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Abstract
Standard deviational ellipse (SDE) has long served as a versatile GIS tool for delineating

the geographic distribution of concerned features. This paper firstly summarizes two exist-

ing models of calculating SDE, and then proposes a novel approach to constructing the

same SDE based on spectral decomposition of the sample covariance, by which the SDE

concept is naturally generalized into higher dimensional Euclidean space, named standard

deviational hyper-ellipsoid (SDHE). Then, rigorous recursion formulas are derived for calcu-

lating the confidence levels of scaled SDHE with arbitrary magnification ratios in any dimen-

sional space. Besides, an inexact-newton method based iterative algorithm is also

proposed for solving the corresponding magnification ratio of a scaled SDHE when the con-

fidence probability and space dimensionality are pre-specified. These results provide an ef-

ficient manner to supersede the traditional table lookup of tabulated chi-square distribution.

Finally, synthetic data is employed to generate the 1-3 multiple SDEs and SDHEs. And ex-

ploratory analysis by means of SDEs and SDHEs are also conducted for measuring the

spread concentrations of Hong Kong’s H1N1 in 2009.

Introduction
Standard deviation arises as one of the classical statistical measures for depicting the dispersion
of univariate features around its center. Its evolution in two dimensional space arrives at the
standard deviational ellipse (SDE), which was firstly proposed by Lefever [1] in 1926. Ever
since then, SDE has long served as a versatile GIS tool for delineating the bivariate distributed
features. It is typically employed for sketching the geographical distribution trend of the fea-
tures concerned by summarizing both of their dispersion and orientation. Although SDE’s ar-
rival once aroused great attention, a certain amount of consequent criticism followed as well,
mainly due to the fact that Lefever’s defined curve is not an ellipse [2], but the standard devia-
tion curve (SDC) as nominated by Gong [3].

Wide utilization potentialities exerted by SDE are extensively found in many research fields
and commercial industries. For instance, Smith and Cheeseman [4] employ it for estimating
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the spatial uncertainty between coordinate frames representing the relative locations of a mo-
bile robot. Besides, SDE has also been adopted to quantitatively analyze the orientation anisot-
ropy in contaminant barrier particles [5], and explore the geographical distribution of
household activity or travel behavior thereby promoting the policy formulation in response to
urban travel reduction strategies [6]. Meanwhile, geographically profiling of the distributional
trend for a series of crimes [7,8] by SDE might detect a relationship to particular physical fea-
tures such as some restaurants or apartments and even the lairs of the criminals. Mapping
groundwater well samples for some kind of contaminant could identify how and to what extent
the toxin is spreading, which consequently, may be conducive to deploy the responding mitiga-
tion strategies [9]. Moreover, comparing the coverage area, shape, and overlap of ellipses for
various racial or ethnic groups may provide insights regarding racial or ethnic segregation [10].
Furthermore, graphing ellipses for a disease outbreak such as malaria surveillance [11] over
time can potentially make the real-time prediction of its spatial spread trend, since the central
tendency and dispersion are two principal aspects attracting the concerns
from epidemiologists.

As a GIS tool for delineating spatial point data, SDE is mainly determined by three mea-
sures: average location, dispersion (or concentration) and orientation. In addition to the tradi-
tional mean center (gravity of the distribution) suggested by Lefever [1], weighted mean or
median could also be the alternative options, together with the weighted covariance of observa-
tions which evolve into some variants of the SDE [12]. It is worth noting that SDE also lays the
foundation for many other advanced models, such as the minimum covariance determinant es-
timator (MCD) [13,14] for outlier detections and elliptic spatial scan statistic [15] employed in
spatiotemporal disease surveillance. From the perspective of practical implementation, Alexan-
dersson [16] once wrote an ellip command for graphing the confidence ellipses in Stata 8,
though the latest version being Stata 13 already.

Although SDE has extensive applications in various fields ever since 1926, it still has not
been correctly clarified sometimes. For instance, from the latest resources in ArcGIS Help 10.1
describing how standard deviational ellipse works, it is stated that one, two and three standard
deviation(s) can encompass approximately 68%, 95% and 99% of all input feature centroids re-
spectively, supposing the features concerned follow a spatially normal distribution. However,
this content corresponds to the well-known 3-sigma rule with respect to univariate normal dis-
tribution, rather than bivariate case. Worse still, there is even an attached illustration therein
depicting several bivariate geographical features located within a planar map. Obviously, such
confusing interpretation may mislead the GIS users to believe the univariate 3-sigma rule re-
mains valid in two-dimensional Euclidean space, or even higher dimensions.

