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Partition-Based Vector Filtering Technique for
Suppression of Noise in Digital Color Images

Zhonghua Ma, Member, IEEE, Hong Ren Wu, and Dagan Feng, Fellow, IEEE

Abstract—A partition-based adaptive vector filter is proposed
for the restoration of corrupted digital color images. The novelty of
the filter lies in its unique three-stage adaptive estimation. The local
image structure is first estimated by a series of center-weighted
reference filters. Then the distances between the observed central
pixel and estimated references are utilized to classify the local in-
puts into one of preset structure partition cells. Finally, a weighted
filtering operation, indexed by the partition cell, is applied to the
estimated references in order to restore the central pixel value. The
weighted filtering operation is optimized off-line for each parti-
tion cell to achieve the best tradeoff between noise suppression and
structure preservation. Recursive filtering operation and recursive
weight training are also investigated to further boost the restora-
tion performance. The proposed filter has demonstrated satisfac-
tory results in suppressing many distinct types of noise in natural
color images. Noticeable performance gains are demonstrated over
other prior-art methods in terms of standard objective measure-
ments, the visual image quality and the computational complexity.

Index Terms—Center-weighted vector median (CWVM) filter,
constrained least mean-square (LMS) algorithm, digital color
image restoration, partition-based adaptive vector (PBTVM)
filter.

I. INTRODUCTION

NONLINEAR vector filtering techniques have generated
much research interest in the last decade due to its impor-

tance in color image restoration. Numerous filtering techniques
proposed to date are based on multivariate order statistics
[1]–[4], which take the advantage of color inter-channel de-
pendence and avoid unpleasant drawbacks of component-wise
filtering techniques, i.e., pixel value rearranging and chromatic
shifting [5], [6]. The most well-known vector filters include the
vector median filters (VMF) [7], the vector directional filter
(VDF) [8], and the directional-distance filter (DDF) [9]. They
perform well in suppressing impulse noise and ouliers, but
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introduce blurring artifacts in edge and detail areas which fea-
ture high spacial frequency contents and variations. Weighted
nonlinear vector filtering techniques have been proposed to
achieve better performance in noise suppression and detail
preservation, which include distance-based weighted vector
filters [10]–[13], weighted VDFs [14], [15], and the generalized
selection weighted vector filters [16]. Adaptive vector filters
have been advanced for their effectiveness with respect to
different types of noise distributions and image structures,
which include filters utilizing local order statistics information
[17]–[22], based on gradient information [23], with peer group
classification [23], and using a digital path approach [25], to
name a few. In the case where noise model cannot be known a
priori, fuzzy vector filtering techniques have been developed
and achieved robust performance [26]–[31]. Recently, a class of
chromatic filters worked in the YCbCr color space is also pro-
posed to achieve better chromatic smoothness [32]. Please refer
to [33] for a comprehensive review on color image restoration
techniques.

The fact that different types of noise contaminate color
images in distinct ways poses a major challenge for the vector
filtering adaption [6], [33], [34]. Impulse noise destroys only
a small portion of an image and leaves other pixels noise free,
while additive noise contaminates every image pixel with a
certain type of statistical distribution. Detection-based vector
filtering techniques, such as the adaptive vector median filter
(AVMF) [12], the adaptive vector LUM smoother (AVLUM)
[13], the modified weighted vector median (MWVM) filter
[11], and the selection center-weighted vector directional filter
(SCWVDF)/adaptive center-weighted vector directional filter
(ACWVDF) [14], were specially designed to remove impulse
noise. They utilize a series of weighted vector median filters to
perform binary noise detection, and switch the outputs between
an identity filter and a weighted vector median filter according
to the detection results. Such a structure, while efficient for
impulse noise removal, is inappropriate in dealing with additive
noise or mixed noise contamination. In comparison, many
adaptive vector filters, such as the adaptive nearest-neighbor
multichannel filter (ANNF) [17], the adaptive vector direc-
tional filter (AVDF) [18], and the multichannel filter [23],
yield output by a robust weighting estimation based on all
image vectors in the filter window. They are designed to cope
with additive and mixed noise corruption, but at the cost of
possible image edges and details smearing. Some fuzzy vector
filtering techniques [28], [31] have tried to combine different
types of standard vector filters together by a large number
of fuzzy rules. However, the systematic optimization of such
an approach remains as an open problem. Others techniques
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[26], [27], [29] proposed a group of fuzzy similarity functions
within the weighted filter structure to enhance the robustness of
their performance. However, the selection of optimal similarity
functions is left to the user to decide, more often than not, in
an ad hoc manner. It is still a challenging task to design an
efficient vector filtering framework to cope with all different
types of noise in color images, i.e., impulse noise, additive
noise, as well as mixed noise, with its performance comparable
to that of the state-of-the-art filtering techniques designed for
each of these distinct types of noise.

In this paper, a novel partition-based vector filtering frame-
work is proposed for restoring color images contaminated by
different types of noise. The novelty of the filter lies in its
unique three-stage adaptive estimation, which consists of a
novel center-weighted trimmed vector median (CWTVM) filter,
a distance-based classification scheme, and a partition indexed
weighted filtering operation. The CWTVM filter is used to
provide robust reference estimates. The distance-based classifi-
cation scheme is used to map the local inputs into one of preset
structure cells. The weighted filtering operation is designed
to provide the best reconstruction with regard to the specific
structure partition classification. Off-line training is used to de-
termine the filtering weights for each structure partition cell to
achieve the best computation efficiency and performance, using
a constrained least mean-square (LMS) algorithm well-defined
in the vector space. The proposed vector filtering structure,
named hereafter as the partition-based trimmed vector me-
dian (PBTVM) filter, has achieved superior performance to a
number of well-known benchmarks in removing different types
of impulse noise, additive noise and mixed noise, in terms of
standard objective measurements and the subjective quality.

