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Abstract—This paper presents a novel mesh simplification algorithm. It decouples the simplification process into two phases: shape

analysis and edge contraction. In the analysis phase, it imposes a hierarchical structure on a surface mesh by uniform hierarchical

partitioning, marks the importance of each vertex in the hierarchical structure, and determines the affected regions of each vertex at

the hierarchical levels. In the contraction phase, it also divides the simplification procedure into two steps: half-edge contraction and

optimization. In the first step, memoryless quadric metric error and the importance of vertices in the hierarchical structure are combined

to determine one operation of half-edge contraction. In the second step, it repositions the vertices in the half-edge simplified mesh by

minimizing the multilevel synthesized quadric error on the corresponding affected regions from the immediately local to the more

global. The experiments illustrate the competitive results.

Index Terms—Mesh simplification, object hierarchies, level of detail, shape approximation.
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1 INTRODUCTION

POLYGONAL surfaces are commonly used for representing
geometric models in a great variety of applications.

Advances in imaging devices have made vast and dense
sampling data sets of solid objects available: laser range
scanners, medical imaging devices, and computer vision
systems. Various effective surface reconstruction methods
can produce very complex polygonal models from such
data sets. While a model with more polygons can capture
finer details of the surface, the workload of visualization,
process, and transmission increases hugely. Thus, it
remains an important problem in visualization and com-
puter graphics to substitute the highly detailed model with
faithful level-of-detail models. Mesh simplification is one of
effective approaches.

Many impressive algorithms have been developed for

mesh simplification in the past 10 years. Most of those

algorithms measure the errors caused by simplification

operations by immediately local neighborhoods and then

perform the simplification operations to minimize the errors

on the local regions. Thus, it falls into disorder from the

viewpoint of the whole model, which is undesirable to

maintain the shape structure of the model and produce

better coarser-models. In this paper, we present a two-phase

simplification algorithm: shape analysis and edge contrac-

tion. It is inspired by Garland’s work [9], which pointed out

that the quality of simplified models might be improved by

decoupling the analysis and synthesis phases of the

simplification process.

In the first phase, we partition the original model in a
hierarchical way and then impose a uniform hierarchical
structure on such a model. The vertices are ranked
according to their importance in the structure. The sub-
sequent simplification operations are performed with the
guide of this hierarchical structure. Hence, the simplifica-
tion process is in a stage of order all the time and the shape
structure of the whole model is preserved as completely as
possible so that the simplified models can’t deviate largely
from the original model. Furthermore, since an earlier
hierarchical shape analysis phase have been performed, for
each vertex in the simplified mesh, we can obtain its
corresponding affected regions at the different levels and
thus reposition it to an optimal position by minimizing the
multilevel synthesized quadric error from the immediately
local to the more global.

The remainder of this paper is organized as follows: In
Section 2, we briefly review previous work related to us.
Section 3 describes the detailed procedure for shape analysis.
Our scheme for iterative edge contraction is introduced in
Section 4. Section 5 illustrates the results of our experiments.
Finally, conclusions are drawn in Section 6.

2 PREVIOUS WORK

Mesh simplification algorithms can be coarsely divided into
five categories: vertex decimation [2], [7], [18], [33], [37],
vertex clustering [29], [35], region merging [12], [19], [24],
[31], subdivision meshes [8], [17], [26], [28], and iterative
edge contraction [5], [10], [13], [15], [16], [20], [21], [22], [23],
[27], [32], [34], [36]. Because of the large number of
published articles on simplification, our review is necessa-
rily incomplete. We will focus on region-merging and edge-
contracting simplification algorithms, which are closely
related to our work. Some of the surface partitioning
algorithms are reviewed.

Surface partitioning algorithms and region merging
simplification algorithms. Hinker and Hansen [19] merge
quasi-coplanar regions. Maillot et al. [30] partition the mesh
by a bucketing of face normals. Eck et al. [8] develop a

142 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

. J. Yan and P. Shi are with the Institute of Image Processing and Pattern
Recognition, Shanghai Jiao Tong University, 1954 Hua Shen Road,
Shanghai (200030), China. E-mail: {jqyan, pfshi}@sjtu.edu.cn.