For fully clarifying the implications of SDE, Sect. 2 below devotes to firstly summarizing
two existing models of deriving the SDE’s calculation formulas, and secondly proposing a
novel approach for constructing the same SDE based on spectral decomposition of the sample
covariance, by which SDE concept is further extended into higher dimensional Euclidean
space, named standard deviational hyper-ellipsoid (SDHE). Most of all, rigorous recursion for-
mulas are then derived for calculating the confidence levels of scaled SDHE with arbitrary mag-
nification ratios in any dimensional space. Besides, an inexact-newton method based iterative
algorithm is also proposed for solving the corresponding magnification ratio of a scaled SDHE
when the confidence probability and space dimensionality are pre-specified. Finally, synthetic
data is employed to generate the 1–3 multiple SDEs and SDHEs in two and three dimensional
spaces, respectively. Meanwhile, exploratory analysis by means of SDEs and SDHEs are also
conducted for measuring the spread concentrations of Hong Kong’s H1N1 in 2009.
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Methods
First two subsections below devotes to a brief summarization of two classical approaches to
generating the standard deviational ellipses in 2D. After that, a novel approach based on spec-
tral decomposition of the covariance matrix is introduced which achieves the same calculation
formula of SDE. This spectral decomposition based approach will be adopted for constructing
the generalized standard deviational (hyper-)ellipsoids into higher dimensional Euclidean
space in the next Sect. 3.

2.1 Explore the orientated data for extreme standard deviations
Standard deviational ellipse delineates the geographical distribution trend by summarizing
both dispersion and orientation of the observed samples. There are already several approaches
to obtaining the computational formula of SDE. The upcoming discussed method presented by
Yuill [12] was actually a melioration of Lefever’s original model [1] despite of suffering from
certain criticisms [2].

Suppose a series of independent identically distributed samples (xi, yi), i = 1,. . .,n are drawn
from a Gaussian population. A standard deviational ellipse can be determined according to the
following steps. Firstly, make sample mean be the origin of new axes, thereby simultaneously
centering all the observed samples,

�x ¼ 1

n

Xn
i¼1

xi; �y ¼
1

n

Xn
i¼1

yi;
~xi

~yi

 !
¼ xi

yi

 !
�

�x

�y

 !
: ð1Þ

Next, introduce a rotation matrix G ¼ cos y sin y

�sin y cos y

 !
with an angle θ in clockwise direc-

tion as illustrated in Fig. 1, all observed sample points are then transformed into a new planar
coordinate system,

x0 i

y0i

 !
¼ G

~xi

~yi

 !
¼ cos y sin y

�sin y cos y

 !
~xi

~yi

 !
¼

~yi sin yþ ~xi cos y

~yi cos y� ~xi sin y

 !
: ð2Þ

The maximum likelihood estimator [17] of the rotated samples’ variance yields,

s2
x0 ¼

1

n

Xn
i¼1
ðx0iÞ2 ¼

1

n

Xn
i¼1
ð~yi sin yþ ~xi cos yÞ2

s2
y0 ¼

1

n

Xn
i¼1
ðy0iÞ2 ¼

1

n

Xn
i¼1
ð~yi cos y� ~xi sin yÞ2

: ð3Þ

8>>>><
>>>>:

Consequently, corresponding angles for producing the maximum and minimum standard de-
viations can be obtained by equating any derivative of the above variance estimators w.r.t. θ to
be zero [5,12], that is

ds2
x0

dy
¼ 2

n

Xn
i¼1
ð~y2

i sin y cos yþ ~xi~yiðcos2 y� sin2 yÞ � ~x2
i sin y cos yÞ ¼ 0:
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According to Vieta's formulas, general solution to the above quadratic equation is

tan y ¼

Xn
i¼1

~x2
i �

Xn
i¼1

~y2
i

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

~x2
i �

Xn
i¼1

~y2
i

 !2

þ 4
Xn
i¼1

~xi~yi

 !2
vuut

2
Xn
i¼1

~xi~yi

: ð4Þ

Each of these two angles corresponds to the maximum and minimum deviation in the new co-
ordinate system, respectively. By merging Eq. (4) into Eq. (3), the major axis and minor axis of
SDE can be determined for measuring the dispersion distribution of original observations.