The paper is structured as follows. The central weighted ref-
erence filter is first formulated in Section II. Then in Section III,
the framework of the PBTVM filter is described in detail. Sec-
tion IV addresses the structure partitioning, the weight training,
and the recursive implementation of the filtering/training. A
number of experimental results are presented in Section V and
a brief conclusion is drawn in Section VI.

II. CENTER-WEIGHTED REFERENCE FILTER

A. Review of the CWVM Filter

A weighted vector median (WVM) filter [10], [35] has been
widely used in color image restoration for its high flexibility
in noise suppression and detail preservation, and a number of
algorithms [16], [36], [37] have been developed to optimize
its multiple filtering weights. Center-weighted vector median
(CWVM) filter [11]–[15] is a special type of the WVM filter
where only the weight of the CP is adjustable. It inherits the
flexibility of the WVM filter but greatly reduces the complexity
of implementation and optimization. In this section, the struc-
ture of the CWVM filter is reviewed along with associated ter-
minologies that will be used in later sections.

Let be the
pixel coordinates of an RGB color image, where and are
the height and the width of the image, respectively. At each co-
ordinate , a multivariate
is used to represent its pixel value, and a square filter window,

Fig. 1. Indexing of the pixel samples in a 3� 3 filter window.

, is also defined, which
centers at the coordinate and contains pixel samples (where

is an odd integer). The pixel samples of the window are in-
dexed in a lexicographic scan order, so that the central pixel
(CP) of the window, , always equals to . Fig. 1
illustrates the indexed window pixels of a 3 3 filter window,
where is the CP of the window.

Based on the terminologies above, the output of a CWVM
filter with a positive integer central weight, , is given by
[10]–[13], [36]

(1)

where is the center-weighted aggregated vector distance
(CW-AVD) given by

(2)

and denotes the norm (Euclidian distance) in this paper,
whereas other vector measures, such as the norm [7], the
generated Minkowski metric [6], the vector directional distance
[16], or other measures [33], [38], can be used here, as well.

The central weight of the CWVM filter can be adjusted ef-
ficiently to achieve different degrees of noise suppression and
image preservation. When the central weight , the CWVM
filter reduces to a standard VMF filter, which is powerful for
noise suppression but smears small details in the filter window.
As the value of increases, the detail preservation of the filter is
improved while the noise suppression performance is degraded.
The CWVM filter becomes an identity filter when

. Proofs of such properties of the CWVM filter can be found
in [10], [14]. An example of the outputs of the CWVM filter is
provided in Appendix.

B. Formulation of the CWTVM Filter

Despite the advantages of the CWVM filter and its success
in color image restoration, it has been found in our experiments
that a CWVM filter, if working with a relatively high central
weight value, often turns out to be oversensitive to impulse
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noise. This renders the CWVM filter an inappropriate reference
filter for the robust local structure classification in Section III.
Therefore, a novel CWTVM filter, which with high central
weights can achieve more robust performance than the CWVM
filter, is proposed in this subsection.

The structure of the CWTVM filter is distinct from that of the
CWVM filter in three aspects.

1) Before the CW-AVD calculation, all pixels of a filter
window are ranked in an ascending order according to
their Euclidian distances to the CP of the window.

2) Then a trimming technique is applied to the pixels of the
window according to the central weight value. Pixels which
have been ranked beyond a certain CP-local distance order
are discarded.

3) Finally, a modified CW-AVD function is applied to the re-
maining pixels of the window to find the filtering output,
using a central weighting scheme different from that of the
CWVM filter.

Denoting as a filter window centered at coordinate ,
the Euclidian distances between the CP and all pixels of the
window are given by

(3)

where represents the CP of the window,
denotes a pixel of the window, and as in the
previous subsection. The are ranked in an ascending order
such that (Note that the
coordinate variable is omitted for and for simplicity).
Accordingly, the pixels of the filter window are re-expressed as

(4)

where denotes a pixel of the window, which is indexed
by its CP-local distance ranking order, that is,

(5)

where the symbol “ ” represents a mapping from an original
value to its ranked version. Note that and consist
of the same set of pixels, but in different orders.

Based on the ranked pixel set , the output of the
CWTVM filter with an integer central weight, , is defined as

(6)

where is the modified CW-AVD function (or MCW-AVD)
given by

(7)

TABLE I
PERFORMANCE OF THE CWVM AND THE CWTVM FILTERS REGARDING

DIFFERENT RATIOS OF RANDOM IMPULSE CORRUPTION,
WHERE THE MSE IS MEASURED

The proposed CWTVM filter shares a number of properties
with its counterpart, the CWVM filter. The CWTVM filter re-
duces to a standard VMF filter when , or an identity filter
when . With increased in the range of

, the detail preservation of the CWTVM filter is improved
whereas its noise suppression performance degraded. However,
the CWTVM filter can achieve more robustness against impulse
noise than what the CWVM filter does when the central weight
increases, due to its novel CP-distance trimmed technique given
in (7). Based on the random distribution of impulse noise, such
a technique is able to trim away some noise even before the mul-
tivariate aggregation ordering is applied.

Evaluation of the CWTVM filter is conducted on a wide
range of impulse corrupted natural color images. Table I lists the
results of the CWTVM and CWVM filters on a 512 512-pixel
24-bit RGB image, Lena, corrupted by different ratios of
random impulse noise, where a 3 3 filter window is used.
Noticeable gains are observed when the CWTVM filter works
with the central weight or and the noise ratio is
relatively high. The mechanism leading to the performance
improvement is analyzed in Example 2 of Appendix. Such an
improvement will greatly benefit the local structure estimation
and classification proposed in Section III. The performance of
the CWTVM filter is slightly lower than that of the CWVM
filter when the central weight or . However, its influ-
ence on the proposed PBTVM filter is negligible as long as the
CWTVM filter outputs reference estimates with reduced noise.

