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Evaluation of Hepatocellular Carcinoma
With Dynamic lC-Acetate PET:
A Dual-Modeling Method

Sirong Chen and Dagan Feng, Fellow, IEEE

Abstract—Quantification of the 1! C-acetate liver studies with
dynamic positron emission tomography (PET) could significantly
improve the evaluation of hepatocellular carcinoma (HCC), where
both time-activity curves (TACs) of the hepatic artery (HA) and
portal vein (PV) (the dual hepatic blood supply) are required.
However, directly measuring them by the blood sampling or
cannulation procedure is very invasive. In addition, it is very
hard to differentiate the PV from the surrounding liver tissue
on PET images by the currently developed indirect methods. To
noninvasively and efficiently access the TAC of PV, we investigated
the possibility of modeling the dual hepatic blood supply and
presented two hepatic dual-input (DI) models. Combining the
established 1! C-acetate liver model with two different DI models,
we obtained two dual-models with six/seven parameters to fit the
dynamic PET measurements. The fitting results were compared
with those of the ! C-acetate liver model using image-derived
dual hepatic inputs (the “Golden standard”) by statistical study.
The adequacy of the two dual-models was estimated by Akaike
Information Criteria (AIC) and Schwarz Criteria (SC). It was
revealed that the proposed modeling technique could successfully
account for the hepatic dual blood supply and the six-parameter
(6-P) dual-model is more suitable for quantification of 1! C-acetate
liver studies.

Index Terms—Dual-model, hepatic dual-input (DI) model,
hepatocellular carcinoma (HCC), parameter estimation, positron
emission tomography (PET).

1. INTRODUCTION

HE use of positron emission tomography (PET) for the
T study of liver disease has been mainly in the detection of
liver tumors [1]-[5]. However, the investigation of the well-
established '®F-fluorodeoxyglucose (FDG) PET imaging sug-
gested that the detection of liver tumors, especially hepatocel-
lular carcinoma (HCC), is hampered due to the abundance of the
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enzyme glucose-6-phosphatase in HCC leading to leakage of
FDG metabolites back to the circulation [1], [6]. This Achilles’
heel of PET in evaluating HCC has not been resolved until Ho
etal. [4], [5] introduced ! C-acetate tracer in imaging HCC. The
quantitative modeling studies of the dynamic '*C-acetate PET
were thereafter conducted and the results conclusively shown
that the measurement of the local hepatic metabolic rate-con-
stant of acetate (LHMRAct) and the relative portal venous con-
tribution to the hepatic blood flow (a,) can provide important
diagnostic information for detecting HCC [7], [8].

For the quantification of the dynamic ''C-acetate PET in
liver, the tracer concentration of both hepatic artery (HA) and
portal vein (PV) (the dual hepatic blood supply) should be con-
sidered as the model input [6]-[9]. Directly measuring them by
the widely adopted catheterization and sampling procedure is
invasive to the subject and exposes personnel to the risks associ-
ated with the handling of patient blood [10]. In addition, gaining
access to the PV is impractical in clinical settings.

To eliminate the invasive blood sampling procedure, many
indirect measurement methods have been developed. PET-ac-
quired input function has been validated for various quantitative
studies [11]-[16], where manual placement of the location of
blood vessels is always required. Besides, some automatic pro-
cedures based on factor analysis, principal component analysis,
independent component analysis, etc. [17], [18], were found ef-
ficient to extract the HA blood factor from the dynamic PET
images. However, the tracer arriving at the PV is delayed and
dispersed, and furthermore, the radioactivity spillover from the
surrounding liver tissue to the PV is significant, making PV re-
gion indifferentiable from the surrounding liver tissue. Another
type of solution to acquire the input function noninvasively is a
modeling approach [19], [20]. Nevertheless, little attention has
been paid to model the tracer kinetics in PV. The PV input func-
tion is generally predicted by convolution of the arterial input
with a notional system function with five parameters [20]. How-
ever, estimating ten parameters simultaneously (including the
five parameters of the H e acetate liver model [8]) would make
the convergence very difficult.