It should be noticed that rotating s2
x0 in Eq. (3) around the sample mean center defines an

implicit locus curve [1]. However, such a closed curve is not an ellipse [2], but actually the stan-
dard deviation curve (SDC) nominated by Gong [3] with its expression as follows,

ð~x2 þ ~y2Þ2 ¼ s2
x~x

2 þ 2rsxsy~x~y þ s2
y~y

2: ð5Þ

Here ρ is the correlation coefficient between x and y coordinates. For seeking a striking contrast
between SDC and SDE, a numerical experiment is conducted, employing 500 synthetic points
extracted from a bivariate normal variable with mean μ = (0,0)Tand covariance

matrixC ¼ 0:9 0:4

0:4 0:5

 !
. Based on these sampling points, contradistinctive profiles of 1–3

multiple SDC and SDE are illustrated in Fig. 2. Conspicuously there are 4 tangency points for
each corresponding pair, and SDC appears occupying an overall larger area then SDE.

Fig 1. An ellipse rotated with an angle θ in clockwise direction.

doi:10.1371/journal.pone.0118537.g001
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2.2 Optimal linear central tendency measure
Another method described by Cromley [18] aims to explore such an optimal linear central ten-
dency measure, ax+by+c = 0, which passes through the distributed samples. This is equivalent
to an optimization problem with objective of minimizing the summation of total perpendicular
distances from any observation point to this line subject to the constraint of a2+b2 = 1, which
guarantees the scale invariance, namely,

min
Xn

i¼1 ðaxi þ byi þ cÞ2

s: t: a2 þ b2 ¼ 1
: ð6Þ

The above constrained optimization problem can be solved by Lagrangian multiplier method,
yielding the optimal linear central tendency which precisely coincides with the direction of
principal axis of SDE. Therefore, solution to the above optimization arrives at exactly the same
calculation formulas of SDE as the aforementioned first approach.

2.3 Spectral decomposition of the covariance matrix
Using the symbols introduced in Eq. (1), this subsection devotes to present another approach
for constructing SDE by means of spectral decomposition of the sample covariance matrix,
which is formulated as

C ¼ varðxÞ covðx; yÞ
covðy; xÞ varðyÞ

 !
¼ 1

n

Xn
i¼1

~x2
i

Xn
i¼1

~xi~yi

Xn
i¼1

~xi~yi

Xn
i¼1

~y2
i

0
BBBB@

1
CCCCA; ð7Þ

Fig 2. One synthetic experiment of SDC and SDE constructed upon 500 sampling points from a
bivariate normal distribution.

doi:10.1371/journal.pone.0118537.g002
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where varðxÞ ¼ 1
n

Xn
i¼1
ðxi � �xÞ2 ¼ 1

n

Xn
i¼1

~x2
i , covðx; yÞ ¼ 1

n

Xn
i¼1
ðxi � �xÞðyi � �yÞ ¼ 1

n

Xn
i¼1

~xi~yi and

varðyÞ ¼ 1
n

Xn
i¼1
ðyi � �yÞ2 ¼ 1

n

Xn
i¼1

~y2
i .

It must be said there are two common textbook definitions of variance and covariance, as
well as the standard deviation. One is the unbiased estimator while the other one is the maxi-
mum likelihood estimator proved by Li and Racine [17]. Their calculation formulas differ only
in n-1 versus n in the divisor. To keep consistent with the previous equations involved, the lat-
ter estimator is employed hereafter.

After spectral decomposition of the sample covariance (7), SDE can be constructed by as-
signing square roots of eigenvalues as the lengths of its semi-major and semi-minor axes [19],
to which being parallel by the corresponding eigenvectors. Solving of the characteristic polyno-
mial equation of covariance matrix C, namely,

f ðlÞ ¼ detðlI � CÞ ¼ det

l� 1
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0
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1
CCCCA ¼ 0; ð8Þ

yields the lengths of the SDE’s semi-major and semi-minor axes, which are
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Meanwhile, one group of base vectors from the characteristic vector space satisfying Eq. (8)
can be obtained by

v1;2 ¼
Xn
i¼1

~x2
i �
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i¼1

~y2
i

 !
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Xn
i¼1

~xi~yi
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1
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T

: ð10Þ

Thus, it takes no effort to verify that orientation angles intersected by the principle axes of SDE
and the planar coordinate axes are exactly the same, namely, the optimal angle appeared in
Eq. (4).

In conclusion, the above three approaches actually all calculate the same SDE according to
formulas (1), (4) and (9), respectively, which lays the theoretical basis for SDE to be one func-
tional component in the Spatial Statistics toolbox of ArcGIS 10.1.