III. PARTITION-BASED VECTOR FILTERING STRUCTURE

A. Review of Switch-Based Vector Median Filters

A number of switch-based vector median filters [11], [13],
[14] have been reported in recent years, which take the advan-
tages of the CWVM filter to detect impulse corruptions and to
preserve fine image structures. Given a filter window cen-
tered at the pixel containing pixel samples, these filters
first utilize a series of CWVM filters with their central weights

, respectively, to obtain a set of ref-
erence estimates, , from
the pixels of the window, where denotes the output of a
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CWVM filter with a central weight . Then the distance between
the CP and each of the reference estimates is measured as

(8)

where represents the Euclidean distance for the AVLUM
filter [13] and the MWVM filter [11], or the directional dis-
tance for the SCWVDF/ACWVDF filter [14]. Finally, a group
of preset thresholds, , is used
to evaluate the irregularity of the CP-reference distance ,
and accordingly, a binary decision mechanism is activated to de-
termine the filter output, , as follows [13], [14]

if all
.

(9)

Despite their state-of-the-art performance in impulse sup-
pression and structure preservation, these switch-based vector
median filters still have a few drawbacks.

1) The accuracy of their binary noise detection heavily relies
on the threshold values and the condition (e.g., im-
pulse noise model and image structure) of the threshold op-
timization. It is hard for these filters to cope with different
impulse models or varying image characteristics.

2) Although their switch-based reconstruction mechanism
works efficiently for the impulse noise removal, such a
selective mechanism is inappropriate for suppressing other
distinct types of noise, such as additive noise or mixed
noise which contaminates original images.

B. Formulation of the PBTVM Filter

A new filtering framework is proposed in this section to elim-
inate the drawbacks associated with the existing switch-based
vector median filters. The new filter, named hereafter as the
partition-based trimmed vector median (PBTVM) filter, com-
bines the robust CWTVM filter of Section II-B with the parti-
tion-based weighted filtering techniques developed in [40], [41],
inheriting the merits from both techniques. A group of estimates
are first produced by the CWTVM reference filter. Then, a struc-
ture classifier is formulated to map the inputs into one of the par-
tition cells. Finally, a weighted filtering operation is activated to
achieve the best noise suppression and image preservation for
the classified structure. The new PBTVM filter involves neither
binary noise detection nor selective filtering mechanism. The
schematic diagram of the new filter is presented in Fig. 2. De-
tails of the CP-reference based structure classification and the
partition-based weighted filtering are described in the following
sections.

1) CP-Reference-Based Structure Classification: Given
a filter window, , which centers at the CP, , and
contains pixel samples, a series of CWTVM filters with their
central weights , respectively, are used to pro-
duce a set of reference estimates, ,
where is the CWTVM filtering output defined by (6),
and . After the reference filtering, the distance

Fig. 2. Schematic diagram of the proposed PBTVM filter, where the difference
vector. ê(c) is mapped into one ofM mutually exclusive partitions to trigger
an optimal weighted filtering, and the operator � is defined in (15).

between each of the estimates and the CP of the window is
measured as

(10)

and a distance vector, , is formulated as follows:

(11)

The distance vector as a whole contains more local struc-
ture information than any of its component, . In order to
reveal most of the structured information in the vector , a
structure classifier, , is formulated as a function of the vector

. The classifier maps the inputs from an dimensional
vector space to one of mutually exclusive partition cells as
follows:

(12)

where the partition cells, , satisfy
and for .

Various partition methods, such as the scalar quantization
(SQ) [42], the fuzzy quantization (FQ) [43], or the vector quan-
tization (VQ) [44] can be used to construct the classifier. In
this paper, the scalar quantization is selected due to its com-
putational efficiency and high robustness. Given the distance
vector , a group of decision levels (thresholds),

, are defined for each of its components,
. The levels are formulated in a monotonically ascending

order so that for any , where is a
preset value that controls the number of decision levels for each

, and accordingly, the total number of partition cells, i.e.,
.

Following these definitions, the classifier can be ex-
pressed by a partition index, , which is given by

(13)
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where for

if (14)

An example is provided in Appendix to demonstrate the calcu-
lation of the partition index for and .

The proposed classification method is distinct from the noise
detection methods used in the existing switch-based vector me-
dian filters [11], [13], [14]. In those filters, reference estimates
are produced by the CWVM filters, and the CP-reference dis-
tances are compared with a set of thresholds individually to
contribute a binary noise decision. However, in the proposed
method, the new robust CWTVM filter is used for the reference
estimate generation, and the classifier is formulated on a mul-
tivariate distance space which maps the local inputs to one of
the partition cells. Moreover, each of these partition cells rep-
resents a specific local structure, which can be restored by an
optimal weighted filtering operation, regardless of whether it is
corrupted and how the corruption occurs.

2) Partition-Based Weighted Filtering: For the given filter
window, , all the reference estimates from the CWTVM
filter, , and the input CP, , are
used to reconstruct the original CP value, , via a weighted
filtering operation given by

(15)

where “ ” denotes an unconventional “dot” product between
a row vector and a column vector. As shown in (15), each el-
ement of the row vector is a scaler while each element of the
column vector is a 3 1 vector, and the number of elements
(scalers) of the row vector must be the same as that of ele-
ments (3 1-column-vectors) of the column vector for “ ” to
apply. Between the elements of the two vectors, the product is
a product between a scaler and a vector (or matrix) which has
been defined in the conventional matrix algebra. The row vector

(16)

is the weight vector for the filtering operation, where the value
of indicates the index to the classified partition cell,
and the column vector

(17)

consists of all inputs of the weighted filtering operation. To
facilitate further discussion, the weight vector is rewritten as

, where is the
reduced weight vector. Accordingly, the inputs of the weighted
filtering operation is rewritten as ,
where is the reduced fil-
tering input vector.