. D. Zhang is with the Center for Multimedia Signal Processing,
Department of Computing, Hong Kong Polytechnic University, Kowloon,
Hong Kong. E-mail: csdzhang@comp.polyu.edu.hk.

Manuscript received 19 June 2001; revised 16 July 2002; accepted 15 May
2003.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 114382.

1077-2626/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



Voronoi-based partition. Kalvin and Taylor [24] partition
the surface into a set of disjoint face clusters or “Super-
faces.” Mangan and Whitaker [31] present the curvature-
based surface partitioning method by generalizing mor-
phological watersheds to 3D surfaces. Kumar et al. [25]
present a normal-based clustering algorithm used for
hierarchical back-face culling. Garland et al. [12] describe
a process of hierarchical face clustering based on pairwise
cluster merging. Once it is divided into several regions, the
surface can be simplified by decimating the vertices inside
regions and retriangulating the perimeter of the regions
[19], [24]. While they can provide the bound on maximum
deviation from the original model, region-merging simpli-
fication algorithms can’t naturally produce a progressive
mesh [9].

Simplification algorithms based on edge contraction.
Hoppe et al. [23] define an energy function—a measure of
distance from the proposed new triangles to a set of sample
points on the original mesh—as a quality measure for
deciding which edge to collapse. At each step, the element
whose elimination causes the lowest increase in the energy
function is deleted. Their method can produce high quality
results, but may need a very long running time. The
enhanced version [20] provides multiresolution manage-
ment and improves computational efficiency. Later, Popo-
vic and Hoppe [32] extend it to deal with unconnected
regions. Guéziec [15], [16] defines and exploits error and
tolerance volumes to bound the error locally. The new
vertex position is chosen to maintain the enclosed volume
of the surface. Ronfard and Rossignac [34] associate a set of
planes with each vertex. The error at each vertex is
measured by the maximum of squared distances to the
planes in its corresponding set. These sets are dynamically
merged with the iterative edge contractions. Garland and
Heckbert [10] define quadric error metric and store it into a
symmetric 4� 4 matrix, one matrix per vertex. Moreover,
this metric is used both to place the new vertex and to order
the list of edge contractions. Recently, they generalized this
method to accurately maintain color and texture values [11].
Cohen et al. [5], [6] use edge contraction to produce a
mapping between the original mesh and the simplified
model. An error box is used to track the greatest deviation
between the meshes and this deviation guides which edge
is contracted. Gieng et al. [13] present a method using
triangle-contracting operations to produce a hierarchy of
triangle meshes. Because a triangle can be contracted by
contracting two of its edges, their work is also treated as one
of the edge-contracting methods. In addition, their method
could produce a limited number of intermediate meshes by
selecting, at each step, a number of triangles that can be
contracted simultaneously. Lindstrom and Turk [27] re-
cently developed a “memoryless” method which does not
retain a geometric history during the simplification process.

The important advantage of simplification algorithms
based on edge contraction is to use a queue arranged by
errors to decide the order of contraction operations.
However, the errors are mainly measured by the immedi-
ately local regions and, thus, it still falls into disorder from
the whole mesh. In these cases, some vertices important for
the global shape might be decimated untimely. Unlike those
based on edge contraction, region-merging algorithms first
perform a procedure for single-level surface partitioning in
an approximately global way and then decimate internal
vertices prior to corner vertices. In this paper, combining
the ideas of such two simplification schemes, a new
simplification algorithm is presented. It first performs a

procedure of hierarchical surface partitioning and then
simplifies the model with edge contraction under the guide
of the hierarchical structure; furthermore, in the step of
optimization, it optimizes the simplified mesh with a
multilevel synthesized quadric error metric. Our normal-
based partitioning procedure is from coarse to fine
resolution, somewhat similar to the R-Simp algorithm [1]
based on vertex clustering. However, our simplification
procedure is still from fine to coarse resolution and can
produce more competitive results in the tested cases.

3 SHAPE ANALYSIS

In the following sections, we will introduce the detailed
procedure of shape analysis: normal-based hierarchical
partitioning, connectivity-based repartitioning, and over-
segmented region merging.

