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Abstract—Accurate determination of the input function is es-
sential for absolute quantification of physiological parameters in
positron emission tomography and single-photon emission com-
puted tomography imaging, but it requires an invasive and tedious
procedure of blood sampling that is impractical in clinical studies.
We previously proposed a technique that estimates simultaneously
kinetic parameters and the input function from the tissue impulse
response functions and requires two blood samples. A nonlinear
least squares method estimated all the parameters in the impulse
response functions and the input function but failed occasionally
due to high noise levels in the data, causing an ill-conditioned cost
function. This paper investigates the feasibility of applying a Monte
Carlo method called simulated annealing to estimate kinetic pa-
rameters in the impulse response functions and the input func-
tion. Time–activity curves of teboroxime, which is very sensitive to
changes in the input function, were simulated based on published
data obtained from a canine model. The equations describing the
tracer kinetics in different regions were minimized simultaneously
by simulated annealing and nonlinear least squares. We found that
the physiological parameters obtained with simulated annealing
are accurate, and the estimated input function more closely resem-
bled the simulated curve. We conclude that simulated annealing
reduces bias in the estimation of physiological parameters and de-
termination of the input function.

Index Terms—Impulse response function, input function,
kinetic parameter estimation, nonlinear least squares, simu-
lated annealing, single-photon emission computed tomography
(SPECT), teboroxime.

I. INTRODUCTION

A BSOLUTE quantification of dynamic positron emission
tomography (PET) or single-photon emission computed

tomography (SPECT) data requires an invasive procedure where
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a series of blood samples are taken to form an input function for
kinetic modeling [1]. The input function is generally obtained by
sampling blood at the radial artery or from an arterialized vein
in a hand. Although arterialized-venous (a-v) blood sampling
has been accepted as an alternative to the gold standard of arte-
rial blood sampling, arterial blood sampling is invasive and has
the potential for irreversible tissue ischemia or arterial throm-
bosis. A number of methods for the estimation or elimination
of the input function have been proposed [2]–[12]. The popu-
lation-based input function approach [5], [7] that is used rou-
tinely at our institution calibrates a standardized input function
obtained from a large population by one or two arterial or a-v
blood samples for an individual by assuming that the individual
input function can be closely approximated by scaling the popu-
lation input function according to the area under the curve. This
method has been validated in tracers with slow kinetics such as
[ F]fluorodeoxyglucose (FDG) in PET and [ I]iomazenil in
SPECT [5], [7]. For tracers with fast kinetics (e.g.,O-water
in PET and Tc-teboroxime in SPECT), however, the pop-
ulation-based input function approach is unlikely to be appli-
cable. The shape discrepancies and time delay can cause er-
roneous estimation of physiological parameters. Moreover, re-
peated measurements in a group of patients or volunteers are
required for constructing a new input function template when-
ever a new tracer or different infusion rate is used.

Derivation of the input function from region-of-interest (ROI)
placement over a vascular structure in the images has also been
investigated [2], [9]. Frequent blood sampling is avoided, but the
noise levels in the derived input function are high and cannot
be assumed to be negligible for kinetic modeling. In addition,
spillover from extravascular activity needs careful considera-
tion, and the field of view must always include a prominent vas-
cular structure.

The simultaneous estimation (SIME) method estimates
parameters in the tissue’s impulse response functions (IRFs)
and the input function simultaneously and requires one or
two blood samples for scaling [8], [12]. The nonlinear least
squares method that has usually been regarded as the standard
for kinetic modeling has been used in SIME to estimate all the
parameters in the IRFs and recover the input function. However,
the nonlinear least squares method fails occasionally due to
ill-conditioning of the cost function caused by the high noise
levels in the measurements and highly nonlinear parameter
space [12]. Thus, it can be trapped into local minima, and the
physiological parameters may be biased due to poor estimation
of the input function.

0018-9499/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 24,2010 at 08:45:15 UTC from IEEE Xplore.  Restrictions apply. 