Local invariance constraint [39] is applied to the weight
vector to guarantee an unbiased reconstruction, which leads to

(18)

where is a unitary vector. As such, the
output of the PBTVM filter defined by (15) is rewritten as

(19)

Based on its flexible weight configurations, the proposed
filtering structure can be of any between a highly nonlinear
median filter and a linear weighted averaging filter, which
provides an efficient solution to suppress distinct types of
noise contaminations. The structure includes the switch-based
vector median filters [11], [13] as a special case, provided
that the filtering weights, , are switched between one and
zero according to a binary noise detection. However, there
are two aspects that render the new structure distinct from the
existing adaptive vector filters [17], [26]. First, the inputs of
the weighted filtering are the reference estimates from a series
of robust CWTVM filters, while the inputs of the existing
adaptive vector filters are pixel samples produced by a local
multivariate ordering. Second, the proposed filtering weight
vector is trained off-line and selected on-line according to the
structure classification, while the weights of those adaptive
filters are generated on-line by a robust statistics estimator or a
fuzzy membership function preset for the entire image.

IV. PARTITION THRESHOLD FORMULATION AND

FILTERING WEIGHT TRAINING

A. Partition Threshold Formulation

From a theoretic point of view, the partitioning thresholds
used in (14) and filtering weights related to each partition cell
should be jointly optimized to achieve the best restoration
performance. However, such a nonlinear coupled optimization
process often incurs a high computational cost, and easily
leads to local minima [44], [45]. In this paper, a decoupled
optimization technique is developed to avoid aforesaid issues,
which is depicted as follows.

1) For initialization, the total number of partition cells and
the starting threshold values are specified using a heuristic
approach and prior knowledge.

2) Based on the initialized partition thresholds, the filtering
weights are updated using the constrained LMS algorithm
described in Section IV-B and a training image contami-
nated by a specified noise source.

3) Given the updated filtering weights, the Simplex minimiza-
tion method [46] is used to optimize the threshold values
associated with each independently. The process ter-
minates when all the threshold updating sizes are smaller
than 0.5; else

4) Repeat from Step 2) using the updated thresholds.
It is clear that the threshold set obtained by the proposed opti-
mization process theoretically may lead to a suboptimal solu-
tion. However, by tuning threshold values on a range of test im-

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 25,2010 at 03:11:26 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: PARTITION-BASED VECTOR FILTERING TECHNIQUE FOR SUPPRESSION OF NOISE IN DIGITAL COLOR IMAGES 2329

TABLE II
PROPOSED THRESHOLD, T , FOR THE PARTITIONING OF THE

DISTANCE VECTOR SPACE OF A 3� 3 FILTER WINDOW,
WHERE 1 � k � 4 AND 0 � l � 8

ages and noise corruption scenarios, it is found, as demonstrated
in Section V, that such a decoupled optimization process can
achieve a superior performance while maintaining a competi-
tive computation efficiency.

Table II lists the threshold set obtained by the proposed op-
timization process using a 3 3 filter window . The
parameter , which is the maximum valid cen-
tral weight of the CWTVM filter for the given filter window.
The parameter is preset to , so that the clas-
sifier has decision levels to match each reference es-
timate to the signal characteristics of all pixels in the window.
Such a configuration leads to a total number of partition cells

. This partition threshold set is used in all
our experiments without any further optimization. It is noted
that other threshold values or a different partition cell
number may be available for the proposed PBTVM filter
with a 3 3 filter window, and the partition threshold set for the
PBTVM filter with a 5 5 filter window size can be obtained
using the proposed formulation technique as well. Neverthe-
less, all the experiments in Section V suggest that the PBTVM
filter with the partition threshold set of Table II and a 3 3 filter
window, if implemented recursively, is able to achieve satisfac-
tory performance under most of noise corruption conditions.

B. Constrained LMS Weight Training

For a given filter window , the filtering weight set,
, which relates to the classified structure partition cell , is

trained to minimize the mean-square error (MSE) given by

(20)

where is the expectation operator, and denote, re-
spectively, the original and the reconstructed pixel value by the
PBTVM filter at coordinate . Since all the partition cells,

, are mutually exclusive to each other, the min-
imization of the overall MSE can be equivalently achieved by
the independent MSE minimization with respect to each parti-
tion cell over the entire test image, that is

(21)

where is the partition index defined by (13). Following the
steps similar to [39] and [40], the updating procedure for the
weight coefficients, , at the th iteration is
given by

(22)

(23)

where is the index to the classified partition cell, is
a identity matrix, denotes the Kronecker (or Tensor)
product [49], is a unitary vector, and

...
(24)

is a column vector consisting of all the difference vectors be-
tween the CP and the reference estimates from the of (19),
so that each element of can be expressed as

for .
In order to obtain a steady convergence in a nonstationary en-

vironment such as image processing applications, the step-size
parameter in (22) has to be adaptive to and, therefore, normal-
ized by the input energy [39]. As a result, the parameter at
the th iteration is given by

(25)

where is a constant to guarantee the sufficient
condition of a strict convergence.

Extensive tests have confirmed that the proposed weight
training algorithm can steadily converge to a desired stopping
criterion in a moderate number of iterations. Fig. 3 demon-
strates the results with three 256 256-pixel 24-bit RGB
images, Lena, Peppers, and Parrots, corrupted by 10% random
impulse noise. Given a stopping criterion, MSE ,
the training algorithm approachs a steady solution within, at
most, 60 iterations. The tests with other corruption scenarios,
although not presented in this paper, have demonstrated a very
similar convergence trend.

The dependence between the error criterion (MSE) and the
parameter is also evaluated through the tests. Fig. 4 shows
the results with Lena, Peppers, and Parrots corrupted by 5% and
10% impulse noise, respectively, where the value of covers
the entire range of with an increment of 0.001. The
optimal value of always lies in the range of .
Thus, a suboptimal value, , is used throughout our
training and testing process.