Results
In Sect. 2, three approaches for constructing SDE have been summarized and compared upon
the distributed samples in two-dimensional space. This section will generalize the SDE concept
into higher dimensional Euclidean space, yielding the standard deviational hyper-ellipsoid
(SDHE), be means of the spectral decomposition of covariance matrix. Meanwhile, rigorous
mathematical derivations attempt to figure out the relationship between the confidence levels
characterizing the probabilities of random scattered points falling inside a scaled SDHE and
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the corresponding magnification ratio under the assumption that samples follow
Gaussian distribution.

3.1 Construction of Standard Deviational Hyper-Ellipsoid
Suppose S2Rn be an n-dimensional Gaussian random vector, that is S~N(μ,C) with its proba-
bility density function

f ðsÞ ¼ 1

ð2pÞn2jCj12
exp � 1

2
ðs� mÞTC�1ðs� mÞ

� �
: ð11Þ

And S1,S2,. . ., Sm representm independent and identically distributed samples extracted from
population S. In general, the maximum likelihood estimators [17] for parameters μ and C em-
ployed in Eq. (11) can be given by

m̂ ¼ 1

m

Xm
i¼1

Si; Ĉ ¼
1

m

Xm
i¼1
ðSi � m̂ÞðSi � m̂ÞT: ð12Þ

Since covariance matrix C is real symmetric (positive semi-definite), there exists an orthogonal
matrix Q (formed by eigenvectors of C) complying with the spectral decomposition,

C ¼ QDQT: ð13Þ
Without loss of generality, suppose al the main diagonal elements ofD = diag(σi), i = 1,2,. . .,n
have been sorted in descending order, σ1�σ2�. . .�σn. Due to the symmetry of covariance ma-
trix C, its spectral decomposition is actually equivalent to its singular value decomposition
which output a series of automatically sorted eigenvalues (singular values). As thus, mapping a
unit sphere by square root of covariance matrix, C1

2= , yields a standard hyper-ellipsoid, with ei-
genvalues to be its principle semi-axes oriented by their corresponding eigenvectors [20].

Proceeding in this way, now comes to such an interesting question: how could this SDHE
defined by Eq. (13) be represented graphically? This can be figured out by means of the Maha-
lanobis transformation [19] which is defined as

T ¼ C�
1
2ðS� mÞ ¼ QD�

1
2QTðS� mÞ: ð14Þ

It can be verified that T~N(0,In) In other words, Mahalanobis transformation eliminates corre-
lation between the variables and standardizes each variable with variance. Apparently, random
vector T’s SDHE happens to be a unit sphere (kTk2 ¼ 1) in view of its isotropic distribution
along any direction. Therefore, SDHE of original random vector S can be constructed from the
transformation of a unit sphere by firstly stretching with a ratio of

ffiffiffiffi
si

p
along each axis succes-

sively, then rotating the ellipsoid by orthogonal matrix Q and a final translation of distribution
center μ according to the following inverse Mahalanobis transformation,

S ¼ QD
1
2QTT þ m: ð15Þ

3.2 Confidence level analysis of SDHE
This section settles the relationship between confidence levels characterizing the probabilities
of random scattered points falling inside the scaled ellipsoids and the corresponding magnifica-
tion ratio of such an SDHE by means of the rigorous mathematical formulas derivations.

Confidence Analysis of SDE and Its Extension into Higher Dimensions

PLOS ONE | DOI:10.1371/journal.pone.0118537 March 13, 2015 7 / 17



The following scalar quantity

r2 ¼ ðS� mÞTC�1ðS� mÞ; ð16Þ

is known as the Mahalanobis distance of the vector S away from its mean μ. By merging Eqs.
(13) and (14) into Eq. (16), it can be easily perceived that the above defined quadratic function
is exactly the magnified SDHE with a magnification ratio of r and follows the chi-square distri-
bution with n degrees of freedom,

Prfr2 � w2n;pg ¼ p: ð17Þ

Table lookup of a tabulated chi-square distribution is always adopted as the traditional ap-
proach to acquire the exact confidence levels. Therefore, exploring to what extent the scattered
samples obeying a Gaussian distribution is equivalent to examining whether they are falling in-
side such a scaled ellipsoid defined in terms of Eq. (16). Actually, calculation of the cumulative
distribution function of chi-square distribution for a prescribed value x and the degrees-of-

freedom n, namely, FðxjnÞ ¼
Z x

0

tn2�1e�t
2

2
n
2G n

2
ð Þdt, is eventually transformed to calculate the gamma

density function with parameters n/2 and 2 in computer implementation, since chi-square dis-
tribution can be perceived as one child of the gamma distribution family with two varying pa-
rameters. Knüsel [21] has proposed a numerical algorithm with some supplement functions
and a specified relative accuracy, which has been adopted in many modern statistical softwares,
such as Matlab and R language. However, even using this algorithm, computation of the
gamma density function is still extremely complex.