3.1 Normal-Based Hierarchical Partitioning

We first map a triangulated surface into a unit vector space
by the outward-facing normals of triangles. Given a
triangulated surface, S ¼ ftigni¼1, where ti ¼ ðpi1; pi2; pi3Þ
represents a triangle and pi1, pi2, and pi3 are the three
vertices of the triangle, respectively. We do a map:

’ : ti 2 S ! ni; ð1Þ

where ’ðtiÞ is a function to calculate the outward-facing
unit normal vector of the triangle ti, that is,

’ðtiÞ ¼ ni ¼
ðpi2 � pi1Þ � ðpi3 � pi1Þ

kðpi2 � pi1Þ � ðpi3 � pi1Þk
; ð2Þ

where pi1, pi2, and pi3 are the coordinate vectors of pi1, pi2,
and pi3, respectively. In the unit vector space, ’ðSÞ is
divided into ’ðS1Þ, ’ðS2Þ, . . . , and ’ðSmÞ, as well, S is
divided into S1, S2, . . . , and Sm.

Initially, we divide the unit vector space, which is
isomorphic to the unit spherical surface, into six clusters. It
seems to be similar with the case of using a cube to
approximate a sphere, as shown in Fig. 1a. Six outward-
facing unit normals are used as the representatives, Hj,
ðj ¼ 1; . . . ; 6Þ, of six clusters. The points, ’ðSÞ, in the vector
space are then divided into six clusters, ’ðSjÞ, according to
the nearest neighbor principle, i.e., 8ti 2 S, ’ðtiÞ 2 ’ðSjÞ if
the dot product, ’ðtiÞ �Hj, is maximal.

Next, we divide each nonempty cluster, ’ðSjÞ, into four
subclusters, ’ðSjkÞ, ðk ¼ 1; 2; 3; 4Þ, at the next level of detail.
As an example, shown in Fig. 1b, Sj ¼ EFGH is divided
into four smaller facets. The new cutpoints of four edges are
defined as their normalized middle points. Especially,
point T is the normalized average of four endpoints of the
facet, EFGH. The representatives of the subclusters, Hjk, are
the corresponding outward-facing unit normals of four
smaller facets. Then, the elements in ’ðSjÞ are classified:
8tji 2 Sj, ’ðtjiÞ 2 ’ðSjkÞ, if the dot product, ’ðtjiÞ �Hjk, is
maximal.

3.2 Repartitioning with Connectivity

Since our partitioning performs in the unit vector space, the
unconnected triangles with similar outward-facing normals
will be classified into the same cluster. In this case, each
cluster can’t be treated as a patch, which is undesirable to
merge oversegmented regions and subsequently simplify
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the models with a multilevel synthesized quadric error
metric. Therefore, we need to further divide each cluster
into connected regions with mesh connectivity.

Select a triangle from the “unvisited” triangles as the
seed. Consider edge-sharing triangles of the seed. If one of
them is in the same cluster as the seed, the region is grown
by adding it. The newly joined triangle is set to “visited.”
The region goes on growing until all the surrounding
triangles belong to different clusters. Reselect a seed
triangle and grow it to become a new region by analogy,
until all the triangles are repartitioned. As a result, we get a
new partition in which the triangles of each cluster are
connected together. Thus, each cluster can be treated as a
region or a patch.

3.3 Oversegmented Region Merging

During the process of the above-mentioned hierarchical
partitioning, it always attempts to divide one region into
four subregions to produce the partition of next level. It
may result in asynchrony, that is, some regions with small
normal discrepancy are subdivided untimely. We use two
methods to deal with it. One is to use the maximum inside-
cluster normal discrepancy to determine when to subdivide
the region. The other is to merge the neighboring regions
with small normal discrepancy.

At first, we need the thresholds of different levels.
From the description of Section 3.2, we can coarsely
evaluate them as:

"i ¼ "1=2
i�1; ð3Þ

where "i is the thresholdof level i and "1 is about 0.955 radians

(54.7 degree) according to our initial partitioning scheme. Set

max�ij to be the maximum normal discrepancy of region j at

level i. Ifmax�ij < "iþ1, region j is not divided from level i to

level iþ 1. In addition, we also merge some neighboring

regions that are subdivided untimely at the current level.