C. Recursive Filtering and Weight Training

The recursive implementation of weighted nonlinear filters
has been examined in earlier published work [40], [41]. As these
filtering structures are able to adapt the weighting operation to
the input values, better noise suppression is generally achieved
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Fig. 3. Convergence evaluation of the proposed training algorithm using
test images Lena, Peppers, Parrots corrupted by 10% random impulse noise.
(a) MSE versus iteration. (b) Updating error versus iteration.

without introducing excessive blurring artifacts. In this subsec-
tion, a recursive implementation of the proposed PBTVM filter
is formulated to achieve better restoration performance. Given a
filter window, , containing pixel samples and denoting

, the input set of the recursive PBTVM filter is
given in a lexicographic scan order as follows:

(26)

where are the outputs of the recur-
sive PBTVM filter at previous pixel positions, and

are the inputs directly from the current filter
window . Given such an input set , the implemen-
tation of the recursive PBTVM filter is very similar to its non-
recursive counterpart. In other words, the is input into
the CWTVM filter to produce the reference estimates through
(3)–(7), then the reference estimates are fed into the structure

Fig. 4. Dependence of the error measurement (MSE) on the training step pa-
rameter � using test images Lena, Peppers, and Parrots corrupted by 5% and
10% impulse noise, respectively. (a) 5% random impulse noise. (b) 10% random
impulse noise.

classification via (10)–(14), and the filtering output is finally
produced by the partition-based weighted operation given by
(15)–(18).

Although the recursive PBTVM filter achieves a better overall
performance, it precludes a closed-form analytical solution to
its weight training process. This is because its input set, ,
substantially depends on the previous outputs of the filter. A
heuristic weight training strategy is developed here as an alter-
native, which is able to satisfy the weight training of the recur-
sive PBTVM filter, even though many assumptions of a steady
convergence do not necessarily hold. Given the weight set at
the th iteration as , where is the
weight vector of the partition cell , and , the
proposed weight training strategy is given as follows.

1) At the first iteration, the weight set is updated by the
training algorithm defined in (22)–(25) and using the
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Fig. 5. Schematic diagram of the proposed recursive weight training strategy
for the PBTVM filter.

nonrecursive input set . The resultant weight set,
denoted as , is then used by the PBTVM filter to
produce the outputs, via (3)–(18).

2) At the second iteration, the outputs of step (1) is used to
construct the input set of (26). This recursive input
set is then used to update the weight set, via the training
algorithm given by (22)–(25).

3) For any iteration , the outputs of the PBTVM filter at
iteration and the weight set are used to con-
struct the current recursive input set . This input set
is then used for further weight set updating via the training
algorithm given by (22)–(25).

Fig. 5 depicts the schematic diagram of the recursive weight
training strategy. Despite its intractability in mathematic anal-
ysis, the proposed recursive training strategy always converges
to solutions with a performance better than that of its nonrecur-
sive counterpart in extensive tests conducted on real image data.
Fig. 6 demonstrates the convergence of the recursive weight
training strategy on several test images corrupted by different
degrees of impulse noise, where the MSE values given at the first
iteration correspond to those by the nonrecursive PBTVM im-
plementation. The performance improvements of such a recur-
sive implementation are significant when images are highly cor-
rupted, while they are diminishing, in comparison with its non-
recursive counterpart, when the images become less corrupted
by noise. Moreover, satisfactory results are always achieved at
iteration . Therefore, the PBTVM filter is implemented
recursively in all the following experiments.

Fig. 6. Convergence plots of the recursive training strategy using test images
Lena, Peppers, and Parrots corrupted by different degrees of random impulse
noise.

V. SIMULATION RESULTS

The proposed PBTVM filter has been evaluated by a ex-
tensive range of tests, and its performance is compared with
a number of prior-art filtering techniques in the area of color
image restoration. The tests and analysis are summarized as
follows:

1) a performance comparison of the PBTVM filter with other
prior-art impulse filtering techniques with respect to dif-
ferent levels of impulse corruptions;

2) a robustness assessment of the the PBTVM filter with re-
spect to the image or noise characteristics variation in its
weight training and filtering operation;

3) a performance comparison of the PBTVM filter with other
state-of-the-art adaptive filters in suppressing additive
noise or mixed noise corruption; and

4) a computational complexity analysis of the PBTVM filter
framework.

Several objective criteria are used in the tests to measure
the distortion in filtering outputs, which include the MSE, the
mean absolute error (MAE), and the normalized color differ-
ence (NCD). The MSE and MAE are defined in the RGB color
space and given as follows [12], [14]:

(27)

(28)

where and are, respectively, the original and the re-
stored pixel at pixel coordinate ; and denote the
width and the height of the test image, respectively; and rep-
resents the number of color channels. Please note that
denotes the norm (Euclidean distance) and denotes the
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norm (city-block distance). The NCD measures the color dis-
tortion in the perceptual uniform color space and is
defined by [6], [14]

(29)

where for a given pixel coordinate in the
color space, and represent, respectively,
the magnitude of the original pixel, and the difference between
the original pixel and its reconstruction.

A. Impulse Noise Suppression

In terms of the impulse noise suppression, the impulse noise
model proposed by [12], [14], [16] is used in the tests to simulate
the impulse corruption present in natural color images, which is
given by

with probability
with probability

(30)

where and denote, respectively, the original pixel and
the sample pixel at a pixel coordinate , denotes the noise
ratio (the percentage of the corrupted pixels in a given image),
and is a noisy version of , who suffers from impulse
corruption to, at least, one of its RGB components. For 24-bit
RGB test images, when the impulse amplitudes take on the value
of 0 or 255 with an equal probability, the impulse noise is known
as the pepper-and-salt (PS) impulse. However, if the impulse
amplitudes are distributed randomly in the range of , a
more generalized type of impulse noise is generated and named
as the random impulse noise. Such a random impulse noise is
used in this section for all the tests.