As mentioned above, SDE serves as a versatile spatial statistical tool for measuring the geo-
graphical distribution of features. Because of this, it has been embedded into many commercial
software, like ArcGIS and Stata [16]. As a result, the algorithm’s practicability including the
simplicity, speed and precision are of particular concern, which also originally stimulates us
pursuing for an innovative approaches. In the subsequent portion, recursion formulas are de-
rived for calculating the confidence levels and an iterative algorithm is proposed for solving the
corresponding magnification ratio of the scaled ellipsoids after the prescribed scaling ratio or
confidence level is given.

3.2.1 The confidence level defined by a scaled SDHE.Here an innovative recursion formu-
la is presented by means of the multiple integral method for calculating the confidence level
Pn(r) of a scaled SDHE specified with a magnification factor r in n dimensional space so as to
estimate the distribution of a random vector S~N(μ,C), which is equivalent to the confidence
level value of T~N(0,In), whose confidence region is exactly a sphere as explained in subsection
3.1; namely,

PrfðS� mÞTC�1ðS� mÞ � r2g ¼ PrfTTT � r2g:

Therefore, for 1D case,

P1ðrÞ ¼ PrfX1
TX1 � r2g ¼

Z r

�r

1ffiffiffiffiffiffi
2p
p e�

x2
2 ds

¼ 2ffiffiffi
p
p
Z r

0

e�
x2
2 d xffiffiffi

2
p
� �

¼ 2ffiffiffi
p
p
Z rffiffi

2
p

0

e�t
2

dt ¼ erf rffiffiffi
2
p
� � ; ð18Þ

where the error function is defined as erfðxÞ ¼ 2ffiffi
p
p
Z x

0

e�t
2

dt, with another name being Gauss

error function [22], which is a non-elementary function of sigmoid shape constantly occurring
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in probability, statistics and partial differential equations. As a matter of fact, Eq. (18) formu-
lates the well-known 3-sigma rule of the most common normal distribution as illustrated in
Fig. 3.

For 2D case,

P2ðrÞ ¼ PrfX2
TX2 � r2g ¼

ZZ
x2
1
þx2

2
�r2

1ffiffiffiffiffiffi
2p
p
� �2

e�
x21 þ x22

2 dx1dx2

¼ 1

2p

Z 2p

0

Z r

0

re�
r2
2 drdy ¼ 1� e�

r2
2

; ð19Þ

Hereinto, the polar coordinate transformation is introduced for above the penultimate equal
sign. Next, the following Fig. 4 demonstrates the confidence ellipses corresponding to 1–3 mul-
tiples of SDEs in the color of red, blue and green, respectively.

It’s worth noting that an inverse formula here exists,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2lnð1� pÞ

p
: ð20Þ

for determining the magnification factor r which corresponds to a prescribed confidence level.
Before proceeding to the general formulas applicable in n dimensional space, we introduce

the cubature formula [23] firstly, which calculates the volume of the n-sphere of radius r, with

Fig 3. The confidence intervals correspond to 3-sigma rule of the normal distribution.

doi:10.1371/journal.pone.0118537.g003
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the quantity proportional to its n th power as follows,

VnðrÞ ¼
pn

2

G n
2
þ 1ð Þ r

n: ð21Þ

Accordingly, for a general dimensional number n�3,

PnðrÞ ¼ PfXn
TXn � r2g ¼
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� � �
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Xn

i¼1 x
2
i �r2
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¼
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2
i �r2
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2p
p
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i

2

ZZ
x2
1
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dx3 � � � dxn

¼
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� � �
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i¼3 x
2
i �r2
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p
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e�
Xn

i¼3 x
2
i

2 ds3 � � � dsn �
ZZ
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Z

Xn

i¼3 x
2
i �r2

1ffiffiffiffiffiffi
2p
p
� �n�2

e�
r2
2 dx3 � � � dxn

¼: Pn�2 �
1ffiffiffiffiffiffi
2p
p
� �n�2

e�
r2
2 � Vn�2ðrÞ ¼ Pn�2 �

1ffiffiffiffiffiffi
2p
p
� �n�2

e�
r2
2 � p

n� 2
2

G n
2
ð Þ r

n�2

¼ Pn�2ðrÞ �
rffiffiffi
2
p
� �n�2 e�r

2

2

G n
2
ð Þ : ð22Þ

Hereinto, G is the gamma function, with some useful properties: G 1
2
ð Þ ¼ ffiffiffi

p
p

, Γ(1) = 1 and Γ
(x+1) = (x)Γ(x) It should be noted that the first¼: comes according to the results for 2D case in
terms of Eq. (19) and the second¼: follows Eq. (21) representing a sphere’s volume with radius
r and dimensionality of .n-2 Therefore, Eq. (22) totally characterizes the confidence probability