In this work, our objective is to model the dual hepatic blood
supply to eliminate the measurement of PV input function for
quantitative liver studies with dynamic !!C-acetate PET (quan-
tification of the two HCC indicators: a, and LHMRAct). Two
dual-models with six and seven parameters (6-P and 7-P) were
proposed, whose input function was modeled to account for the
dual hepatic blood supply. The performance of the two dual-
models was evaluated by comparison with the ' C-acetate liver
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model using image-derived TACs of HA and PV [8], which is
the “best currently available” method in terms of accuracy and
set as the “Golden standard” in this study.

II. MATERIALS AND METHODS

A. PET Examination

Dynamic '!C-acetate PET studies were performed on five
human subjects including two with HCC, lying in the position
that allows image acquisition of the liver dome and apical half
of the left ventricle to the inferior part of liver. Immediately after
the bolus intravenous injection of '!C-acetate, dynamic PET
images were recorded by an ECAT EXACT 47 PET scanner
(model 921; CTI/Siemens, Inc., Knoxville, TN), which simul-
taneously acquired 47 contiguous transverse slices (septa ex-
tended) over a period of 10 min by measuring ten 4 sec frames,
eight 10 sec frames, two 30 sec frames, followed by three 60 sec
frames and two120 sec frames, a total of 25 frames. Reconstruc-
tion and attenuation correction were performed with the stan-
dardized ordered-subsets expectation maximization technique.

B. Analysis of the ' C-Acetate PET Images

For quantitative analysis, regions of interest (ROIs) were de-
fined on a single transverse slice on a frame-by-frame basis. The
TAC of each ROI was created by averaging the activity in each
region. For each patient, two ROIs were defined, and thus, a
total of eight nontumor liver tissue ROIs and two HCC ROIs
(from the two HCC patients) were extracted from the images
of the five patients. To be relatively free of the radioactivity
spillover from the liver tissue, the TAC of HA was approximated
by defining ROI over the abdominal aorta (relatively far from the
liver), which is within the region of little ' C-acetate activity.
The TAC of PV was obtained by direct PET measurements with
the help of experienced clinicians or the CT reference [7]. Partial
volume effect correction is not considered necessary since the
diameters of normal aorta and PV (in the order of 2-3 cm and
1-2 cm, respectively), and the selected tumor sizes (2-3 cm) are
safely above the smallest resolution capacity of the PET scanner
(~0.5 cm).

C. Modeling the Dual Hepatic Blood Supply

As aforementioned, in contrast to other organs or tissues,
which are supplied only by arterial blood, the liver has a dual
source of blood supply: receiving oxygenated blood from the
common left and right HAs and nutrient-rich blood from the
gastrointestinal (GI) tract via the PV [7]. In this study, we pre-
sented a one-compartment model (upper left of Fig. 1) with the
blood TACs in aorta and PV (¢, (¢) (Bg/ml)) as the model input
and output, respectively. When the tracer concentration of the
arterial blood entering the GI tract was approximated to that of
HA (¢, (t) (Bg/ml)), according to Fick principle, we obtain

%gt(t) = F(cq(t) — co(t)) — EQy(2) (1
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where Q,(t) (Bq) is the quantity of ' C-acetate in the GI tract,
FE is the net extraction rate constant of tracer down the GI tract,
and it was assumed that the arterial flow was equal to the venous
flow, denoted by F' (ml/min). An assumption was also made
that the blood in the GI tissue forms only a small percentage of
the total tissue volume. If V' (ml) denotes the volume of the GI
tissue, then the differentiation of the ' C-acetate concentration
in the GI tissue (cq(t)) could be given by

deg(t)  1dQy(t) F E
=g = () — () = Q1) (@)

and we also assume that 11 C-acetate is a freely diffusible tracer
in the circulation, which diffuses rapidly between blood and
tissue. Therefore, ¢4 () could be approximated by

cg(t) = Aey(2) 3)

where ) is the partition coefficient describing ratio of the solu-
bility of ' C-acetate in the GI tissue and blood [21]. Substituting
cg(t) in (2) with (3), we have

Adey(t)  F
S - — AEey(t).
O = (et — ) = ABeu(t). @
Then, the differentiation of ¢, (¢) could be expressed as
de,(t) F
e (ca(t) — cu(t)) — Ecy(t). Q)

Take the Laplace transform of (5), and then take the inverse
Laplace transform, ¢, (t) could be predicted by

F

P= (0)

() = —(p+E)t o (1
et = pe T @ e, (1), p=

where ® denotes the operation of temporal convolution.