708 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 3, JUNE 2002

Although they are usually computationally demanding, min-
imization methods that involve only function evaluations, such
as Powell’s method [13], direct search [14], downhill simplex
[15] and simulated annealing [16], may be able to tackle the
problems associated with the nonlinear least squares method.
Although simulated annealing is not an efficient optimization
technique in computational terms, it is usually more reliable
than other minimization methods because it is able to find the
global optimum or a point very close to the global optimum in
cases where other techniques fail. To our knowledge, there are
few reports that apply simulated annealing to emission tomog-
raphy. Most are devoted to image processing rather than to ki-
netic parameter estimation [17]–[19]. The aim of the study re-
ported in this paper was to investigate the feasibility of applying
simulated annealing in SIME to recover the input function and
the IRFs. The combined method was evaluated with simulated
cardiac dynamic SPECT Tc-teboroxime data.

II. M ATERIALS AND METHODS

A. Dynamic SPECT With Tc-Teboroxime

Recent advances in attenuation and scatter correction
methodologies in SPECT offer the possibility of quantifying
the physiological functions (in vivo) by performing SPECT
imaging dynamically, similar to what can be achieved with
PET. One of the major applications of dynamic SPECT is
to quantify myocardial perfusion, which is important for the
diagnosis and clinical management of patients with coronary
artery disease where a perfusion defect after an intervention
may indicate incomplete reperfusion or persistent coronary
occlusion. Similar to dynamic PET, compartmental modeling
is used in dynamic SPECT to quantify physiological param-
eters of interest. It has been demonstrated that myocardial
perfusion can be studied by dynamic SPECT imaging of

Tc-teboroxime using multiheaded SPECT systems [20].
Tc-teboroxime is a neutral lipophilic compound with high

myocardial extraction (80–90%) in the first pass and rapid
clearance [21]. Its kinetics can be modeled by a two-compart-
ment model, as shown in Fig. 1, where is the measured
activity in the blood compartment at time is the activity
in the extravascular compartment at timeand (in min )
and (in min ) are the wash-in and wash-out rate constants
of teboroxime, respectively. The kinetics of teboroxime in the
extravascular compartment is given by

(1)

with . The myocardial tissue activity, however, cannot
be solely modeled by (1) because a fraction of the measured ac-
tivity is contributed by the blood activity within the myocardium
or nearby tissue and the partial volume effect due to the fi-
nite resolution of SPECT. Therefore, the measured myocardial
tissue time-activity curve (TAC) acquired between the
time and is modeled by

(2)

Fig. 1. Two-compartment model for Tc-teboroxime.

where represents the fraction of blood in the myocardial
tissue. The parameters and can be estimated by non-
linear least squares fitting the measured tissue TAC to (2).

B. Simultaneous Estimation

SIME differs from other methods [3], [5], [7] that estimate
or eliminate the input function based on certain properties or
assumptions of the radiotracer under consideration because
it uses multiple tissue TACs. These TACs are obtained by
defining ROIs on the dynamic images to recover the input
function embedded in the tissue TACs [8], [12]. SIME can be
applied to different radiotracers or ligands, provided that the
radiolabeled metabolites in blood and tissue are appropriately
corrected. Since the tissue TAC is the convolution integration
of the input function with the IRF of the corresponding region,
the IRF parameters in multiple regions and the input function
can be estimated by minimizing the residual sum of square
errors between the model-predicted tissue response and the
measurements in the corresponding ROIs simultaneously [8],
[12]. Mathematically, the following cost function is minimized:

(3)

subject to

where is the total number of ROIs incorporated into the model
fitting procedure; is the number of data for each tissue TAC;

and represent the measured and model-predicted
tissue activity concentrations at theth data point in theth ROI;

is the weight associated with theth measurement in the
tissue TAC and is chosen to be the inverse of the variance of the
corresponding measurement;denotes the vector of parameters
to be estimated, including the wash-in and wash-out parameters
in multiple tissue TACs and the estimated input function

is a set of physiological (inequality) constraints imposed
on ; is the number of arterial blood samples taken late in the
course of the study for calibration; is the activity concen-
tration in blood measured at time ; and
is chosen to be 100 (or any other reasonably large value) so that
the blood samples are given more weight to discourage any dis-
crepancy between the measurements and their predictions. Note
that in (1) and (2) is replaced by when minimizing (3)
because the input function is estimated rather than measured.