Given two neighboring regions, j and k, at level i, we merge

them if they belong to one region at level i� 1 and if

max�ij þmax�ik þ �ðnj;nkÞ < 2"i; ð4Þ

where �ðnj;nkÞ is the angle between the average normals of

these two regions. An illustration of a 2D case is shown in

Fig. 2. Because the merged regions of current level must be

in the same region of previous level, the structure of

hierarchies is preserved.

3.4 Open Boundary Edge Partitioning

For open mesh surface, we also partition the boundary
edges. Each boundary edge is first mapped into the unit
vector space using the unit normal of the plane perpendi-
cular to the plane of the triangle incident to it. Then, like the
procedure for partitioning triangles, we can partition the
boundary edges hierarchically. At each level, we also need
connectivity-based repartition and oversegmented region
merging.

3.5 Pseudocode Description for Shape Analysis

We summarize the above-mentioned steps for shape
analysis as the format of a pseudocode description, as
shown in Fig. 3. The whole shape analysis framework is a
hierarchical approach. The total computational complexity
is Oðmaxlevel � nÞ, where n is the total number of triangles.
"8, the threshold of level 8, calculated by (3), is already
equal to 0.00746 radians (about 0.427 degree), so each region
at level 8 is much closer to an exact plane. Thus, to set
maxlevel ¼ 8 is enough for shape analysis of common
surfaces. In the implementation, we actually perform the
partitioning algorithm to obtain the partitions of maxlevel�
1 levels. At level maxlevel, each triangle of the original
surface is taken as a region.

The function StatisticInformation(), shown in Fig. 3, is
especially designed to analyze the useful information at
each partitioned level. It will complete two main assign-
ments: ranking the vertices according to their importance in
the hierarchical structure and determining the affected
regions of each vertex at the hierarchical levels. Both are
important for the subsequent phase of iterative edge
contraction. We will further introduce them in Section 4.

4 ITERATIVE EDGE CONTRACTION

There are many effective simplification schemes such as
those reviewed in Section 2. Here, we use the scheme based
on edge contraction to simplify the original mesh, but
combine some useful ideas of the region-merging ap-
proaches. The contraction phase of our algorithm is divided
into two steps: half-edge contraction [17] and optimization.
Let us begin with the step of half-edge contraction, i.e., one
edge is contracted not to an optimal vertex but just to one
endpoint.
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Fig. 1. Normal-based hierarchical partitioning. (a) One-to-six subdivi-

sion, like the case of using a cube to approximate a sphere, for the initial

level. (b) One-to-dour subdivision for the subsequent levels.
Fig. 2. A 2D case for merging the oversegmented regions. (a) One
region (the curved line) and two representatives for subdivision.
(b) Three subregions after normal-based partitioning and connectivity-
based repartitioning. (c) The first two subregions are merged into one
region with new average normal and new maximum normal deviation.



Before the discussion of our half-edge contraction
scheme, let us introduce some basics of the traditional edge
contraction algorithm [10], [22], [27]. Set qeðp; �Þ to denote
the quadric metric error from a point, p, to one domain. We
first show the quadric metric errors from a point to one
triangle, qeðp; tÞ, and from a point to one open boundary
edge, qeðp; beÞ as follows:

qeðp; tÞ ¼ At � ððp� ptÞ � ntÞ2; ð5Þ

where At is the area of triangle t; pt is the coordinate vector
of pt, one vertex of triangle t; and nt is the unit normal of
triangle t. And,

qeðp; beÞ ¼ L2
be � ððp� pbeÞ � nbeÞ2; ð6Þ

where Lbe is the length of boundary edge be in the open
mesh, pbe is one of its endpoints, and nbe is the unit normal
of the plane perpendicular to the triangle incident to this
open boundary edge. Then, we can introduce the quadric
metric error of an arbitrary point p to the neighboring
domain of pi as follows:

lqeðp; piÞ ¼ qeðp; TDiÞ þ qeðp;BDiÞÞ
¼

X
j

qeðp; tijÞ þ
X
j

qeðp; beijÞ;

tij 2 TDi; beij 2 BDi;

ð7Þ

where TDi is the domain consisting of the triangles incident
to pi and BDi is the domain consisting of the open
boundary edges incident to pi.