All the impulse corruptions are generated according to the
model in (30), using the random impulse noise and a noise ratio

varied from 0% to 30%. A two-step process [8], [26], [47] is
applied to simulate the channel correlation of the impulse cor-
ruption. Given the preset noise ratio , each RGB component of
the test image is corrupted independently by the random impulse
noise. Then a factor is used to simulate the channel cor-
relation for each corrupted pixel, that is, if a pixel is corrupted
by random impulses on at least one of its components, then its
noise-free components have a 50% probability to be corrupted,
as well.

The evaluations of impulse suppression are conducted on
three 256 256-pixel 24-bit RGB images, Lena, Peppers, and
Parrots, which have been widely used by prior-art impulse
filtering techniques [12]–[16] for their representive color char-
acteristics and image structures. Two classes of vector filters
are involved in the impulse suppression tests. The first includes
classic vector filters such as the VMF [7], the generalized
vector directional filter (GVDF) [8], and the DDF [9]. The
second is the state-of-the-art techniques recently developed
for the impulse suppression, which includes the self-adaptive
algorithm (SAA) [19], the AVMF [12], the AVLUM [13],
the histogram-based trimmed median (HBTM) filter [22], the
SCWVDF/ACWVDF [14], and the selection weighted vector

directional filter (SWVDF) [15]. The tested filters are imple-
mented with a 3 3-pixel window in all the tests, which slide
from pixel to pixel in a raster scanning fashion.

Experiment 1—Performance Within the Training Set: This
experiment is designed to assess the performance of the vector
filters aforementioned in restoring different levels of impulse
corruptions. Parameter settings as proposed in the original
works are used by the AVLUM, the HBTM, the AVMF, the
ACWVDF/SWVDF during the tests. The noise ratio estimator
is bypassed in the SAA filter and the actual noise ratio is used
instead. The proposed PBTVM filter is applied within the
training set, that is, the same image and noise ratio to be filtered
are used in the off-line weight training of the filter.

Figs. 7–9 present the comparative results of restoring the test
images Lena, Peppers, and Parrots corrupted by random im-
pulse varied from 0% to 20%. The selected noise range enables
a critical examination of the detail-preserving performance on
images corrupted by low noise intensities, while still allowing
a sufficient noise level for the performance consistency evalu-
ation. The prior-art ACWVDF/SWVDF performs well at low
noise ratios. However, its performance is degraded dramatically
when the corruption level is increased, and is even inferior to
classic vector filters such as the VMF or the DDF for serious
noise corruptions with . In contrast, the PBTVM filter
has demonstrated a quite consistent improvement over other fil-
ters in a wide range of noise ratios and image structures. The
improvement is most significant in Fig. 7 in terms of the MSE
criterion and with the image Parrots which contains high de-
tails and specific spectral characteristics. In Figs. 7–9, where the
MAE and NCD criteria are used, the PBTVM filter shows a very
noticeable improvement over other filters in most cases. Please
note that the results with the VMF and the DDF are not shown in
Figs. 7–9 because their MSE/NCD ranges are well beyond the
display scales of the figures. The restoration results for noise
corruptions with , although not shown in the current
figures, have shown a very similar trend in the experiment.

Experiment 2—Performance Outside the Training Set: The
robustness of a given filter in processing corrupted images out-
side of its training set is very important for any real restoration
application. In order to assess the robustness of the PBTVM
filter, three specific types of outside training modes are formu-
lated as follows.

1) Type-a: The same test image but different noise corruptions
are used in the weight training and the filtering operation.

2) Type-b: Different test images but the same noise corruption
are used in the weight training and the filtering operation.

3) Type-c: Different test images and different noise corrup-
tions are used in the weight training and the filtering oper-
ation.

Table III presents the experiment results on two test images,
Peppers and Parrots, where the performance of the PBTVM
filter working in all three outside training modes are evaluated.
For Type-a PBTVM filter (PBTVM-a), the filtering weights are
trained for a 15% random impulse corruption on the image to
be restored in the filtering operation. For Type-b PBTVM filter
(PBTVM-b), the filtering weights are trained using a different
test image, Lena, corrupted by the same noise as that used in the
filtering operation. The filtering weights in Type-c PBTVM filter
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Fig. 7. Performance of the filters in terms of the MSE, using different test im-
ages and impulse noise ratios. (a) Lena. (b) Peppers. (c) Parrots.

(PBTVM-c) are trained using the test image Lena with a 15%
random impulse corruption. Performance of the most relevant
state-of-the-art techniques, which include the SAA filter (with
the actual noise ratio), the SWVDF (with parameter ,
trained using the test image Lena and a 10% random impulse

Fig. 8. Performance of the filters in terms of the MAE, using different test
images and impulse noise ratios. (a) Lena. (b) Peppers. (c) Parrots.

corruption), and other filters with their recommended parameter
settings, are also listed in the table for a comparison. Moreover,
the results of the PBTVM filter with ideal training (or within
the training set as mentioned previously) are also attached in
the last row of the table for readers’ reference.
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Fig. 9. Performance of the filters in terms of the NCD, using different test im-
ages and impulse noise ratios. (a) Lena. (b) Peppers. (c) Parrots.

An important observation from Table III is that the PBTVM
filter works quite robustly throughout all the corruption sce-
narios, despite the fact that the filtering weights used to restore
the corrupted images are actually outside the training set. In
most of the cases, the PBTVM filter in all three modes has pro-
duced noticeable improvements over other filtering techniques

in terms of most, if not all, of performance criteria and mea-
sures. Negligible performance degradations are observed be-
tween the PBTVM filter in three test modes and the filter by
the ideal training. The PBTVM filter in Type-a mode has, in
general, achieved the best performance over other two modes.
Even the PBTVM filter in Type-c mode, where both the training
image and the training corruption are different from the cor-
rupted images to be restored, still achieves a better performance
in most scenarios in comparison with other vector filters. Exten-
sive performance evaluations and results with other test images
and noise contamination scenarios, although not shown in this
paper, have reached a very similar conclusion.