In the previous quantitative PET studies in liver [8], the dual-
input function ¢;(t) of the ' C-acetate liver model was calcu-
lated by

Cb(t) = (1 - av) X Ca,(t) + a, X Cw(t) (7)

where a,, is the “relative portal venous contribution to the he-
patic blood flow”, one of the HCC indicators [8]. Substitute
¢, (t) in (7) with (6), we have

(1) = (1= ap) X ca(t) + ay X (pe*(HEﬁ ® ca(t)) ®)

where a,,, p (/min) and F are the parameters of the hepatic DI
model. In this study, we also investigated the possibility of sim-
plifying E to be zero since there is little 11 C-acetate activity in
GI tract on PET images by visual judgment.

D. Parameter Estimation for the *' C-Acetate Dual-Model

The hepatic dual-input function (8) would serve as the input
of the established ''C-acetate liver model (Please refer to Ap-
pendix A), and these two models together would be named as
“!1C-acetate dual-model” (Fig. 1). Combining the above-stated
(8) and (4) in Appendix A, all the dual-model parameters (a.,,
p, B, K1, ko, k3 and HBV') (named 7-P dual-model) could be
estimated theoretically using image-derived ¢, (¢) and c¢r(t) as
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Fig. 1. Skeleton of the presented dual-model of **C-acetate in liver. The serial images at the upper right are the typical dynamic ** C-acetate PET images in liver.
The one-compartment model shown at the upper left represents the hepatic dual-input model (DI). The dual-input function obtained from this DI model serves as
the input of the * C-acetate liver model shown at the bottom. H BV is the “hepatic blood volume” term. &; (ml/min/ml) represents the first order rate constant for
the transport of ' C-acetate from blood to tissue, k2 (/min) for reverse transport of ' C-acetate from tissue to blood and k3 (/min) for conversion of '! C-acetate

to its products/metabolites.

the model input and output. If Parameter E of the hepatic DI
model could be neglected, the dual-model will have six param-
eters, and is thus named as 6-P dual-model.

Since a relatively large number of parameters need to be es-
timated, for more reliable parameter estimation, the graphed
nonlinear least squares (GNLS) algorithm (Please refer to Ap-
pendix B) [22] rather than the conventional NLS approach was
used. The flow chart of the estimation procedure by GNLS for
the ' C-acetate dual-model was shown in Fig. 2.

The individual parameters of the established 5-P model with
image-derived dual inputs were estimated by NLS method and
Parameter LHMRACct (same form as the forward clearance K =
Kiks/(ks + k3)) was estimated by Patlak method [23], which
is the “best currently available” method.

E. Statistical Analysis

In this study, the performance of the ! C-acetate dual-model
was tested by series of statistical analysis. To test the parameter
identifiability, the covariance matrix (C') was estimated based
on sensitivity functions (partial derivatives of the measured
states with respect to the estimated parameters). Under the
assumption of uncorrelated measurement noise with Gaussian
distribution with a mean of zero, the covariance matrix can
also be approximated by the inverse of the Fisher information
matrix (FIM) defined as [24], [25]

FIM(P) :i <Z‘;’;‘ (P))TV—2 (‘;i’;‘ (P)) i=1,2,...

i=1

.25
)

where y; is the fitted output, P is the parameters to be estimated
and N is the number of data points. With the covariance matrix
(C), the correlation between the estimated parameters can be

obtained by the coefficient matrix (R), whose elements are the
approximate correlation coefficients (R;;) between the i-th and
j-th parameters, defined by

C..
R;; = 4”77; i
J /—Ciicjj £
Rij =1,72=7. (10)

A singular FIM indicates the presence of unidentifiable param-
eters, and correlations between parameters that are greater than
0.99 may lead to singular FIM.

Coefficient of variation (CV), which is the computed mea-
surements of the estimates’ variability, was used to statistically
examine the estimation reliability. The CV was calculated by

SD
CV = ? X 100%

(1)
where SD is the standard deviation of the estimated parameter.
During the non-linear regression of the clinical datasets, SD was
estimated as the square roots of the diagonal elements of the
covariance matrix (C).

