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Dynamic Image Data Compression in Spatial
and Temporal Domains: Theory and Algorithm

Dino Ho, Dagan FengSenior Member, IEEEand Kewei Chen

Abstract—Advanced medical imaging requires storage of large uptake. The resulting data set is, therefore, four-dimensional
quantities of digitized clinical data. These data must be stored in (4-D), consisting of approximately 11 million data points and
such a way that their retrieval does not impair the clinician’s requiring 22 megabytes of storage (for a typical 22 temporal-
ability to make a diagnosis. In this paper, we propose the . . .
theory and algorithm for near (or diagnostically) lossless dynamic fra_me dynamic stu-dy) USIr!g th? Standarq CTI"mage _format.
image data compression. Taking advantage of domain-specific With the advances in PET, Imaging resolutions will continue to
knowledge related to medical imaging, the medical practice and improve, further increasing the volume of associated data. This
the dynamic imaging modality, a compression ratio greater than poses significant problems in terms of data storage, database
80:1 is achieved. The high compression ratios are achieved bymanagement retrieval, telecommunication, and processing
the proposed compression algorithm through three stages: 1) ad- ! ’ ! )
dressing temporal redundancies in the data through application !N order to reduce the amount of data needed to represent
of image optimal sampling, 2) addressing spatial redundancies in an image and help overcome some of these problems, vari-
the data through cluster analysis, and 3) efficient coding of image ous image compression algorithms may be used [1]. Image
data using standard still-image compression techniques. compression algorithms can be divided into two main cat-

To illustrate the practicality of the proposed compression al- . : .
gorithm, a simulated positron emission tomography (PET) study egories, lossless and lossy compression algorithms. Lossless

using the fluoro-deoxy-glucose (FDG) tracer is presented. Real- COmpression algorithms allow for perfect reconstruction of
istic dynamic image data are generated by “virtual scanning” the original images from compressed data. These algorithms
of a simulated brain phantom as a real PET scanner. These data yield modest compression ratios (typically between 1.7:1
are processed using the conventional [8] and proposed algorithms gnq 2.1:1 for medical image data [2]). To achieve higher

as well as the techniques for storage and analysis. The resulting . . . - .
parametric images obtained from the conventional and proposed compression ratios, lossy compression algorithms are required.

approaches are subsequently compared to evaluate the proposedUsing lossy compression algorithms, the original images can
compression algorithm. As a result of this study, storage space only be reconstructed approximately from compressed data.

for dynamic image data is able to be reduced by more than 95%,  Various algorithms have been proposed for lossy compres-
without loss in diagnostic quality. Therefore, the proposed theory gjq of image data. The most popular algorithms are based on
and algorithm are expected to be very useful in medical image transform and subband coding [31-I5 dicti di
database management and telecommunication. e g [3]-[5], predictive coding [E_B],

) ) o ) and vector quantization [2]. Transform and subband coding
img‘;:ﬁ J;?::S_SciolgStsérZ':T?gZ'rSg;?nﬁgggﬁll %z;"’}{roer:”grgg‘:%ﬂg{o_ involve transformation of the input scalars or vectors by matrix
mography (PET), sampling schedule. operations or linear filtering. The most popular transform is the

discrete cosine transform (DCT) [4]. This transform is used in

the Joint Pictures Expert Group (JPEG) standard for still-image

I. INTRODUCTION compression [7]. Many other transforms, such as Fourier,

S wavelet, and fractal transforms have recently been investigated
HE RECENT develo_p_ment in_digital techr_mlogy h_a 3], [5]. Predictive coding is based on linear prediction and
opened new oppo_rtunlfues fpr advance_c_i medlcal_lmagl volves a basic differential pulse-code modulation (DPCM)
However, some medical imaging modalities acquire Iar% stem. A scalar quantizer is used to quantize predication

volumes of data. For example, a positron emission tomog- : . ;
. ’ . ror formed by taking the difference between the input scalar
raphy (PET) study using the CTI 951 scanner consists of d predicted input, based on previous inputs [6]. In the