Fig 4. The confidence regions corresponds to 1–3 multiples of SDEs.

doi:10.1371/journal.pone.0118537.g004
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for an arbitrary magnified SDHE with any specified magnification factor r in the form of a re-
cursive formula applicable in any Euclidean space with dimensionality greater than 2. Similar
findings regarding the confidence ellipse in terms of dimensionality n less than 3 have been
provided in the appendix section of Smith and Cheeseman’s article [4]. However, to our knowl-
edge, there is no precedent of such analytical expression of confidence levels for an ellipsoid in
higher dimensional Euclidean space.

Computation of confidence levels using Eq. (22) is rather simple and efficient. There is only
some algebraic manipulations and calculation of the supplement error function erf (x) if n is
assigned to be an odd number. For better quantitatively perceiving the confidence levels of
these scaled ellipsoids, the following Table 1 lists probability values corresponding to the scaled
SDHEs which are magnified with different integer multiples from 1 to 7 and the space di-
mensionality not exceeding 10.

Observed from Table 1, 1-3 SDE(s) can encompass approximately 39.35%, 86.47% and
98.89% of all input feature centroids assuming these features follow a planar Gaussian distribu-
tion. It is evidently different from the content of our familiar 3-sigma rule. This finding can be
conducive to clarify the confusing interpretation of confidence level regarding directional dis-
tribution in ArcGIS Help 10.1.

3.2.2 The corresponding magnification factor to a prescribed confidence level. Converse-
ly, what size of a magnified SDHE can encompass the scattered features with a prescribed con-
fidence probability? In other words, How to find the magnification factor r corresponding to a
specified confidence level p in n dimensional space? This question can be answered by solving
the following equation,

FðrÞ ¼ PnðrÞ � p; ð23Þ

with its derivative to be

F 0ðrÞ ¼ P0nðrÞ ¼

ffiffi
2
p

p
e�r

2

2 n ¼ 1

re�r
2

2 n ¼ 2

P0n�2ðrÞ þ rn�3e�
r2
2

2
n
2
�1G n

2ð Þðr
2 � nþ 2Þ n � 3

: ð24Þ

8>>>><
>>>>:

Thus, the approximate scaling ratio r can be solved according to the following iterative algo-
rithm, which is put forward based on Newton method with Armijo rule [24].

Table 1. Confidence levels of scaled SDHE vary with different magnification factors in spaces with the dimensionality not exceeding 10.

Dimensionality Magnification factor

1 2 3 4 5 6 7

1 0.6827 0.9545 0.9973 0.9999 1.0000 1.0000 1.0000

2 0.3935 0.8647 0.9889 0.9997 1.0000 1.0000 1.0000

3 0.1987 0.7385 0.9707 0.9989 1.0000 1.0000 1.0000

4 0.0902 0.5940 0.9389 0.9970 0.9999 1.0000 1.0000

5 0.0374 0.4506 0.8909 0.9932 0.9999 1.0000 1.0000

6 0.0144 0.3233 0.8264 0.9862 0.9997 1.0000 1.0000

7 0.0052 0.2202 0.7473 0.9749 0.9992 1.0000 1.0000

8 0.0018 0.1429 0.6577 0.9576 0.9984 1.0000 1.0000

9 0.0006 0.0886 0.5627 0.9331 0.9970 1.0000 1.0000

10 0.0002 0.0527 0.4679 0.9004 0.9947 0.9999 1.0000

doi:10.1371/journal.pone.0118537.t001
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Algorithm 1 nsolg(r0,n0,p,τa,τr)
Evaluate F(r0) = Pn(r0)-p; τ τa+τr|F(r)|
While |F(r)|>τ Do

Calculate the Newton direction d = -F'(r)-1F(r) using (23)~(24), set λ = 1.
While |F(r+λd)|>(1-αλ)|F(r)| Do

λ σλ where s 2 1
10
; 1
2

� �
is the reduction factor of the line search computed

by minimizing a quadratic polynomial model φ(λ) = |F(r+λd)|2

End While
r r þ ld

End While

Input arguments for this algorithm are the initial iterate r0 with default value
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

which
is an approximation of inflection point of the S-shape cumulative density function, space di-
mensionality n, confidence level p, relative and absolute termination tolerances ta ¼ tr ¼ffiffiffiffiffiffiffiffiffiffiffiffi
emachine

p
which need to be prescribed beforehand. Approximate solution with high accuracy

can be soon obtained after a few iterations using this algorithm. Table 2 has tabulated the mag-
nification ratios of scaled SDHEs for some commonly used confidence levels with space di-
mensionality not exceeding 10.