C. Nonlinear Least Squares

The principle of the nonlinear least squares method is to it-
eratively minimize a cost function based on a least squares cri-
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terion. Rapid convergence can be achieved if the shape of the
isocontours of the cost function is approximately a concentric
circle and can be well approximated by a quadratic around the
minimum. In this study, the Marquardt algorithm [22] was used,
as it usually performs well in locating the minimum and is rea-
sonably insensitive to an initial estimate. However, there is no
guarantee that the located minimum corresponds to the global
minimum unless it is unique. Furthermore, in optimization prob-
lems with a large number of parameters or with noisy data, the
cost function is usually ill-conditioned because it has several
minima. In this case, the algorithm is likely to get stuck in the
local minimum nearest to the initial estimate, or in the worst
case, the algorithm does not converge if the cost function is non-
differentiable or discontinuous in its domain.

D. Simulated Annealing

Simulated annealing was developed by Kirkpatricket al.
[16]. It is a generalization of a Monte Carlo method intro-
duced by Metropoliset al. based on the theory of statistical
mechanics [23]. In condensed matter physics, annealing is a
physical process of heating up a solid material by increasing
the temperature to a maximum at which all molecules arrange
themselves randomly in the liquid phase, followed by a slow
cooling process that results in the formation of a perfect crystal.
Application of simulated annealing to optimization problems
is based on the analogy between the state of each molecule
and the state of each parameter that affects the energy function
(analogous to the cost function in the optimization problem) to
be minimized. The parameter values are randomly perturbed,
and the probability of accepting the perturbed cost function is
determined by the Metropolis criterion [16], [23]

if

otherwise
(4)

where is the change in the cost function due to the perturba-
tion, is the Boltzmann constant, andis the current system
temperature, which is a control parameter [16]. As the iterations
progress, the temperature parameteris reduced. Providing
that the starting maximum temperature is sufficiently high and
the temperature is lowered slowly, the algorithm is guaran-
teed to reach the global minimum or a point close to the global
minimum of the cost function [16], [23].

Implementation of the simulated annealing algorithm is
relatively straightforward. We followed the implementation
described by Coranaet al.[24] but introduced the interior-point
method [25] to minimize (3), which actually defined an in-
equality-constrained minimization problem. The interior-point
method [25] enforces the physiological (inequality) constraints
imposed on the kinetic parameters by creating a sequence of
modified functions whose unconstrained minimum should
converge to the constrained minimum in the limit [25]. The
convergence of this method is considered beyond the scope of
this paper.

Fig. 2 shows a simplified flow chart of the modified simulated
annealing algorithm. Starting with a given set of initial param-
eters and a high initial temperature , the cost func-
tion is then calculated and recorded. The current parameters are

Fig. 2. Flowchart of the modified simulated annealing algorithm.

then perturbed randomly along each direction, in turn. If the per-
turbed parameter steps out of its boundaries, it is replaced by a
value randomly generated within the boundaries. The cost func-
tion is then computed, and the probability of accepting the cost
function is determined by (4). After steps through
all parameters in , the step length vector is adjusted so that
about 50% of the total number of moves are accepted. After

number of parametersstep adjustments, the temper-
ature is then reduced by a constant factor . The
algorithm terminates when 1) the differences between the re-
cent values of minima (including the current one) are
less than a tolerance and 2) the parameter changes
are less than 0.1%. These criteria help guarantee that the global
minimum is reached. The algorithm also terminates when the
maximum number of iterations exceeds 10 . The above
parameter settings were found to give satisfactory performance,
although they might not be optimal.