The estimation accuracy of the two HCC indicators (LHM-
RAct and a,,) of the dual-model was tested by bias

PD_PS

75 x 100%

Bias = ‘ (12)

where PP is the dual-model estimate and P* is the estimate of
the established 5-P !!C-acetate liver model with image-derived
TACs of HA and PV, which is the “Golden standard” method.
Correlation analysis was conducted among the estimation re-
sults of the three models in this study.

Akaike Information Criteria (AIC) [26] and Schwarz Criteria
(SC) [27] were used to test the adequacy of the 6-P and 7-P
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Fig. 2. Flow chart of the estimation procedure for the 1! C-acetate dual-model
using GNLS method.

dual-models. It was assumed that the data variances were known
up to a proportionality constant, therefore the AIC and SC were
given by
AIC =NI(WRSS) + 2Np
SC=NIn(WRSS)+ Npln N

13)
(14)

where Np is the number of parameters and W RSS is the
weighted residual sum of squares between the fitted curves and
PET measurements.

F. Simulation Study

To test the effectiveness of the proposed dual-model, com-
puter simulation study was performed as well. One HCC and
two normal liver tissue datasets were generated using three
image-derived TACs of HA (decay corrected). A pseudo-
random number generator was applied to generate the Gaussian
noise which was added to the calculated TAC and the variance
structure was described as

o X CT(ti)

2
t) =
o (t;) Al

1=1,2,...,25 (15)
where ¢; is the sampling time of the clinical examination in this
study, cr(t;) is the calculated PET measurement at ¢;, o2(t;) is
the variance of ¢y (¢;), and « is the proportional constant repre-
senting the noise level, which was set to be 0.1, 0.5 and 1 in this
simulation [19]. The estimation reliability was examined by CV
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TABLE I
RESULTS OF THE ESTIMATED a., AND K OF THE 5-P ' C-ACETATE LIVER
MODEL (WITH IMAGE-DERIVED TACS OF HA AND PV), AND THE 6-P, 7-P
DUAL-MODELS (WITH IMAGE-DERIVED ARTERIAL TAC)
FOR THE CLINICAL DATASETS

Datasets 5-F model f-P dual-tnodel 7-P dual-tnodel

Number! ay K &y K by K
1 0.9004 0.1642 | 0.9127 | 0.1651 | 0.8796 | 0.1764
2 0.9276 01763 | 0.9188 | 0.1771 | 09197 | 0.1895
3 0.8634 0.1587 | 0.8482 | 0.1496 | 0.8630 | 0.1576
4 0.7053 0.1773 | 0.7108 | 0.1713 | 07255 | 0.1903
5 0.6972 0.1483 | 0.7357 | 0.1402 | 07231 | 0.1422
i 0.7174 0.1552 | 0.7316 | 0.1506 | 0.7481 | 0.1549
7 0.5944 0.1739 | 0.8636 | 0.1829 | 0.8796 | 0.1975
g2 0.3330 0.2728 | 0.3449 | 0.2962 | 0.3199 | 0.3005
9 0.8657 0.1898 | 0.9175 | 0.1742 | 09066 | 0.1756
102 0.5684 0.5066 | 0.5312 | 0.4666 | 0.5555 | 04633

Notes: 1. Two ROIs were extracted from each patient. The datasets were
numbered like this: 1 and 2 from patient 1, 3 and 4 from patient 2 and so on.
2. Datasets 8 and 10 represent HCC.

and the estimation accuracy was evaluated by bias, which was
calculated by

Ptruo _ P

Bias = ’ (16)

where P'"° is the true value of the parameter, and P is the
mean value of the estimated parameter. The global parameter
identifiability was evaluated by (10).

III. RESULTS AND DISCUSSION

Although image-derived method for the acquisition of hepatic
dual-input is tedious and operator-dependent in routine clinical
use, itis adopted as the “best currently available” method for dy-
namic !!C-acetate PET study in the liver in terms of accuracy
[8]. Therefore, the 5-P model with image-derived dual-input
was set as the “Golden standard” in this dual-modeling study.
The estimation results of the two HCC indicators by the 6-P
and 7-P dual-models and the “Golden standard” were summa-
rized in Table 1. The estimated a, and K of both dual-models
show significant difference between nontumor liver tissue and
HCC (P < 0.05). The estimation accuracy of a, of the two
dual-models in terms of bias is generally satisfactory (most bias
values <5%), especially for the 7-P dual-model, whose bias
values are all less than 5%. The estimation accuracy of K of the
6-P dual-model is generally more satisfactory than that of the
7-P dual-model. The correlation coefficient of the estimated a,,
between the 5-P and 6-P models is 0.9888; between the 5-P and
7-P models, it is 0.9930. For the estimation of K, the correla-
tion coefficient of K is 0.9900 between the 5-P and 6-P models;
for the 5-P and 7-P models, it is 0.9861. Therefore the param-
eter estimates of both dual-models correlate closely with those
of the “Golden standard” respectively. The dual-models could
account for the dual hepatic blood supply in terms of estimation
accuracy.