Unlike the existing edge contraction schemes, our half-
edge contraction scheme considers the importance of the
vertices in the hierarchical structure. During the hierarch-
ical partitioning, we use the function, StatisticInformation(),
shown in Fig. 3, to obtain the hierarchical information. It
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Fig. 3. A pseudocode description of the algorithm for shape analysis.

Fig. 4. The affected regions incident to one point, pi. The yellow lines

define the domain incident to pi in the simplified mesh. The blue lines

define the domain incident to pi in the original mesh at each hierarchical

level. The green area illustrates the affected regions incident to pi at

each hierarchical level. (a) At level maxlevel. (b) At level maxlevel� 1.

(c) At level 2. (d) At level 1.

TABLE 1
Summary of the Running Time and Other Parameters
for Mesh Simplification on the Tested Surface Models

by the Presented Algorithm

The time in seconds (not including the time to I/O operations) is reported
on a 1.2GHz Pentium IV machine with 512M memories.



will give the information on bvl, cvl, rtl, and rbl. Since rtl

and rbl are used in the step of optimization, we explain

them in the next paragraph. bvli denotes the beginning level

from which vertex pi is on the boundaries of the regions. cvli
denotes the beginning level from which vertex pi is a corner

among the regions. bvl and cvl mark the importance of each

vertex in the hierarchical structure. Vertices with lower bvl
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Fig. 5. The results (first five levels) of hierarchical surface partitioning

and the results (12, 48, 192, 728, and 2,716 triangles, respectively) of

mesh simplification for the Sphere model. (a) The results after

hierarchical partitioning. (b) The results of half-edge contraction with

the guide of the hierarchical structure. (c) The results of multilevel

quadric metric synthesized optimization. (d) The results of Qslim

algorithm. (e) The results of MEC algorithm.

Fig. 6. The bar chart for comparing the results on the Sphere model by

the Qslim, MEC, and new algorithm in the max and mean distances.

Fig. 7. The results (levels 2, 3, and 4) of hierarchical partitioning (a) (note
that the results of hierarchical boundary partitioning are also shown) and
the results (80, 160, and 320 triangles, respectively) of mesh
simplification for the open Cylinder model. (b) Half-edge contraction
with the guide of the hierarchical structure. (c) After multilevel quadric
metric synthesized optimization. (d) Qslim algorithm (because of the
serious self-intersection, the invisible triangles are not eliminated).
(e) MEC algorithm.

Fig. 8. The bar chart for comparing the results on the Cylinder model by

the Qslim, MEC, and new algorithm in the max and mean distances.



and cvl are more important in the hierarchical structure and
these values are used to affect the simplification operations.
Consider one operation of half-edge contraction,
� : ðpi; pjÞ ! p. We determine p and the cost for operation
� as follows:

p ¼

pi; if

bvli < bvlj

bvli ¼ bvlj and cvli < cvlj

bvli ¼ bvlj and cvli ¼ cvlj and lqeðpi; pjÞ � lqeðpj; piÞ

8><
>:

pj; otherwise

8>>><
>>>:

ð8Þ

c� ¼ lqeðp; piÞ þ lqeðp; pjÞ: ð9Þ

Then, for all edges in the mesh, we use minheap to build a

queue by the cost of contraction operation. Iteratively,

popup the top of minheap and perform its corresponding

contraction: Replace pi and pj with p, delete the degenerated

triangles, update lqeðp; pÞ, update the costs to contract the

edges incident to p, and, finally, update the queue. Note
that the operations for updating are similar with memory-
less edge collapse (MEC, [22], [27]), that is, lqeðp; pÞ is
updated by recomputing it according to the updated
neighborhood.

