similarly low bias to the results obtained with a ring detector
system although the CV was higher than that obtained using
linear interpolation and in fact comparable to rotating detectors
without interpolation.

V. DISCUSSION

There is increasing interest in analysis of kinetic data
since the range of potentially useful tracers is expanding
and suitable detection systems are becoming more affordable.
However the accurate estimation of tracer kinetic parameters
from low-cost tomographic systems, which typically do not
have a full ring of detectors, is not straight-forward. Several
groups have suggested approaches for determining kinetic
parameters directly from projections to overcome the problems
associated with rapidly changing activity. These approaches
can provide unbiased parameter estimates for simple models
but their general applicability has yet to be demonstrated.
The approach suggested here is intrinsically simple, based
mainly on the integrals of counts during the time course of
a tracer rather than the instantaneous values. This provides
the basis for the interpolation method for which the total
counts in the frame interval is directly estimated, a modified
parameter fitting algorithm and a frame-sampling scheme
which would appear to be favorable for the situation where
rotating detector systems are used. The proposed techniques
are not computer intensive compared with methods where
modeling is performed directly from projections and they
therefore have appeal for general clinical application. Using
the proposed method, artefact-free dynamic images, reflecting
the bio-distribution of radiopharmaceuticals within the body,
are available. Direct comparison of the proposed methods with
alternative techniques will be the subject of future investiga-
tion and has not been included in this paper.

The simulation results presented here are intended to be
illustrative rather than conclusive. FDG has been chosen,
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(a) (b) (c) (d)

Fig. 6. Reconstructed images for the first frame-interval using the four different methods: (a) ring detectors, (b) rotating detectors without interpolation,
(c) rotating detectors with linear interpolation, and (d) rotating detectors with interpolation using overlapped parabolas. These images are noise free to
better illustrate the artefacts present when activity changes rapidly.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Selected profiles through the images reconstructed using rotating detectors with different interpolation methods. The solid lines in all figures are
from the data simulated for ring detectors. The dotted lines represent the profiles through the image reconstructed using rotating detectors with different
methods: (a) and (b) without interpolation, (c) and (d) linear interpolation, and (e) and (f) interpolation based on overlapped parabolas. The lowerand
higher peaks of the curves on the left column simulate the tracer activity of Region 1 and Region 3, respectively. The highest peak on the right column
simulates the tracer activity of the Region 2. These images correspond to noise-free data.
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(a) (b)

Fig. 8. (a) Percentage error of estimated K for the three regions and (b) CV of estimated K for the three regions.

given the interest in its application on low cost coincidence
detection systems or rotating PET systems. The geometry of
detection simulated is intended to illustrate the worst-case
situation rather than to exactly simulate the detection geometry
of a particular PET or SPECT system. Indeed the detection
geometry more closely resembles a rotating SPECT system,
for which the proposed methods have relevance. The paper
does not address other physical constraints on the accuracy
of measurement such as attenuation, scatter or, in the case
of PET, random coincidences. Simplifications in the overall
simulation were considered necessary to isolate the influences
which were the primary concern in this paper (i.e., possibility
of tracer movement in a single rotation). The input function
can be accurately measured in patients based on counting of
arterial blood samples (although less invasive methods are
desirable). We did not examine the influence of input function
shape on the results of this study, however we do not anticipate
that the input function would be a dominant factor, as, in
general, relatively small differences in input function shape
occur between individuals for a given tracer.

The method of interpolation used in this paper has several
appealing properties compared to some other interpolation
schemes. First, it provides a valid integral rather than a

simple point value. As has been stated above, this has direct
relevance to the proposed methods as it facilitates the use of
optimized frame-sampling to reduce the number of detector
rotations. The technique does not rely on having equally
spaced frame-samples but is generally applicable for any
sampling scheme. This paper does not address the question of
how this technique compares with other nonlinear approaches
to interpolation. It also does not explore the limits of the
technique’s application. However it is well demonstrated that,
for the case of FDG, which is widely used in clinical practice,
the technique provides results which are similar to those
obtained for a stationary ring detector.

One problem with the interpolation method is the difficulty
in handling points near the start of the study. The reason for
this is that two of the three points used for fitting the parabola
are very close together (the first point at time zero). As a
result the best-fit parabola can deviate significantly from the
true curve. Our results (Fig. 5) demonstrate that the problem
is small except for a small number of projections. There are
alternative approaches to solve this problem (e.g., constraint in
the turning value of the parabola could be applied). However
in this paper we have chosen to adopt a normalization method
which applies a correction based on the range of errors which
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could be anticipated for the family of possible kinetic curves.
This method provided a practical solution with good results.
Further work would be necessary to compare alternative
strategies.

The simulation uses a frame-sampling scheme which par-
ticularly favors relatively low efficiency detection such as in
SPECT. It has been demonstrated that the choice of four frame-
samples is sufficient for accurate determination of the kinetic
parameters for FDG. The use of four frame-samples has appeal
since this minimizes the data storage requirements as well as
minimizing the time required for reconstruction.

Parameter estimates for data acquired using a rotating detec-
tor were very close to those obtained using a stationary ring
detector. However the coefficient of variation for parameter
estimates was larger. It is clear that interpolation, based on
noisy projection-samples, introduces an uncertainty in the
derived frame-sample counts used to determine the parameter
estimates. This resulted in an increased CV, particularly in the
case of low count density.

VI. CONCLUSIONS

In this paper, we proposed a novel approach for reconstruc-
tion of dynamic images and determination of tracer kinetic
parameters using data acquired from a rotating detector system.
The method involves the use of an interpolation method which
provides an improved estimate of the total counts within each
frame-interval, together with application of an integral-based
model-fitting algorithm. The reliability of the proposed method
has been tested by computer simulations over a range of count
densities. The results demonstrate that the proposed approach
provides artefact-free images and parameter estimates com-
parable to those obtained with a ring detector system, as is
typical of conventional PET. The technique can potentially
be applied to data acquired using systems such as single or
multidetector SPECT, coincidence detection or low-cost PET
systems which involve detector rotation rather than a stationary
ring of detectors. The techniques therefore have widespread
clinical appeal.
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