Fig. 3 plots the calculated PV curves by the 6-P and 7-P
dual-models versus the image-derived PV curve, indicating that
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Fig. 3. Calculated PV curves by the 6-P (the dashed line) and 7-P (the dotted
line) dual-models with estimated p and image-derived TAC of HA. The points
denoted by symbol “diamond” are the image-derived PV measurements.
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Fig. 4. Fitted TACs by the 6-P (dashed lines) and 7-P dual-models (dotted
lines). The data denoted by symbol “diamond” represent the PET measurements
(HCC case).

the 7-P dual-model could better match the PV measurements.
However, the 6-P dual-model could provide better fitting accu-
racy at the later stage, which is very meaningful for the estima-
tion of K. Fig. 4 shows an example of the fitted curves (HCC
case) by the 6-P and 7-P dual-models, revealing that the 7-P
dual-model could provide better fitting accuracy. Comparison
of the estimation reliability in terms of CV of the three models
was illustrated in Fig. 5. As shown in Fig. 5(a), the estimated a.,
of both dual-models are less reliable than that of the 5-P model,
which could be explained that more number of parameters to
be estimated would reduce the estimation reliability. The relia-
bility of the 6-P dual-model is acceptable since the average CV
is less than 50%; whereas the reliability of the 7-P dual-model is
far from satisfactory. Fig. 5(b) revealed that the estimated K of
both dual-models is significantly more reliable than that of the
“Golden standard” (P < 0.05). Therefore, the 6-P dual-model
could provide acceptable estimation reliability of a, and more
reliable estimation of K compared with the “Golden standard”.

Based on the results of idenfiability analysis for clinical
datasets, most estimates of a,, are identifiable from p of the 6-P
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Fig. 5. Comparison of CV values of the estimated a,, (a) and /& (b) of the 5-P
model, 6-P and 7-P dual-models.

TABLE II
ESTIMATION RESULTS OF p FOR THE 6-P DUAL-MODEL, p AND
E FOR THE 7-P DUAL-MODEL BY GNLS METHOD

Datasets 6-F dual-model 7-P dual-model

Mumber! 2 CV(%) 2 V(%) E CV(%)
1 0.4743 51.65 0.4893 1879  0.0369 121.9
2 0.4271 50.29 0.4024 218.1 0.0305 105.5
3 0.3292 23.91 0.3058 1505 0.0200 2015
4 0.3849 94.60 0.3502 1649  0.0517 156.3
5 0.3671 42.34 0.3245 1177 0.0341 1915
fi 0.4685 50.03 0.4786 163.1 0.0178 2938
7 1.1816 92.74 1.1188 99.49  0.0770 119.1
82 1.1833 83.76 1.2143 1619  0.1209 209.0
9 0.4750 33.31 0.4422 9272 0.0205 234 4
102 0.5029 86.17 0.4695 207.0 0.0388 2037

Notes: 1. Same as Table 1.
2. Same as Table 1.

dual-model; for the 7-P dual-model, a,, is generally identifiable
from p and F respectively, and p is always identifiable from F
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TABLE III
ESTIMATION RESULTS OF THE 6-P DUAL-MODEL USING GNLS METHOD FOR THREE SIMULATION STUDIES:

(A) NORMAL LIVER TISSUE, (B) HCC, (C) NORMAL LIVER TISSUE. THE ESTIMATED PARAMETERS IN THIS TABLE REPRESENT

THEIR rnean VALUES. THE VALUES OF mean, bias, AND CV WERE CALCULATED FROM 100 SIMULATION RUNS

Noiselewvel Ry  Biasp(%) CF%)  Jnp  biasg96) CTL0%) ks Bass(%0) CF50%)
0.1 02666 -1.96 064 07774 365 049 02027 -1.33 0.71
0.5 02487 0.16 554 07643 -190 366 02057 -287 581
10 0.8304 -231 298 07450 D047 729 02074 -390 9.31
MNoige level HEV biasg (%) CVa(%) 4y Hasa(%6) CIL0%)  p o Biasp,(%0) CV(%) K basg(96) OV (%)
0.1 02919 270 141 07459 054 0534 0999 004 087 01792 014 025
0.5 03062 -208 1443 07565 -08Y 428 09990 010 441 01795 -029 1.30
1.0 03167 556 1920 07662 -216 651 10083 083 1173 01796 -035 243
(a)
Moise lewel K}  BHas)(%0) CF(%)  Fy  BHasy(%0) CF(%) ks biasy(%) CT5(%0)
0.1 16637 083 206 06899 144 164 01392 086 277
0.5 16780 -169 922 06987 019 1076 01401 -009 797
1.0 1.7023 317 1493 07157 224 1533 01434 -244 1438
MNoise lewel HEV blasg (%) CV)  ay  bias(P0) CH(%)  p Wasy(06) CVp(P8) K basp (96 CF(%40)
0.1 02994 0321 288 03607 -018 281 03830 424 724 02792 -153 0467
0.5 03038 -128 1563 03674 -204 1389 03930 175 2059 02793 -158 229
1.0 03120 -399 2930 03824 -422 2130 04209 -523 3590 02808 -210 409
(b)
Moise level K]  bias)(%) CF(%)  ky  biasy(%) CFR0%) ks Bass(96) CFa(%)
0.1 05621 220 1.51 07338 423 115 02573 290 140
0.5 05417 151 718 07083 118 845 02607 428 T2
1.0 0.5253 450 1328 06800 2835 1491 02637 548 93568
Moise level HEV biasg (%) CVgp(%) oy biasy(26) CVa(%) po Wasp@9 V(%) K biasg (% CVp (%8
0.1 02147 241 339 07164 050 138 1.0050 0.50 1.27 01459 0.78 022
0.5 02296 437 1567 07333 184 420 10185 185 770 01461 092 105
10 02327 577 1700 07458 359 843 10588 588 1675 01462 1.03 207
©
(a) true value: iy = 0.85,ky = 0.75,k3 = 0.20, HBV = 0.30,a, = 0.75,p = 1.00, K = 0.1789
(b) true value: Ky = 1.65,k, = 0.70,k3 = 0.14, HBV = 0.30,¢, = 0.36,p = 0.40, K = 0.2750
(c) true value: Ky = 0.55,k, = 0.70,k3 = 0.25, HBV = 0.22,a, = 0.72,p = 1.00, K = 0.1447

(all correlation coefficients <0.99). The estimation results of
p for the 6-P dual-model, p and E for the 7-P dual-model were
listed in Table II. As shown in Table II, the two sets of estimated
p are comparable to each other. For the 7-P dual-model, most
estimated F values are less than 0.05 and most ratios of F to p
are less than 10%. The 6-P dual-model could provide much more
reliable estimation than the 7-P dual-model. The reliability of the
estimated p for the 6-P dual-model is generally acceptable since
most CVs are less than or around 50%. For the 7-P dual-model,
both estimates of p and E are far from acceptable.

The correlation coefficients of the two sets of a,,, K and p
of the two dual-models are 0.9945, 0.9982 and 0.9961 respec-
tively, indicating the parameter estimates of the two dual-models
are linearly correlated. Therefore, inclusion (7-P) and exclusion
of E (6-P) would have overall little impact on the estimation
accuracy. In addition, 6-P dual-model could generally provide
much more reliable estimation than 7-P dual-model. Therefore
6-P dual-model could be the more suitable transient system re-
sponse in a 10-minute dynamic imaging.

To further evaluate the “goodness of fit” of the two dual-
models, AIC and SC were utilized. It was shown that the 6-P
dual-model has smaller AIC and SC values in all cases except
the AIC value of region 8, suggesting that the 6-P dual-model
is more suitable for quantification of the dynamic ''C-acetate
liver studies.