In the step of optimization, we reposition the vertices of
the mesh achieved by endpoint simplification procedure to
discount the mean distance between the simplified mesh
and the original mesh. The optimizer takes into considera-
tion the multilevel synthesized quadric metric error. rtllj,
obtained from the phase of hierarchical shape analysis (see
Fig. 3), denotes which region one triangle in the original
mesh, tj, belongs to at level l. In the open mesh, rbllj denotes
which region one open boundary edge in the original mesh,
bej, belongs to at level l. Set RTDil to denote the domain
consisting of the triangles (of the original mesh) in the
regions incident to pi at level l. It is also required that the
triangles in RTDil should fall inside the domain consisting
of the triangles incident to pi in the simplified mesh. An
example is shown in Fig. 4. In this figure, the blue lines
define the corresponding domain in the original mesh at
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Fig. 9. The results (first four levels) of hierarchical partitioning and the
results (40, 80, 160, and 320 triangles, respectively) of mesh
simplification for the open Cylinder30 (rotate the Cylinder model by
30� angle). (a) The results after hierarchical partitioning. Note that the
results of hierarchical boundary partitioning are also shown. (b) The
results of half-edge contraction with the guide of the hierarchical
structure. (c) The results of multilevel quadric metric synthesized
optimization.

Fig. 10. The results (first five levels) of hierarchical surface partitioning
and the results (124, 254, 642, 1,290, and 3,232 triangles, respectively)
of mesh simplification for the Fandisk model. (a) The results after
hierarchical partitioning. (b) The results of half-edge contraction with the
guide of the hierarchical structure. (c) The results of multilevel quadric
metric synthesized optimization. (d) The results of Qslim algorithm. (e)
The results of MEC algorithm.



each level, the yellow lines define the corresponding

domain in the simplified mesh, and the green area

illustrates the domain of RTDil incident to pi at level l. In

the implementation, RTDil is obtained from the two-

dimension array of rtl plus the judgment of validness.

The multilevel synthesized quadric metric error of one

vertex in the simplified mesh, pi, is defined as follows:

sqeðp; piÞ ¼
X
i

qeðp;RTDilÞ þ
X
i

qeðp; RBDilÞ

¼
X
i

X
j

qeðp; tjÞ þ
X
i

X
j

qeðp; bejÞ;

tj 2 RTDil; bej 2 RBDil;

ð10Þ

where RBDil denotes the domain consisting of the open

boundary edges (in the original mesh) in the regions

incident to pi at level l. In a closed mesh, RBDil is empty.

Equation (10) can be simplified, like the work in [10], in the

following fashion:

sqeðp; piÞ ¼ pTApþ 2bTpþ c; ð11Þ

whereA is a symmetric 3� 3matrix, b is a 3� 1 vector, and

c is a scalar. Then, we can obtain the optimal position of pi

by p ¼ �A�1b.
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Fig. 11. The bar chart for comparing the results on the Fandisk model by

the Qslim, MEC, and new algorithm in the max and mean distances.

TABLE 2
Comparisons of Simplification Algorithms on the Tested Surface Models (the Distances Are Measured by Metro3.1 for Windows)



5 EXPERIMENTS AND COMPARISONS

In our experiments, we used some data sets: Sphere,
Cylinder, Fandisk, Bunny, and Happy-Buddha to demon-
strate the performance of our simplification algorithm. All
tests were performed on a 1.2GHz Pentium IV Intel
processor with 512Mbytes memory. All the errors between
the simplified mesh and the original mesh were measured
by Metro tools [4] (Metro 3.1 for Windows under the default
mode), which had been used to evaluate many mesh
simplification methods [3], [27]. In each kind of geometrical
errors (max, mean, and RMS distances), we chose the bigger
one from two values, one from the original mesh to the
simplified mesh and the other from the simplified mesh to
the original mesh, computed by Metro tools. In the
experiments, we also compared our results with those by
Quadric Metric Error [10] (Qslim, ran Garland’s Version 2.0
implementation under the default mode) and Memoryless
Edge Collapse [22], [27] (MEC, ran our implementation
directly without the guide of the hierarchical structure).

The running time and other parameterswere summarized
in Table 1. FromTable 1, our simplification algorithm slightly
increased the cost of time for shape analysis and multilevel
synthesized optimization. We pictured the results of shape

analysis for all testedmodels in Figs. 5a, 7a, 10a, 12a, and 14a.
In these pictures, the color of each region was assigned
randomly. The half-edge simplified results by our algorithm
shown in Figs. 5b, 7b, 10b, 12b, and 14b and those optimized
results were shown in Figs. 5c, 7c, 10c, 12c, and 14c. In
addition,wealsopictured the simplified results byQslimand
MECalgorithms inFigs. 5d, 7d, 10d, 12d, and14dandFigs. 5e,
7e, 10e, 12e, and 14e, respectively. From the comparisons of
those images, one could obtain the initial impression that our
simplified results were significantly better in the shape
structure than those of other two simplification algorithms.
Furthermore, we would compare them in the geometrical
errors.