cross sectlopal image plane_s, each of Wh'Ch.haS 42828 I[])rewous algorithms, pixels in an image are simply considered
pixels, acquired at multiple times to obtain a time-dependent : L .
. . o . and compressed one at a time. The main idea behind vector
three-dimensional (3-D) characterization of the tissue tracer_ .. = 7. . . .
guantization is to consider groups of pixels [2]. This allows
_ , , , . Quantizers to specifically minimize average distortions, given
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image data. As a result, these algorithms are unable to fully Technology (BMIT) Group, The University of Sidney,
exploit spatial and temporal redundancies in the data. Australia, [12], [13]. The number of temporal frames
In this paper, we focus our attention to near (or diag- can be reduced while preserving data quality and fidelity
nostically) lossless compression of dynamic image data. The (Section IlI-A).
theory developed is generally applicable to all types of imagings Stage 2 Exploit spatial redundancies in the data. Using
modalities in which dynamic image data is acquired, such cluster analysis, the reduced set of temporal frames can
as, PET and single-photon emission-computed tomography be further compressed to a single indexed image. This
(SPECT) [8], [9]. To illustrate the practicality of this new indexed image contains a mapping of the cluster groups
compression algorithm, an example utilizing simulated PET- for the reduced set of temporal frames and corresponds
fluoro-deoxy-glucose (FDG) data is presented. The tracer to the spatial information in the PET data. The respective
FDG is an analogy of glucose and is used to study the temporal information for each cluster group is contained
metabolic rates of various tissue structures in the body. In in an index table. This table is sequentially indexed by
this paper, the study was restricted to simulated data. Using the cluster group, and each index contains the mean TAC
computer simulation studies, the original, error-free parametric cluster values for that group (Section llI-B).
images are available for comparison. In evaluating the newe Stage 3 Efficient coding of image data. Applying stan-
compression algorithm, various image quality measures and dard stillimage compression techniques to the single

quality testing issues are considered. indexed image, the dynamic data were further compressed
(Section 1lI-C).
[I. FUNCTIONAL/PARAMETRIC IMAGING For a detailed discussion of OSS and still-image compres-

Tracer kinetic techniques are widely used in PET to extragion techniques, refer to [12]-[14]. For the purpose of brevity,

valuable information from dynamic processes in the bod§nly the essential concepts are summarized below.

This information is usually defined in terms of a mathematical

model u(t|p) (wheret = 1,2, ---, T and p are the model A. Stage 1: Compression in the Temporal

parameters), whose parameters describe the delivery, transgé@main (OSS Design)

and biochemical transformation of the tracer. The driving func- |n PET studies, the reliability of the temporal frames is
tion for the model is the plasma-blood input function, whiclirectly influenced by the sampling schedules and durations
is often obtained from blood sampling [8]. Measuremenigsed to acquire the data. The longer the durations and greater
acquired by PET define the tissue time activity curve (TAC)he radioactivity counts, the more reliable the temporal frames.
or output function, denoted;(t), wheret = 1,2,---, T However, to obtain quantitative information from the dynamic
are discrete sampling times of the measurements<ard processes, a certain number of temporal frames are required.
1,2, .-+, I corresponds to théh pixel in the imaging region. Recently, the BMIT Group has shown that the minimum
The purpose of dynamic PET image analysis is to obtain tragRimber of temporal frames required is equal to the number
TAC'’s and parameter estimatpgor each pixel in the imaging of model parameters to be estimated [12]. Based on this,
region. These parameters may provide information of intereg algorithm that automatically determines OSS and max-
in themselves or may be used to define other physiologiGalizes the information content of the acquired PET data
parameters, such as the metabolic rate of glucose (MRGIgas developed [13]. The developed algorithm utilizes the
(8l accumulated/integral PET measurements.

Flg 1 shows the conventional steps involved in parametriCm the design of OSS, a new objective function based on
image generation from the complete set of acquired PEHe Fisher Information Matrix15], [16] was proposed to limit
projection data. Once the projection data is reconstructefe loss of dynamic information. This objective function was
parameter estimation is performed on a pixel-by-pixel basiged to discriminate between different experimental protocols
using certain rapid estimation algorithms [8], [10]-[12]. Imand sampling schedules. In this paper, we apply OSS to
this paper, we use the traditional-weighted nonlinear leagfcquisition of PET projection data. This reduces the number of
squares (WNLS) method purely for the purpose of comparifémporal frames obtained and, therefore, reduces data storage.
the estimation accuracy of the original and compressed dgfgthermore, as fewer temporal frames are reconstructed,
(8l the computational burden posed by image reconstruction is

reduced. For a more detailed discussion on the theory and
[ll. COMPRESSIONALGORITHM principles of OSS, refer to [12] and [13].