Seen from Table 2, the corresponding magnification factors become larger and larger along
with the increase of space dimensionality, indicating that only bigger magnified ellipsoids can
maintain the same prescribed confidence level in higher dimensional space compared with the
counterpart in lower dimensional space.

Experiments

4.1 Synthetic data experiments
In this section, two groups of synthetic data are employed to generate the 1–3 multiple SDEs
and SDHEs in two and three dimensional spaces, respectively, to depict their aggregation ex-
tent and demonstrate the relationship between the scaled ellipse (or ellipsoid) size and their
corresponding confidence levels.

4.1.1 2D case. Suppose that a series of scattered points Xi ε R
2 are randomly generated from

a two dimensional Gaussian vector, that is Xi~N(μ,C). The following example employs 100

Table 2. Magnification ratios of scaled SDHE corresponding to different specified confidence levels with space dimensionality not exceeding
10.

Dimensionality Confidence Level (%)

80.0 85.0 90.0 95.0 99.0 99.9

1 1.2816 1.4395 1.6449 1.9600 2.5758 3.2905

2 1.7941 1.9479 2.1460 2.4477 3.0349 3.7169

3 2.1544 2.3059 2.5003 2.7955 3.3682 4.0331

4 2.4472 2.5971 2.7892 3.0802 3.6437 4.2973

5 2.6999 2.8487 3.0391 3.3272 3.8841 4.5293

6 2.9254 3.0735 3.2626 3.5485 4.1002 4.7390

7 3.1310 3.2784 3.4666 3.7506 4.2983 4.9317

8 3.3212 3.4680 3.6553 3.9379 4.4822 5.1112

9 3.4989 3.6453 3.8319 4.1133 4.6547 5.2799

10 3.6663 3.8123 3.9984 4.2787 4.8176 5.4395

doi:10.1371/journal.pone.0118537.t002
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points with mean μ = (2,3)T, and covariance C ¼ 0:9 0:2

0:2 0:5

 !
. Overlaying upon these scat-

tered samples, 1–3 multiple SDEs are then created in terms of Eqs. (7)~(10) encompassing
their geographic distribution with corresponding confidence degrees listed in Table 1.

For a better visualization of SDEs in computer imaging, the observed samples can be over-
laid by a warning coloration, for example a (gradually varied) red layer processed with a trans-
parency function. Intuitionally it should be inversely proportional to the confidence
probability density of the features. By incorporating Eq. (16) into (11), an desirable transparen-
cy function can be of the following form,

f ¼ 1� e�
r2
2 : ð25Þ

This function can also be considered as a projection of the Gaussian probability density func-
tion upon the sample space. In the end, Fig. 5 presents a visualization of 1–3 multiple SDEs for
these 2D scattered points.

4.1.2 3D case. Once again, suppose that a series of scattered points XiεR
3 are randomly gen-

erated, following 3D Gaussian distribution, that is Xi ~ N(μ,C) The following example employs

600 points with mean μ = (1,2,3)T, and covariance C ¼
8 �2 1

�2 8 2

1 2 5

0
B@

1
CA. Based on these data

samples, Fig. 6 exhibits 1–3 multiple SDEs constructed in terms of Eqs. (12)~(15) encompass-
ing their geographic distribution with corresponding confidence degrees as listed in Table 1.

Fig 5. Visualization of 1–3 multiple SDEs for 2D scattered points.

doi:10.1371/journal.pone.0118537.g005

Confidence Analysis of SDE and Its Extension into Higher Dimensions

PLOS ONE | DOI:10.1371/journal.pone.0118537 March 13, 2015 13 / 17



4.2 Spread analysis in Hong Kong’s H1N1 infections
The spread of epidemic diseases causes both very serious life risks and social-economic risks.
For example, the latest epidemic outbreak in Hong Kong was Swine Flu Virus A (H1N1) caus-
ing hundreds of deaths and making all the residents get into a panic of fatal infection.