Computer simulation was performed to test the effectiveness
of the 6-P dual-model. Three simulation studies, including one
HCC study, were conducted using three image-derived TACs
of HA respectively. The GNLS estimation results of the mean,
bias, and CV of the parameters K1, ko, k3, HBV, a,, p and
K (LHMRACct) of the 6-P dual-model calculated from 100 sim-
ulation runs were presented in Table III. As seen in Table 11, all
CVs are less than 20% for normal liver tissue cases and less than
36% for HCC case. All biases are less than or around 5%. There-
fore, reliable and accurate parameter estimation could be pro-
vided by the 6-P dual-model with image-derived arterial input.
Although the estimation of H BV and p is less reliable than that
of the other parameters, the reliability is still acceptable. Con-
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Fig. 6. Fitting results by the 6-P dual-model for the simulation data (HCC
study) denoted by “asterisk” with noise levels 0.1 (a), 0.5 (b) and 1 (c).

cerning the two HCC indicators: LHMRAct (the forward clear-
ance K) and a,, they could be accurately and reliably estimated,
especially for Parameter K.

The fitting examples of the simulation study (HCC) of the
6-P dual-model with different noise levels: 0.1, 0.5, and 1 were
drawn in Fig. 6. When comparing Fig. 4 with Fig. 6, it seems
that the noise level of 1 is more similar with the noise level
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TABLE IV
CORRELATION COEFFICIENTS OF THE 6-P DUAL-MODEL PARAMETERS ON
THE SIMULATED NORMAL (A) AND HCC (B) DATA (noise level = 1).
THE CORRELATION COEFFICIENTS IN THIS TABLE REPRESENT
THEIR MEAN VALUES FROM 100 SIMULATION RUNS

K ky ky HBV a p
X | - 046 048 021 021 045
| - - 051 075 075 097
k| - - - 070 072 098
HBU| - - - - 099 077
P N I
2l - - - o
(a)
K ky ky HBV a p
K | - 089 086 073 069 020
By | - - 091 072 068 025
B - - - 077 074 026
HU| - - - - 097 039
a | - - - - 036
.
(b)

(a) true value: Ky = 0.55, ko = 0.70, k3 = 0.25, HBV
a, = 0.72,p = 1.00

(b) true value: K; = 1.65, k; = 0.70, k3 = 0.14, HBV = 0.30,
a, = 0.36,p = 0.40

0.22,

of clinical datasets than the other two noise levels. Results of
the global parameter identifiability study of the 6-P dual-model
with image-derived arterial input for the simulated normal and
HCC cases (noise level = 1) were summarized in Table I'V. It
could be seen that all the parameters except H BV and a, of
the simulated normal data are identifiable with one another. As
mentioned above, the TAC of PV is similar with that of the sur-
rounding liver tissue. Further, the dual blood supply of normal
liver tissue is mainly from the PV (a,: 71% ~ 92%, Table I).
Therefore, it is difficult to differentiate the hepatic dual-input
(cp(t)) from the TAC of the surrounding liver tissue using (3) in
Appendix A, making H BV inidentifiable with a,,. With smaller
a, value (HCC case), the hepatic dual-input would be signif-
icantly different from the TAC of the surrounding liver tissue,
and then H BV would be identifiable with a, [Table IV (b)],
which is very meaningful in clinical diagnosis of HCC. Param-
eter p, the only parameter to calculate the PV curve, could be
identified from other parameters of the 6-P dual-model. There-
fore, the 6-P dual-model could account for the hepatic dual
blood supply.

IV. CONCLUSION

In this work, two dual-models, both consisting of the es-
tablished ''C-acetate liver model and the hepatic DI model
(accounting for the dual hepatic blood supply), were proposed.
Compared with the “Golden standard”, the 6-P dual-model
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could provide comparable estimates of the two HCC indicators,
acceptable estimation reliability of a, and much more reliable
estimation of LHMRAct (K), revealing that the 6-P dual-model
could successfully account for the hepatic dual blood supply,
which is a very challenging task for the “Golden standard”.
The 6-P dual-model is more suitable than the 7-P dual-model
in terms of estimation reliability and “goodness of fit” criteria.
The simulation study suggests that all the parameters of the
6-P dual-model could be estimated reliably and accurately,
especially for the two HCC indicators. Therefore, the 6-P
dual-model structure demonstrates an appropriate transient
system response and suggests a better way for the quantifi-
cation of '!C-acetate PET studies in liver without PV curve
extraction.