The goal of a compression algorithm is to reduce the size
of data required for storage, retrieval, and transmission aRd Stage 2: Compression in the Spatial
facilitate in analysis of the compressed data. To achieve thigomain (Cluster Analysis)
efficient methods are required to exploit and code redundancieg|uster analysis aims at grouping and classifying pixelwise
in the data. Fig. 2 gives an overview of the stages involved InC’s z(t) (wherei = 1,2, ---, I) into C; cluster groups
the proposed compression algorithm. (wherej = 1,2, ---, J andJ < I) by natural association,
e Stage 1 Exploit temporal redundancies in the data. Apaccording to self-similarity (or dissimilarity) characteristics. It
plying the image optimal-sampling schedule (OSS) designexpected that TAC’s with high degrees of natural association
developed by the Biomedical and Multimedia Informatiomill belong to the same cluster groups, and conversely, TAC's
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Fig. 1. Generation of parametric images using the conventional pixel-by-pixel analysis approach.

with low degrees will belong to different groups [17], [18]. Fogroups, according to a threshold in a bottom-up direction.
clustering to be valid, each TAC must be assigned unique\gglomerative algorithms are more versatile than divisive
to a cluster group (i.e., no TAC is allowed to belong to twalgorithms, as they can be used with both qualitative and
different groups). guantitative data.

Many algorithms have been developed and used for clusterdn this paper, we use an indirect agglomerative clustering
ing [17], [18]. They can be divided into direct (constructiveplgorithm based on the traditional Euclidean distance criterion
or indirect (optimization) algorithms, depending on whether measure to classify the computer simulated data [18]. Although
criterion measure is used during cluster analysis. The direct #ilis algorithm is simple compared to other algorithms, greater
gorithms perform clustering without the necessity of a criteriothan 98% of the pixelwise TAC's are correctly classified
measure, whereas indirect algorithms use the criterion measanel excellent classification of cluster groups are obtained.
to optimize clustering. Clustering algorithms can be furthédowever, in general, the application of this algorithm to
classified as agglomerative or divisive, according to whethelinical data does not provide good classification of cluster
classification is in a top—down or bottom—up direction. Witigroups. Depending on the quality of obtained clinical data,
agglomerative clustering, TAC's coalesce to the nearest clusgeeater than 30% of the pixelwise TAC’s may be misclassified.
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(1) Compression in the temporal domain

Projection (sinogram) data acquired

Y

Y

(2) Compression in the
spatial domain

Reconstructed images
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Zoomed
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Lossless image compression.
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Fig. 2. Functional image data compression—Using the OSS theory, data redundancies in the acquired dynamic projection data are exploitad.iiThis resul
data compression in the temporal domain. Cluster analysis and conventional still-image compression are used to further compress the dynatasic image d
in the spatial domain. The final compressed data includes an indexed image containing a mapping of the pixel TAC locations (compressed and stored in the
Portable Network Graphics (PNG) file format) and a cluster index containing the mean TAC within each cluster.

This misclassification is due to the inherent noise in clinical The Euclidean distance criterion measure used in the clus-
data and the fact that TAC values over the whole imagdering algorithm is defined as
volume do not take a number of discrete values, but rather a

continuum of values [19]. In this case, an interesting analogy D*(zi, Zc;) = Z (2i(t) = 7, (1)) 1)
with principal component and factor analysis may be made t
where similar considerations apply [20], [21]. For the purpos@sherez. (t) (for ¢; = 1,2, -+, J) denotes the mean TAC

of this study, the clustering algorithm used is sufficient t@jithin each clusterC;.

cluster the simulated data. Several alternative algorithms forUsing the results of cluster analysis, an index table contain-
clustering of real clinical data are under investigation iig the mean TAC within each cluster gro@,(¢) and an

our group. The results of these studies will be reportéddexed image can be formed. The indexed image represents
separately. a mapping of the cluster groups to their respective pixel TAC
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locations. This image, together with the index table, form the indexed image. The resultant images correspond to the
basis of the compressed temporal/spatial data. With PET, the generated parametric images.
number of distinguishable cluster groups will generally not

exceed 64. This means that an 8-bit indexed image is sufficient V. NUMERICAL EVALUATION AND
to represent the cluster mapping. PERFORMANCE CHARACTERISTICS