Geographic information science (GIS) serves as a common platform for convergence of dis-
ease surveillance activities. As one of its significant functional components, SDE, as well as
SDHE, can be served to understand how the disease distributes together with its evolutionary
trend, thereby assisting the epidemiologists or public health officials raising more effective
strategies so as to control the disease spread.

For the epidemic data, totally 410 human swine influenza infected cases are gathered with
epidemiological date and address from 1st May to 26th June on a daily basis released by Center
of Health Protection (CHP), Hong Kong. Addresses of infected buildings are then geocoded
into the WGS84 coordinate for the subsequent mapping. Exploratory analysis by 1–3 multiple
SDEs is then conducted in order to keep the focus limited to only those areas with the most oc-
currences of infected cases (Fig. 7). Although the resulting map output is simple, yet it conveys
a strong message about where is the most severe region of H1N1 occurring.

Further, 1–3 multiple SDHEs (in three-dimensional space) are also employed for highlight-
ing the spatiotemporal concentrations of H1N1 infections (Fig. 8). Apparently, most of the
confirmed cases appeared densely during late June in time and converged on both sides of Vic-
toria Harbor, including the Kowloon Peninsula and Hong Kong Island, in space.

Conclusions
In this paper, confidence analysis of standard deviational ellipse (SDE) and its extension into
higher dimensional Euclidean space has been comprehensively explored from origin, formula
derivations to algorithm implementation and applications. Firstly, two existing models are
summarized and one novel approach is proposed based on the spectral decomposition of sam-
ple covariance for calculating the same SDE. After that, the SDE concept is naturally

Fig 6. Visualization of 1–3 multiple SDEs for 3D scattered points.

doi:10.1371/journal.pone.0118537.g006
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Fig 7. Exploratory analysis by 1–3 multiple SDEs for Hong Kong’s H1N1.

doi:10.1371/journal.pone.0118537.g007

Fig 8. Exploratory analysis by 1–3 multiple SDHEs for Hong Kong’s H1N1.

doi:10.1371/journal.pone.0118537.g008
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generalized into higher dimensional Euclidean space, named standard deviational hyper-ellip-
soid (SDHE). Then, rigorous recursion formulas are derived for calculating the confidence lev-
els of scaled SDHE with arbitrary magnification ratios in any dimensional space. Such formula
can be employed for tabulating the confidence levels in relation to the magnification ratio and
the space dimensionality more efficiently since the results obtained in low dimensional space
can still be repeatedly utilized in subsequent higher dimensional spaces, whereas the traditional
approach of calculating the chi-square distribution is mainly relying on the complex computa-
tion of gamma density function. Besides, an inexact-newton method based iterative algorithm
is also proposed for solving the corresponding magnification ratio of a scaled SDHE when the
confidence probability and space dimensionality are pre-specified, thereby making a commuta-
tively computation of either the necessary scaled ratio or the confidence level of SDHE when
one of these two parameters is given in any dimensional space. These results provide a more ef-
ficient manner to supersede the traditional table lookup of tabulated chi-square distribution.

Finally, synthetic data is employed to generate the 1–3 multiple SDEs and SDHEs. And ex-
ploratory analysis by means of SDEs and SDHEs are also conducted for measuring the spread
concentrations of Hong Kong’s H1N1 in 2009.

It is worth noting, standard deviational ellipses (or the SDHE) derive under the assumption
that observed samples follow the normal distribution. Therefore, SDE tool must be employed
with a certain degree of caution when measuring the geographic distribution of concerned fea-
tures. Particularly, delineation of an area concerned by SDE may not be representative of the
hotspot boundaries, but produce ambiguous outcomes when distribution of features is multi-
modal [12].

Fortunately, the aforementioned normal distribution assumption is no longer indispensable
for the confidence ellipses owning to considerable progresses in the last three decades. None-
theless, these shining ideas emerged during the SDE derivation process still sparkle for prompt-
ing innovative advanced models, among which the elliptically contoured distribution [25]
attracts wide attention, with its contours of constant density being ellipsoids, that is (x-μ)TC-

1(x-μ) = constant. Amazingly, a scaled SDHE in terms of Eqs. (12)~(15) is actually depicted by
this formulation, which also lays core foundation for many of the current popular method,
such as the minimum covariance determinant estimator (MCD), multivariate kernel density
estimation and support vector machine (SVM) with Gaussian kernel.
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S1 Table. Human cases of swine influenza A (H1N1) gathered with epidemiological date
and address from 1st May to 26th June in 2009.
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