APPENDIX A
1 C'- ACETATE LIVER MODEL

The differential equations for the !!C-acetate liver kinetic
model shown in Fig. 1 are

dCC;;Et) =Kicp(t) — (ka2 + k3)ce(t) (A1)
dem(®) _ et (A2)
er(t) =ce(t) + em(t) + HBV X ¢(t) (A3)

where c.(t) is the free 1'C-acetate concentration in the intra-
cellular space, c,,(t) is the intracellular '*C-acetate products/
metabolites concentration, cr(t) is the observed total tissue ac-
tivity, K1 — kg are the rate constants, and H BV (hepatic blood
volume) is to account for the contribution of 1! C-acetate within
vascular/sinus space of liver tissue to the observed total tissue
activity. In terms of macroparameters, cr(t) could be expressed
as

cr(t) = (B1+ Boe M) @ ¢y (t) + HBV x c(t)  (A4)
where
Kiks
B =
! ko + k3
Kiks
2 To £ i3’ 1 2+ K3

are the macroparameters of the model and ® denotes the oper-
ation of temporal convolution.

APPENDIX B
GNLS ESTIMATION PROCEDURE FOR THE ! C-ACETATE
DUAL-MODEL

1 C-acetate is metabolized irreversibly in liver cells with a
rate constant of k3 during the scanning period [7], therefore, be-
yond the dynamic phase of the hepatic arterial and portal venous
blood flow, the ratio of ¢r(¢) (the observed total tissue activity)
to ¢ (t) (the model dual-input function) could be described by

K1k
2+ HBV

= ol [+ (o + )

(BI)
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where

Kiks
K = .
ko + k3

As shown in (A4) of Appendix A, B has the same form as the
forward clearance K (K = K1ks/(ka+Fks)), therefore, it might
be very useful to obtain B; by a graph of the ratio of the total
tracer concentration in tissue to the tracer concentration in blood
versus the ratio of the blood tracer concentration time integral
to the tracer multiple-time activity data in blood. The GNLS ap-
proach applied to the dual-model of '!C-acetate is a cascaded
estimation algorithm, which has three steps shown in Fig. 2. In
the first step, linear graphical analysis was applied to estimate
B by (B1). The ratio of ¢r(t) to ¢(t) changes rapidly during
the dynamic phase of the tracer activity in blood, therefore, the
data to be fitted should belong to the input steady-state space.
In this study, the fitting period was from 3 min to 10 min since
image-derived time-activity curves of the hepatic arteries and
portal vein imply that 1*C-acetate concentrations in the blood
(HA and PV) are in steady-state with tissue free 1*C-acetate by
3 min. To calculate the dual-input function ¢;(¢) in (B1) for the
first iteration, a,, was empirically set to be 0.8 according to its
mean value of the nontumor liver tissue in [8], p and F was
set to their initial guesses. During the graphical fitting period,
the two blood TACs are almost virtually identical [9], therefore,
the estimated B is less affected by the actual PV contribution
ratio (a, ). Furthermore, it is well accepted that the estimates by
the linear graphical analysis are very robust. Thereby, it is rea-
sonable to consider the estimated B1 by step 1 as a prior for the
subsequent estimation schemes. In the second step, the weighted
NLS algorithm was utilized to estimate H BV, a,,, p, F and the
other two macroparameters: By and L; (Appendix A) with the
known B, which aims to minimize the weighted residual sum
of squares (WRSS). The weight used in this step was

At;

(B2)

where At; = ¢} —t._, isthe scanning interval and ¢z (¢;) (decay
corrected) is the total tracer concentration in tissue at the mid-
times of sampling time ¢}. As seen in Fig. 2, the first two steps
would not cease until the difference between the estimated a,,
in step 2 and the initial value of a,, utilized in step 1 is less than
0.2 and the difference between the estimated (p 4+ E) in step 2
and its initial value utilized in step 1 is less than 0.2. In the suc-
cessive iteration, the initial values of a.,, p and E would be set
to their latest estimates to calculate the dual-input function. In
the third step, parameter K (same as another HCC marker: the
“local hepatic metabolic rate-constant of acetate (LHMRAct)”)
would be estimated by linear regression using the most updated
a,, p and F values to calculate the dual-input function.
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