A simulated brain PET study was carried out to exam-
C. Stage 3: Image Compression ine performance characteristics of the proposed compression

Image compression addresses the problem of reducing fi@orithm and the image quality of subsequent parametric
amount of data required to represent an image. A lossld@ges generated by image analysis. Using different tissue
compression scheme is considered in this paper for furttRépes. the computer-simulated phantom shown in Fig. 4(a)
reduction of the indexed image. In general, the underlyi% the FDG model for brain studies, a dynamic PET brain
basis of the reduction process for lossless compressionPE2ntom was generated. To reduce the memory requirements
efficient coding of image data by using as few bits as po@f the S|_mulat|on s_tudy, only a smgl_e cros;-sectlopal s_hce at
sible. From a mathematical point of view, this amounts 8" imaging resolution of 256 256 pixels with 16-bits/pixel
transforming the image into a statistically uncorrelated daf¢gs considered.
set. Various coding techniques have been proposed for imagd € well-known three-compartmental FDG model was used
compression [14]. In general, these techniques use predictigelefine TAC's for various regions in the simulated phantom
models or multiresolution image models to reduce statistid@l- The differential equations governing this model are given

redundancies and encode residuals by using optimal enconYS,

such as Huffman [22], Lempel-Ziv (LZ) [23], or arithmetic d , . . o % . x
coding [24]. 2 Ce (t) =kicy(t) — (k3 + k3)ci(t) + ki, (f)

In this paper, we compress and store the indexed image d , e . 5
obtained from cluster analysis by using the Portable Net- acm(t) =ksce(t) — kicn(t) (2)

work Graphics (PNG) file format [25]. The coding techniqu%nd the model function is given by
presently defined and implemented for PNG is based on
deflate/inflate compression with a 32-kilobyte sliding window. p(tlp) = ci(t) + ¢k, (1)

Deflate compression is based on a LZ-77 derivate [23] ap erep is the unknown vector of parameters to be estimated

encoded by using fixed or custom Huffman codes. The P R,

: : andp = (kf, k3, k3, kX). ki—k} are the rate constant param-
file format was chosen over other lossless image COMPres- = the FDG modek (£). c*(f). and ¢t (£) correspond
sion file formats due to its portability, flexibility, and bein »(t), cc(b), €y (t) P

“to the concentration of FDG in the plasma, FDG in the
legally unencumbered. Furthermore, PNG supports a variel . . .
: k . _Tissue, and phosphorylated FDG in the tissue, respectively.
of features, such as indexed color images, greyscale images ;
o . L nce the unknown model parameters have been estimated,
up to 16-bits/pixel, true color images up to 48-bits/pixe

transparency, gamma information, progressive display a@ﬂe physiological parameter for the metabolic rate of glucose

file-integrity checking. For a more detailed discussion of th RGIc) can be calculated as
PNG file format and its included features, refer to [25]. MRGIc — L _Fiks 3)
LC ks + k57
where LG = 0.418) denotes the lumped constant that summa-
rizes the difference between FDG and glucose in transportation
and phosphorylation, ang,(= 91.9 mg/100 ml) corresponds
This approach uses the compressed data obtained frgimthe “cold” glucose concentration in plasma [8]. The pa-
the proposed compression algorithm for the image analysifmeter values for various regions in the simulated phantom
and subsequent generation of parametric images. In Figage obtained from real PET studies and correspond to tissue
the following various steps involved in generating parametrigariations of grey, white, and whole matter [8] the concen-
images from the compressed data are shown. tration of FDG in plasma, was obtained from human studies
e Step 1: Decompression of indexed image. Since losslefkl]. The sampling durations for the measurement of the PET
compression is used for compressing the indexed imagkata using the conventional pixel-by-pixel analysis approach
a perfect reconstruction of the image is possible. are consistent with the conventional sampling schedule (CSS)
e Step 2: Tracer kinetic modeling and parameter estimder routine FDG studies. The OSS proposed byetil. [13]
tion. Using the cluster TAC's defined in the index tablewas used for generating projection data for the compressed
obtain parameter estimates for the tracer kinetic mod#hta analysis approach. The sampling times for CSS are given
by fitting Z.., to the model equatiop(t|p). Subsequently, by 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0,
calculate the physiological parameter of interest using t#&e0, 6.5, 10.0, 15.0, 20.0, 30.0, 60.0, 90.0, and 120.0 min and
obtained estimates. for OSS are given by 2.733, 15.683, 77.066, and 120.0 min
« Step 3: Pixelwise mapping. Map the obtained estimatdd.3]. These sampling times are the starting-time points of the
and calculated physiological parameters for each clustiynamic image frames, except the last sampling time, which
TAC to their respective pixel locations by referencing this the end point of the last frame.