E. Computer Simulations

To simulate Tc-teboroxime kinetics, a sum of two expo-
nential decaying functions was used to generate an input func-
tion

(5)

where represents the time abscissa in minutes. Six tissue TACs
of teboroxime were simulated with a two-compartment model.
The parameter values were based on a baseline study obtained
from a canine model [20], and a 7010 s scanning protocol was
assumed. Table I lists the values of the rate constants that were
used for the simulations. Poisson noise typical of the observed
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TABLE I
MODEL PARAMETERS USED TO SIMULATE Tc-TEBOROXIME

KINETICS. NOMINAL INITIAL VALUES, WHICH WERE RANDOMIZED

DURING SIMULATIONS, AND THE PHYSIOLOGICAL CONSTRAINTSIMPOSED

ON THE PARAMETERS ARE ALSO SHOWN

TAC was added to the generated TACs, and 100 different noise
realizations were simulated. To investigate the effect of initial
value on the estimation of the IRFs and input function for both
nonlinear least squares and simulated annealing, initial param-
eter estimates were randomized above a set of nominal initial
values (Table I) as follows:

(6)

where is a Gaussian distributed random variable with a mean
of zero and a variance of one; is the nominal initial value of
a parameter; and is the randomized parameter value. For a
given parameter, if its randomized initial value was not within
its boundaries, the randomization process was repeated until
the boundary constraints were satisfied. The randomized initial
values were then used by both nonlinear least squares and sim-
ulated annealing for the same realization.

For each region, the kinetic parameters were estimated by
SIME in combination with nonlinear least squares or simulated
annealing, in addition to the estimation of the input function
scaled with two “blood” samples (8 and 11 min) by minimizing
(3) and were constrained to within their physiological ranges by
the interior-point method [25]. The mean and standard deviation
(SD) of the kinetic parameters were derived from the 100 noise
realizations. The mean absolute difference (MAD) between an
estimated parameter and its true value in each of the
tissue TACs was used as a measure of bias [26]

(7)

and was computed over 100 realizations with different numbers
of regions and initial estimates. All calculations were peformed
on an UltraSPARC-2 workstation (296-MHz CPU, 256 MB of
memory).

III. RESULTS AND DISCUSSION

Fig. 3 shows a typical plot of the cost function value over
the course of minimization using simulated annealing. A large
variation of cost function value was observed initially due to
energy changes caused by random perturbation on the parame-
ters. There were some increases in the cost function during min-
imization because uphill moves were also accepted, according
to the Metropolis criterion [16]. This is in contrast to iterative
gradient-based techniques, where only downhill moves are ac-
cepted. However, as decreases, positive changes in the
cost function (i.e., ) become less probable. After a
large number of iterations, the minimum of the cost function

Fig. 3. Variation of cost function over the course of minimization.

TABLE II
PARAMETER ESTIMATES OBTAINED USING NONLINEAR LEAST SQUARES

(NLLS) AND SIMULATED ANNEALING (SA)

was located and the temperature was almost freezing. This can
be considered analogous to the perfect crystal formation, where
all molecules arrange themselves into a minimum energy state
in which no further energy change takes place.

The mean value and standard deviation for the kinetic param-
eters in each of the regions obtained from SIME using nonlinear
least squares and simulated annealing over 100 noise realiza-
tions are shown in Table II. The mean values of the washout
parameter estimated by nonlinear least squares and simu-
lated annealing were consistent. However, the precision for the
estimates obtained by nonlinear least squares was lower than for
those obtained with simulated annealing. There was a large vari-
ation in the mean value and standard deviation for the wash-in
parameter and the blood volume when nonlinear least
squares was used. The parameter precision was generally im-
proved when simulated annealing was used instead.

Fig. 4 plots the MADs and their standard deviations over 100
noise realizations for and parameters as a function
of the number of regions. Very large fluctuations in parameter
estimates obtained with nonlinear least squares are clearly evi-
dent. On the other hand, the estimation of physiological parame-
ters using simulated annealing is very insensitive to noise, as the
bias was much less than that obtained with the nonlinear least
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Fig. 4. MAD of (a)k , (b)k , and (c)f as a function of number of regions.
The standard deviation is represented by the error bar. (NLLS= nonlinear least
squares; SA= simulated annealing).

squares method starting with the same initial estimate and was
almost the same with a different number of regions.