Besides the objective performance improvements, the pro-
posed PBTVM filter also achieves a consistently better per-
ceptual quality than other impulse filtering techniques. Fig. 10
demonstrates the reconstructions of several state-of-the-art fil-
tering techniques for the image Parrots, where a 5% random im-
pulse corruption is selected to reveal the detail preservation ca-
pability of the filters with respect to low noise intensity corrup-
tions, and the filtering weights of the PBTVM filter are trained
off-line on image Lena corrupted by a 15% random impulse.
It is observed that the PBTVM filter provides an almost noise
free reconstruction, whilst the SCWVDF and the SAA filter still
have noticeable impulses left in the background area between
two birds. Moreover, the reconstruction of the PBTVM filter has
well-preserved stripe structures around the eye area, which is al-
most as the same as, or even better than those by the SCWVDF
and the SAA techniques. The subjective quality of the new filter
can be further improved if a more similar image or noise corrup-
tion model is used in the weight training process.

B. Restoration of Other Noise Contamination

In addition to its superior performance in impulse noise re-
jection, the new filter also works satisfactorily in suppressing
the Gaussian noise as well as the mixed Gaussian and impulse
noise. The noise models defined in [6], [30], [47] are used in the
experiments to simulate corruptions. The Gaussian noise con-
tamination is simulated by adding in each component of image
pixels an random noise which follows a zero mean Gaussian
distribution and a preset standard deviation, . The mixed noise
contamination is simulated by a Gaussian noise contamination
followed by a random impulse corruption of (30). A group of
prior-art techniques for the Gaussian and mixed noise restora-
tions have been involved in the performance comparison, which
include the adaptive hybrid multivariate (AHM) filter [4], the
ANNF [17], the AVDF [18], and the fuzzy vector median filter
(FVMF) [26]. Classic vector filters, such as the VMF [7] and
the GVDF [8], are also included in the test for references and
benchmarks. A 3 3 filter window size has been used in all the
cases.

Table IV summarizes the results on two 256 256-pixel RGB
test images, Peppers and Parrots. Four corruption scenarios are
listed in the table, where G10 and G20 denote two types of the
Gaussian noise contaminations, respectively, with the standard
deviation and , whilst G10I2 and G20I5 rep-
resent two types of the mixed noise contaminations, the former
being mixed by the Gaussian noise and the random
impulse noise , the latter by the Gaussian noise
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TABLE III
IMPULSE SUPPRESSION PERFORMANCE OF THE NEW FILTER COMPARED WITH OTHER TECHNIQUES, WHERE THE PBTVM FILTER, WORKING OUTSIDE

THE TRAINING SET AND WITH A 3� 3 WINDOW SIZE, IS USED. (a) COLOR IMAGE PEPPERS CORRUPTED BY DIFFERENT LEVELS

OF RANDOM IMPULSE. (b) COLOR IMAGE PARROTS CORRUPTED BY DIFFERENT LEVELS OF RANDOM IMPULSE

and the random impulse . The outside
training mode is used by the PBTVM filter to assess its per-
formance robustness regarding different images and noise dis-
tributions. Its filtering weights for the Gaussian noise suppres-
sion are trained off-line on another 256 256-pixel RGB test

image, Lena, corrupted by a Gaussian noise with , and
the filtering weights for the mixed noise suppression are trained
off-line using Lena image corrupted by the mixed noise G20I5.

Table IV presents the results of the test filters in restoring
color images contaminated by distinct types of noise. For the
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Fig. 10. Reconstruction of the proposed PBTVM filter compared with those by other techniques, where the test image Parrots is corrupted by the random impulse
with p = 5%. (a) Original image Parrots, (b) 5% random impulse corruption, (c) VMF output, (d) SCWVDF output, (e) SAA output, and (f) PBTVM output.

scenarios where the noise contaminations are the same as those
used in weight training, the new filter achieve a considerable
improvement over other techniques in terms of all the objec-
tive criteria. For the scenarios where the training condition and
filtering condition are totally different, the new filter still de-
livers a robust performance, with its results slightly worse than
the top performers (e.g., the ANNF) but is still quite compa-

rable to those of the rest techniques. There are a few cases where
the NCD measures of the PBTVM filter are slightly worse than
those of prior-art techniques, but the new filter always achieves
a better subject quality than its counterparts.

Fig. 11 highlights the image Parrots restored by the PBTVM
filter and other prior-art techniques from a mixed noise contam-
ination, G20I5. Blocks of color distortion remains in the output
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TABLE IV
RESULTS OF RESTORING COLOR IMAGES CORRUPTED BY VARIOUS TYPES OF GAUSSIAN AND MIXED NOISE, WHERE A 3� 3 WINDOW SIZE IS USED.

(a) PEPPER CORRUPTED BY VARIOUS ADDITIVE AND MIXED NOISE. (b) PARROTS CORRUPTED BY VARIOUS ADDITIVE AND MIXED NOISE

of the recursive mean filter. The AHM filter works quite well
in preserving the image details (i.e., the stripes around birds’
eyes). However, some pepper-like impulses are left in the recon-
struction as a result of inaccurate/inadequate local statistics es-
timation. The ANNF and the AVDF preserve the edge integrity,
but fine structures are blurred and the background is highly dis-
torted by chromatic blotches. A better result is achieved by the
PBTVM filter. It provides a smoother chromatic background,
while the fine stripes and bird eyes are clearly preserved.