IV. PARAMETRIC IMAGING
APPROACH FORCOMPRESSEDDATA
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Fig. 3. Generation of parametric images based on the compressed data.

By virtual scanning of the dynamic brain phantom as a real In this paper, the study was restricted to simulated data. This
PET scanner, dynamic PET projection data were obtained. dtows us to compare and evaluate the quality of the generated
simulate realistic PET measurement noise, an additive nopa&rametric images obtained from the conventional pixel-by-
contribution following a Poisson distribution was imposed opixel analysis approach by using the complete set of data
the simulated PET projection measurements by using CSS(fég. 1) and the proposed compressed data analysis approach
pseudorandom number generator was used). Noise correspdhify. 3), with the original, error-free parametric images.
ing to a 20-90% deviation in the first ten PET measurements
(represents a 2% deviation in the last PET measurement) was )
applied. This noise level is comparable to that expected in réal Compression Measures
clinical data. The noisy, simulated PET projection data were Various measures have been used for reporting and com-
reconstructed by using the popular, filtered back-projectigraring compression results [27]. The most commonly used
algorithm, with normal parameter values used in routinmeasures include the compression ratio (ERt/!, where
procedures. The Generalized Hamming filter, with a Hammingis the original file size and is the compressed file size,
distancerr = 0.5, was used in this study [26]. To evaluate the.g., 2.0:1) and relative compression (RE (¢t — )/t x
compression procedure, the reconstructed dynamic image dgi@’%, e.g., 50.0%). In this paper, we use these measures
were used. and include an additional measure, percent compression gain
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(a) Dynamic phantom used in the simulation study for generating dynamic PET projection data. The FDG model was used to define TAC's for

various regions in the phantom. Rate constants corresponding to various tissue types are used, for grdyj matiet020, k5 = 0.1300, k3 = 0.0620,

andkj = 0.0068; for white matter:k7 = 0.0540, k3 = 0.1090, k5 = 0.0450, andk} = 0.0058; and for whole matterk} = 0.0780, k5 = 0.1195,

k3 = 0.0535, andk; = 0.0063. (b)—(f) Vertical profiles for the generated parametric images. The solid lines correspond to profiles obtained from the original,
error-free parametric images, the dashed lines correspond to the conventional pixel-by-pixel image analysis approach, and the dotteptindstedhes
proposed compressed-data image analysis approach. RMSE and PSNR correspond to the root mean square error and the peak signal-to-notseshatio, respec

(CG = 100In (¢/1), whereln is the natural logarithm, e.g., therefore, can be used as a measure, with respect to any
69.3%) [27]. CG has several additional advantages over tsiandard. Second, CG is additive and allows us to simply add
commonly used measures (CR and RC). First, this meastwgether effects of multiple cascaded compressors. For a more

does not express compression relative to the original file antbtailed discussion on CG, refer to [27].
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TABLE |
COMPRESSIONRESULTS FOR ATYPICAL PET SUDY AT AN IMAGING RESOLUTION OF 256 X 256 AND A SINGLE CROSSSECTIONAL PLANE. THE CSS
OF 22 TeEMPORAL FRAMES WAS UsSeD. Two BYTES ARE REQUIRED TO REPRESENTEACH PIXEL IN THE TEMPORAL FRAMES

Complete data (22 time frames CSS) 256 x 256 x 22 X 2
= 2,883,584 bytes
CR = 1.0:1, CG = 0.02 and RC = 0.0%

Stage 1: Compression in the temporal domain 256 x 256 x 4 x 2
optimal sampling schedule (4 time frames OSS) = 524, 288 bytes
CR = 5.5:1, CG = 170.472 and RC = 81.8%

Stage 2: Compression in the spatial domain - cluster analysis
Assume a maximum of 256 different clusters