In general, incorporating more regions of distinct kinetics in
SIME may provide more reliable and accurate recovery of the
input function and estimation of kinetic parameters because the
information of the input function increases. However, the iden-
tifiability of parameters may be degraded. The computational
complexity is also higher with an increasing number of regions
because the dimensionality of the cost function increases [12].
This then increases the difficulty in locating the best (global) op-
timum, particularly when nonlinear least squares is used. This
is in contrast to simulated annealing, which provides estimates
comparable to the true parameter values that were used to sim-
ulate the data. It is also interesting to see that the bias of pa-
rameter estimates did not improve noticeably with an increasing
number of regions when simulated annealing was used (Fig. 4).

Fig. 5. (a) Simulated blood curve and estimated input functions using NLLS
and SA. (b) Expanded plot of (a) for the first 2 min.

It appears that two regions of distinct kinetics are sufficient to
estimate the kinetic parameters and recover the input function if
simulated annealing is used.

Fig. 5 shows the simulated blood curve and the estimated
input functions over 100 noise realizations with four regions
(Regions 1 to 4) obtained by simulated annealing and nonlinear
least squares. The estimated input function obtained with sim-
ulated annealing closely resembled the simulated blood curve,
while there was a biased estimation of the time delay and the
peak of the input function when nonlinear least squares was
used. This was due to the nonlinear least squares algorithm’s
being trapped in local minima because it allows only down-
hill moves, which follow the gradient of descent locally. There-
fore, other optimal points with lower cost function values than
the current point may not be reachable. On the contrary, simu-
lated annealing occasionally accepts uphill moves, thus making
it possible to escape local minima. In light of this, other op-
timization methods, such as genetic algorithms [27] and tabu
search [28], that are able to move “uphill” similar to simulated
annealing may also be worth investigating.

Inclusion of blood volume in the kinetic model has been
proposed as a more accurate means to model the (in vivo)
situation [29]. However, we found that the identifiability of
the wash-in parameter deteriorated when was included
because these parameters were highly correlated and were
not uniquely identifiable even though the model fitting was
improved. Faster temporal sampling might help in reducing
the correlation between the parameters. However, the speed
of mechanical rotation of the detectors limits the maximum
sampling rate to 5 s/sample in modern SPECT systems.
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Even if the image statistics were adequate, the improvement
in identifying and might not be significant. Simulated
annealing worked reasonably well in the estimation of
when compared to the nonlinear least squares in terms of
parameter bias and reliability because it updates the parameter
estimates sequentially in place rather than considering all the
parameters simultaneously. The convergence rate of simulated
annealing was also found to be much faster whenwas not
included in the compartment model. This is not surprising
because and are uniquely identifiable, although they
may be biased. In spite of the larger standard deviation (lower
reliability) in the parameter estimate, the estimation of did
not vary appreciably even if was included, regardless of
which minimization method was used.

Recent work by Di Bellaet al. [10] has some similarities to
our previous work [8], [12]. Their approach applied the cross-
correlation method [30] to solve an overdetermined system of
output equations in the frequency domain. A scaling factor is
thus required for unique quantification of kinetic parameters.
Their approach was tested on uniformly sampled data, though
it is not an essential requirement, as the nonuniformly sampled
data can be interpolated into uniformly sampled grids. However,
the errors introduced by the interpolation and their effects on
the kinetic parameter estimation are not known. Our proposed
method, on the other hand, has the advantages that 1) nonuni-
formly sampled data can be accommodated without resampling
the data and 2) the least squares minimization is performed
in the time domain. This avoids using fast Fourier transform,
which may produce erroneous results caused by aliasing when
the data are undersampled. Nonetheless, it is important that a
carefully designed sampling protocol be used to optimize the
accuracy and reliability of the parameter estimates.

The assumption of an identical input function that is common
to the tissue TACs in all regions may need to be considered be-
fore applying SIME and the method of Di Bellaet al.[10]. Since
the actual input functions seen from distant regions may not be
identical due to differences in tracer delivery in blood, both of
the methods may produce an incorrect estimation of the under-
lying input function. Identifiability of the input function may be
improved by including regions drawn, either manually or auto-
matically (e.g., by factor analysis [4], [11] or cluster analysis
[31], [32]), over vascular structures in the model-fitting proce-
dure. Nonetheless, corrections for time discrepancies between
tissue curves and input curves extracted from vascular struc-
tures, spillover of activity from surrounding tissues into blood,
and motion artifacts, should be implemented cautiously in order
to estimate kinetic parameters accurately [33].