C. Computational Complexity Analysis

A general framework has been used to analyze the compu-
tational requirements of image filters [15], [19], [30], [48]. The
framework evaluates the computational complexity of a specific
filter by counting the total elementary operations required to
processing an window which contains vector samples.
Several elementary operations are frequently taken into account
in the analysis, which include additions (ADDs), multiplications
(MULTs), divisions(DIVs), square roots (SQRTs), comparisons
(COMPs), exponents (EXPs), and arc cosines (ARCCOSs).

Table V presents the elementary operations required for
a number of vector filters, where the VMF, the SAA and
the AVLUM use the Euclidian distance, the GVDF and the
SCWVDF employ the vector directional distance, and the
SWVDF utilizes the distance-directional distance. The weights
of the SWVDF and the PBTVM filter are trained off-line, and
the noise/parameter estimations of the SAA filter are bypassed
for a maximum computation efficiency. The HBTM and the
SAA filters occur a quite low computational cost which is
comparable to the VMF. The computational complexity of the
PBTVM filter is fairly reasonable despite its three-stage adap-
tation structure. Its operations associated with the reference
estimation, structure partition, and weighted filtering are of

on the pixel basis, which is quite common to any selec-
tive vector filter, such as the AVLUM or the SWVDF. However,
since the arc cosine operation usually cost more computation
than other operations, the computational complexity of the
PBTVM filter is usually much lower than that of the SCWVDF,
and slightly higher than that of the AVLUM filter.

Table VI lists the execution times of a number of filters in
processing the 256 256 RGB image Lena corrupted by 10%
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Fig. 11. Reconstruction of the proposed PBTVM filter compared with those by other techniques, where the test image Parrots is corrupted by the mixed Gaussian
noise (� = 20) and random impulse (p = 5%). (a) Mixed noise corruption, (b) VMF output, (c) AHM output, (d) ANNF output, (e) AVDF output, and
(f) PBTVM output.

random impulse noise using a 3 3-pixel window. Please note
that the program was written in C++ and run on the same sim-
ulation platform (P4 3.0 GHz/2096 MB DDR/Window XP Pro)
without any code optimization. Two work modes of the SAA
filter are tested separately, i.e., the maximum computation ef-
ficiency model (SAA-a) where both the noise estimator and

the parameter estimation were bypassed, and the normal work
mode (SAA-b) where both the noise estimator and the param-
eter estimation are activated. It is interesting to note that execu-
tion time of the PBTVM filter is just slightly longer than that
of the AVLUM, while comparable to that of the SAA-b filter
where the on-line parameter estimation is activated. In contrast,
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TABLE V
COMPUTATIONAL COMPLEXITY ANALYSIS OF THE PROPOSED PBTVM FILTER COMPARED WITH OTHER TECHNIQUES

TABLE VI
EXECUTION TIME OF THE PROPOSED PBTVM FILTER COMPARED WITH OTHER TECHNIQUES, WHERE THE 256� 256 RGB IMAGE

LENA CORRUPTED BY 10% RANDOM IMPULSE NOISE IS USED, AND ALL FILTERS RAN WITH A 3� 3 FILTER WINDOW

Fig. 12. Calculation of the partition index p(c) for the input distance vector, ê(c) = [e1(c); e2(c); e3(c)] , where the partition threshold set is given by Table VII
with K = 3 and L = 2.
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TABLE VII
EXEMPLARY PARTITION THRESHOLD SET FOR K = 3 AND L = 2

the SCWVDF, which follows a similar structure to that of the
AVLUM but using the vector directional distance, requires al-
most 1.6 times the computational cost of the PBTVM filter to
process the same corrupted image.

VI. CONCLUSION

A partition-based adaptive vector filter framework is pro-
posed for suppressing distinct types of noise in digital color
images. The filter uses a series of robust reference filters to esti-
mate the local structure, and utilizes a structure classification to
map the inputs into mutually exclusive partition cells. Adaptive
weighting filtering is formulated to achieve the best restoration
performance for the given local structure, where the filtering
weights are optimized off-line for each partition cell through a
constrained LMS algorithm. The proposed filtering technique
demonstrates a superior performance over other state-of-the-art
vector filters in suppressing the random impulse noise, the
Gaussian noise, as well as the mixed Gaussian and impulse
noise. Significant improvements have been observed in terms of
standard objective measurements and perceived image quality.

APPENDIX

Example 1: Given the pixel samples of a 3 3 filter window,
, in a lexicographic scan order as follows:

where three local pixels, , , and , have been
corrupted by the Salt-and-pepper impulse noise, and the central
pixel (CP), . The outputs of the
CWVM filter with central weight , respectively,
are produced according to (1)–(2) and listed as follows:

When a low center weight value is applied, the outputs of the
CWVM filter, e.g., and , are able to assemble the

noise-free CP value. However, when the center weight becomes
higher, the outputs of the CWVM filter, e.g., and ,
suffer from serious impulse corruption.

Example 2: Consider again the filter window given in
Example 1, where and .
Applying the CP-distance ranking method of (3)–(5) to the ob-
served pixels will result in a re-ordered pixel sequence as
follows:

Note that three corrupted pixels, , , and of
the , are now ranked in the last , the second

, and the first positions in the , respec-
tively. So, when the central weight , one of these cor-
rupted pixels, (i.e., ), will be trimmed out of the
modified CW-AVD calculation (7). As a result, the outputs of
the CWTVM filter with central weights, , will be

With the contribution of the CP-distance trimming technique,
the CWTVM filter with is able to produce a noise free
output, whilst the output of the CWVM filter with the same
center weight still suffers from the impulse corruption.

Example 3: Given and , the total number of
partition cells . Fig. 12 demonstrates the calcula-
tion of the partition index according to (13) and (14), where
the input distance vector is , and
the threshold set is given by
Table VII.
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