(based on the 8-bit indexed image)

i) indexed image 256 x 256 x 1
= 65, 536 bytes
i) cluster index 256 x 4 x 2
= 2048 bytes

total size = 67, 584 bytes
CR = 7.8:1, CG = 204.872 and RC = 87.1%

Stage 3: Conventional image compression (data dependent)

PNG still-image compression assume CR = 2.0:1
(lossless compression algorithm) typical for medical
images
1) indexed image = 32,768 bytes
ii) cluster index = 2048 bytes

total size = 34, 816 bytes
CR = 1.9:1, CG = 66.33% and RC = 48.5%
Overall: CR = 82.8:1, CG = 441.672 and RC = 98.8%

B. Image Quality Measures VI. RESULT/DISCUSSION

For any lossy compression algorithm, a measure is requiredn Table |, results for each stage of the compression algo-
to evaluate the image quality and fidelity after decompressiathm for a typical PET study are shown. OSS was used to
of the compressed data. In the case of PET, we require patampress the dynamic projection data in the temporal domain,
metric images obtained after image analysis of the compressedl a CR of 5.5:1 was obtained. Using cluster analysis, the
data to have equivalent qualitative and quantitative quality esconstructed images were further compressed in the spatial
images obtained after analysis of the complete set of acquiamain, obtaining a CR of 7.8: 1. Finally, the indexed image
PET projection data. In this paper, the root mean square erotntained from cluster analysis was compressed and stored by
(RMSE) and the peak signal-to-noise ratio (PSNR) measungsing the PNG file format. A typical CR of 2.0: 1 for medical

are considered. RMSE is evaluated as images can be obtained for lossless still-image compression
schemes [2], [27]. The global CR obtained for the proposed
1 < 32 compression algorithm was 82.8: 1. This CR corresponds to a
RMSE= |5 > {fi-fi} (4) CG of 441.67% and a RC of 98.8%.
r=1 The most important measure of a lossy compression algo-

éithm is the resultant image quality and fidelity. Parametric
images of MRGIck}, k%, k%, andkZ, generated after image
analysis of the complete and compressed data are shown
i&ether with the original, error-free images in Fig. 4(b)—(f).

I

where I corresponds to the number of pixels in the imag
fi is the value of theith pixel in the original, error-free
parametric image, ang; is the value of theth pixel in the
parametric image, based on the image analysis of the comp
or compressed data. The PSNR is a measure of image fide
its units are in decibels (dB). It is defined as

e corresponding results for RMSE and PSNR, are shown
i each figure. RMSE and PSNR obtained from the complete
set of projection data and the compressed data are in agree-
RMSE ment. Furthermore, images féf;, k5, andk obtained from
ﬁ) ®)  the proposed compressed-data analysis approach have lower
RMSE values and higher PSNR values than those obtained
wheren is the number of bits/pixel in the image. from the conventional pixel-by-pixel image analysis approach.

PSNR= -20 log;, <
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TABLE I correspond to profiles obtained from the original, error-free
PARAMETRIC-IMAGE PHYSIOLOGICAL PARAMETER VALUES: SIMULATED PHANTOM parametric images, the dashed lines correspond to the conven-
tional pixel-by-pixel image analysis approach, and the dotted
lines correspond to the proposed compressed-data image-
analysis approach. It is easy to see that parametric images

Region MRGlc kf k3 k3 k;

True parameter values

Background 0.0000 0.0000 0.0000 0.0000 ©.0000 generated using the conventional image analysis approach
Region 1 (Whole) ~ 5.3032 0.0780 0.1195 0.0535 0.0063 contain a certain amount of noise (in particular, images for
Rogion 2 (White)  3.4602 0.0540 0.1090 0.0450 0.0058 k3, k3, and k7). This noise is due to reconstruction of the
Region 3 (Grey)  7.2415 0.1020 0.1300 0.0620 0.0068 projection data [28]. In the case of the proposed compressed-

data image-analysis approach, the cluster analysis acts as an

I analysis of complete projection data . . L . .
TABE ARATYSIS OF COMPIERe PIOJECHon averaging filter and significantly reduces noise in the generated