Noise in the measured input function leads to statistical un-
certainties in the model-predicted output and the kinetic param-
eters. Methods have been developed to analyze kinetic data with
a noisy input function [34]–[36]. In particular, Huesman [37]
suggested that the result obtained by estimating the input func-
tion from measured input data is equivalent to that of not es-
timating the input function but using the measured input func-
tion directly for compartment model fitting. In other words, the
aim of such methods can be loosely considered as a minimiza-
tion of a sum of two objective functions: one that minimizes the
weighted differences between the tissue measurement and the
model prediction, as in conventional compartment model fitting,

and another that is used to discourage the differences between
the measured input function and its expected values. However,
the main advance of this study is that the expected input function
is recovered from the tissue measurements rather than from the
noisy input function, whose time course is only known at one
or two time instants. Thus, more parameters must be estimated.
The second objective function can only discourage the differ-
ences between the measured and the expected input function at
the time where blood measurements are available, while the ex-
pected input function is also used in the first objective function
for minimization.

Choosing an appropriate set of initial estimates is very im-
portant for kinetic modeling when an iterative gradient-based
technique is used. Any effort spent in obtaining good initial
estimates of the parameters is well rewarded by rapid conver-
gence of the minimization algorithm and reduced chance of
straying into an incorrect, local minimum. Incorporating (a
priori ) information about the input function and the kinetic
parameter estimates from theory or previous experimental
results, and shrinking the parameter space by constraining the
parameter estimates to within certain limits, are usually helpful.
However, clinical data are always compounded by noise, which
perturb the smoothness of the cost function surface and create
a number of minima. Even though the constraints may be
satisfied, this does not guarantee the global optimality of the
parameter estimates.

Although this study considered only the case of teboroxime,
which is a flow-dependent tracer with fast kinetics, the method
may work equally well in other radiopharmaceuticals with rapid
kinetics predominantly dependent on flow. In the case of FDG or
receptor studies, the tissue data may have less information about
the shape of the input function. The ability to recover the input
function and kinetic parameter estimation for those studies may
not be as good as that of flow-dependent radiopharmaceuticals.
Application of simulated annealing with SIME to those studies
deserves further investigation.

One of the major problems associated with simulated an-
nealing is the large number of parameters to be adjusted in order
to give optimal performance. Of particular importance is the
cooling schedule that governs how the temperature is decreased.
It has a major impact on the speed of convergence of the algo-
rithm and the optimality of the parameter estimates. If the tem-
perature is quickly reduced, the algorithm may be trapped at a
suboptimal point. On the other hand, long computation times
are required for the algorithm to converge to a minimum if the
temperature decreases too slowly. There are no general guide-
lines for selecting a cooling schedule, and this remains an active
area of research.

Widespread application of simulated annealing in parameter
estimation has been limited because of the intensive computa-
tional burden required. Typically, the nonlinear least squares
method required about 30 s to minimize (3), but approximately
15 min was required for simulated annealing. Nonetheless, in
the case of very ill-conditioned cost functions with many local
minima (e.g., problems with many parameters), the expense
in computation may be rewarded by obtaining better results
than the nonlinear least squares method, which may need to be
restarted at different points many times. In addition, simulated
annealing can still be applicable to problems where the cost
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function cannot be approximated by a quadratic function near
the minimum or is nondifferentiable or discontinuous in its
domain. Searching for minima with gradient-based methods
in this case may not be feasible. Further, continuing advances
in computer technology, together with the use of parallel
processors, are diminishing computational burden as a limiting
factor.

IV. CONCLUSION

Our results demonstrate that it is feasible to apply simulated
annealing to estimate the physiological parameters and the input
function simultaneously in a flow model. It is more insensitive
to noise than the nonlinear least squares method. The physio-
logical parameters obtained with simulated annealing are more
accurate, and the estimated input function more closely resem-
bled the simulated curve. We conclude that simulated annealing
reduces bias in the estimation of physiological parameters and
determination of the input function, and further research on its
application to radiopharmaceuticals that are not as critically de-
pendent on the shape of the input function is warranted.
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