The max, mean, and RMS distances between the
simplified mesh and the original mesh were summarized
in Table 2. For the intuitive comparison, the bar charts of
max and mean distances (the case in RMS distances was
much similar than that in mean distances) were shown in
Figs. 6, 8, 11, 13, and 14. From these figures, one could see
that there was no consistent winner in the max distance
among three algorithms and that our algorithm was the
winner of the most cases in the mean and RMS distances
among three algorithms. Compared with the Qslim algo-
rithm, our algorithm commonly provided 40-60 percent
reduction in the mean and RMS distances and, compared
with the Mec algorithm, our algorithm commonly provided
20-40 percent reduction in the mean and RMS distances. It
should be pointed out that the implementation of the Qslim
algorithm might not perform strict checking for the self-
intersection during iterative edge contraction. Hence, the
Qslim algorithm might produce some local but large
deviations (measured from the simplified mesh to the
original mesh) such as those in the simplified Cylinder
models (see Fig. 7d), the simplified Fandisk models (see the
left-bottom part in Fig. 10d), and the simplified Bunny
models (see the bottom part in Fig. 12d).

Since it was performed in the vector space, our
hierarchical partitioning approach was not rotationally
invariant. The choice of coordinate system might affect
the performance of our algorithm. The methods of “body
frame” [38] and “oriented bounding box (OBB)” [14] could
be used to partly solve this problem. However, it should
also be pointed out that the problem was not critical for the
whole simplification algorithm because the maximum
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Fig. 12. The results (first five levels) of hierarchical surface partitioning
and the results (346, 694, 1,390, 3,472, and 6,945 triangles,
respectively) of mesh simplification for the Bunny model. (a) The results
after hierarchical partitioning. (b) The results of half-edge contraction
with the guide of the hierarchical structure. (c) The results of multi-level
quadric metric synthesized optimization. (d) The results of Qslim
algorithm. (e) The results of MEC algorithm.

Fig. 13. The bar chart for comparing the results on the Bunny model by

the Qslim, MEC, and new algorithm in the max and mean distances.



normal deviation in all the clusters at level i was limited to
"i and the oversegmented regions at each level were
merged. In fact, we fixed the representatives of the initial
partitioning aligned to the positive and negative directions
of the axes in all the tested cases. For example, we took the
Cylinder model and rotated it by 30� around X-axis to get
the Cylinder30 model. The partitioned results at the first
four levels, the half-edge simplified meshes, and the
optimized results were pictured in Figs. 9a, 9b, and 9c,
respectively. The mean, max, and RMS distances were also
given in Table 2. Compared with the results for the Cylinder
model, while the concrete region that one triangle belonged
to might be changed, the performance of the simplification
algorithm changed little in the geometrical errors between
the simplified mesh and the original mesh.

6 CONCLUSION

This paper addressed the problem for mesh simplification.
We presented a novel algorithm that divided the simplifica-
tion process into two phases: hierarchical shape analysis
and edge contracting mesh simplification. In the phase of
shape analysis, we proposed a new normal-based algorithm
to build the uniform hierarchies of surfaces. In the next
phase, we used iterative edge-contracting algorithm to

simplify the highly detailed meshes under the guide of the
hierarchical structure. The positions of the vertices in the
simplified meshes were optimized with the multilevel
synthesized quadric metric. In the tested models, our
algorithm produced competitive results with respect to
the max, mean, and RMS errors. However, our current
normal-based surface partitioning method was sensitive to
noise. For hugely noisy meshes, it would build a very large
number of patches even at the first level of the hierarchy.
Thus, many vertices had similar importance in the
hierarchical structure. In this case, the performance of the
presented algorithm would decrease. In the future, it might
be expected to improve the performance of this kind of two-
phase simplification algorithms owing to the advance of
hierarchical surface partitioning methods.
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