Conventional pixel-by-pixel analysis approach parametric images.
Background 0.0000 0.0000 0.0000 0.0000 0.0000 For generation of parametric images, the major compu-
Region 1 (mean)  5.2524 0.0813 0.1291 0.0536 0.0056 tations involved are the curve fittings of TAC's. Since the
(Whole) (stddev) 03246 0.0048 0.0013 00010 0.0002 number of TAC's required to be fit using the compressed
Region 2 (mean)  3.3639 0.0548 0.1177 0.0453 0.0052 data are gigni_ficgntly smaller, the proposed ima_ge ane}lysis
. approach is significantly faster than the conventional pixel-
(White) (stddev) — 0.0590 0.0004 0.0013 0.0013 0.0005 by-pixel image analysis approach. If we neglect background
Region 3 (mean)  7.2500 0.1083 0.1383 0.0607 0.0059 pixels, over 31160 curve fittings are required, based on the
(Grey) (stddev)  0.1476 0.0018 0.0010 0.0008 0.0001 conventional pixel-by-pixel image analysis approach. With
Image analysis of compressed data the proposed image analysis approach, the number of curve

fittings required is determined by the number of TAC's in the

index table. Therefore, in the worst-case scenario, 256 curve
fittings are required (based on an 8-bit indexed image). For
the simulated data, only three curve fittings were performed

Region 2 (White)  3.3710 0.0541 0.1224 0.0484 0.0054 based on the proposed image analysis approach.

Region 3 (Grey) ~ 7.2508 0.1081 0.1391 0.0611 0.0060 In addition to image analysis, the computational time re-
quired for compressing the complete acquired PET projection
data needs to be considered. In this study, we found that

In Fig. 4(d)—(f), it is easy to see that higher PSNR’s obtaindtle additional overhead contributed due to the compression
for k3, k%, and &} from the proposed approach correspondigorithm did not increase computational complexity. The
to sharperdefined images in comparison to images obtainexerhead due to cluster analysis and image compression were
from the conventional pixel-by-pixel image analysis approachccounted for in the OSS stage. Using OSS, only four temporal
The results shown so far have highlighted the qualitatifeames were reconstructed, in comparison to the 22 temporal
quality of parametric images obtained from the conventioniames required by CSS, using the conventional image analysis
pixel-by-pixel and the proposed compressed-data image anapproach.
sis approaches. With PET, quantitative quality of the obtained
parametric images is of equal, if not more, importance. In
Table Il, extracted parameters for MRGl, k3, k3, and
k% from the generated parametric images for various regions/n this paper, a near (or diagnostically) lossless algo-
in the simulated phantom are shown. The number of pixdiéhm for dynamic image data compression was proposed
included in the various regions were 34 376 pixels for the backid systematically evaluated. In order to fully exploit data
ground, 24 148 pixels in region 1, 2368 pixels in region 2, aff§dundancies in the acquired dynamic data, domain-specific
4644 pixels in region 3. For the conventional image analydf§owledge related to medical imaging, the medical practice
approach, values of 7.2590, 3.3639, and 5.2524 mg/min/1@0d the dynamic imaging modality are incorporated into the
ml for grey, white, and whole matter, respectively, wereompression scheme. Redundancies in the data in both the
obtained. For the proposed compressed-data analysis approggfﬁporal and spatial domain are exploited. The results showed
values of 7.2508, 3.3710, and 5.3061 mg/min/100 ml fépat the proposed algorithm was a_ble to redgce .require.d
grey, white, and whole matter, respectively, were obtaine¥fOrage space by more than 95%, without loss in diagnostic
The values obtained from the conventional and propos8H@lity, and greatly reduced the computational complexity for
approaches were in agreement with the expected valuesf$ther image analysis and generation of parametric images.
7.2415, 3.4692, and 5.3032 mg/min/100 ml. Similarly, théherefore, the proposed algorithm for dynamic image data
estimated rate constant values fgr, k3, k%, andk: obtained Compression is expected to be very us_eful in medical-image
using the conventional and proposed approaches weredffa management and telecommunication.

agreement with the theoretically expected values, as listed in
Table 1. REFERENCES

In . Flg. 4(b)_(f)’ vertical proflles for t_he _gengrated para—[l] M. Nelson and J. L. GaillyThe Data Compression Boaknd ed. New
metric images are also shown. The solid lines in the figures York: M & T Books, 1996.

Proposed compressed data analysis approach
Background 0.0000 0.0000 0.0000 0.0000 0.0000
Region 1 (Whole)  5.3061 0.0822 0.1298 0.0539 0.0056

VIl. CONCLUSION
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