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Abstract

One important issue in production and logistics management is the coordination of

activities between production and delivery. In this paper, we develop a single-machine

scheduling model that incorporates routing decisions of a delivery vehicle which serves

customers at different locations. The objective is to minimize the sum of job arrival

times. The problem is NP-hard in the strong sense in general. We develop a polynomial

time algorithm for the case when the number of customers is fixed. More efficient

algorithms are developed for several special cases of the problem. In particular, an

algorithm is developed for the single-customer case with a complexity lower than the

existing ones.
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1 Introduction

The coordination of activities along different stages of a supply chain has received a lot of

attention in production and operations management research. One particularly important

issue in this area of study is the coordination of production and delivery schedules. In many

production systems, finished products are delivered from the factory to multiple customer

locations, warehouses, or distribution centers by delivery vehicles.

Traditional scheduling models focus on the determination of schedules for production

such that some performance measures are optimized without considering the coordination

between the machine schedule and the delivery plan. These models implicitly assume that

there are infinitely many vehicles available for delivering finished jobs to their destinations

so that the finished product can be transported to customers without delay. However, in

reality, the number of vehicles is limited and the vehicles may need to deliver to more than

one customer location to increase their utilization.

In this paper, we incorporate the delivery plan of a vehicle into a single manufacturing

facility model. We consider the case when a single vehicle with infinite or bounded capacity

is available to serve different customer locations. The objective is to determine the job

processing sequence in the plant together with the delivery schedule so as to minimize the

sum of job arrival times.

A few machine scheduling models with transportation components have been studied in

the literature. The earliest work is by Maggu and Das [9]. They consider a two-machine flow

shop problem with a sufficiently large number of transporters to transfer jobs to the second

machine immediately after the jobs are completed on the first machine in which the trans-

portation time is job-dependent. Maggu, Das and Kumar [10] study the same problem with

the additional constraint of some jobs being scheduled consecutively. Kise, Shioyama and

Ibaraki [6] consider a variant of the problem with only one transporter in which the trans-

porter can carry one job at a time. Other flow shop scheduling problems with transportation

of jobs between machines have been studied by Langston [7], Panwalkar [11], Sahni and

Vairaktarakis [14], Stern and Vitner [15], Stevens and Germill [16], and Vairaktarakis [17].

All these scheduling models focus on the transportation of jobs between machines in a flow
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shop environment rather than the shipping of finished goods to customers.

Another line of scheduling research with transportation considerations focuses on the

transportation of finished jobs to customers. Hall and Shmoys [5] and Potts [12] consider

scheduling models with delivery times in which they have implicitly assumed that there

is always a vehicle available for the delivery. Recently, Lee and Chen [8] have incorporated

transportation time and vehicle capacity requirements into machine scheduling models. They

analyze the complexity of various models in which jobs are first processed by machines and

then delivered by one or more vehicles to a single customer. The vehicles have finite or

infinite capacity and there is a transportation time for each direction of the delivery. Chang

and Lee [2] have extended Lee and Chen’s work to the situation when each job occupies a

different amount of space in the vehicle. Our work differs from [2] and [8] in that we consider

delivery to multiple customers at different locations.

In another related paper, Chen and Vairaktarakis [3] consider the problem of minimizing

a convex combination of the total job arrival times and the total transportation cost. In

their model, production takes place on parallel identical machines, the number of trucks is

unlimited, each truck has limited capacity, and the number of customers is fixed. A similar

problem setting is considered by Geismar, Lei and Sriskandarajah [4], who assume that a

fixed limited number of trucks is available and the objective is to minimize the time to

produce and deliver all jobs to all customers.

We now describe our problem formally. We consider a given set of n jobs, {J1, J2, . . . , Jn},

to be processed by a single manufacturing facility (i.e., a plant). Associated with each

job Ji is a processing time and its associated customer. There are m customers in total

(m ≤ n) and are located at different locations. There is a delivery vehicle available with

capacity K (K ≤ n) such that at most K jobs can be delivered in each trip. If the vehicle

is uncapacitated, then we assume that K = n. After the processing of Ji, the job needs to

be delivered to its customer by the vehicle. All jobs are available for processing at time 0,

and the vehicle is available at the plant at time 0. We would like to determine the sequence

in which the jobs should be processed in the plant, the departure times of the vehicle from

the plant, and the routing of the vehicle, so as to minimize the sum of job arrival times at

the customers. For simplicity, we assume that J1, J2, . . . , Jn are arranged in nondecreasing
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processing times, i.e., in the shortest processing time first (SPT) order.

The following notation will be used throughout the paper:

n = number of jobs;

(J1, J2, . . . , Jn) = sequence of jobs arranged in SPT order;

pj = processing time of Jj at the plant;

Pj =
∑j

i=1 pi = sum of processing times of jobs J1, J2, . . . , Jj;

m = number of customers;

nk = number of jobs that need to be delivered to customer k, where
∑m

k=1 nk = n;

(J
(k)
1 , J

(k)
2 , . . . , J (k)

nk
) = sequence of jobs (arranged in SPT order) that need to be delivered

to customer k;

p
(k)
j = processing time of J

(k)
j ;

P
(k)
j =

∑j
i=1 p

(k)
i = sum of processing times of jobs J

(k)
1 , J

(k)
2 , . . . , J

(k)
j ;

K = capacity of the delivery vehicle (K ≤ n);

t0k = one-way travel time between the plant and customer k;

tk` = travel time between customers k and `;

Cj = completion time of processing of Jj at the plant;

Ĉj = arrival time of job Jj at its customer.

Using the above notation, the objective of our problem is the minimization of
∑n

i=1 Ĉi.

We assume that travel times are symmetric and satisfy the triangle inequality (i.e., tjk = tkj

and tjk + tk` ≥ tj` for all j, k, ` = 0, 1, . . . , m).

To facilitate the understanding of our model, consider an example with five jobs, two

customers, and an uncapacitated vehicle, where J1, J2, J4 will be delivered to customer 1

and J3, J5 will be delivered to customer 2. Thus, n1 = 3 and n2 = 2. The processing times
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of the jobs are given in Figure 1(a), and the one-way travel times are given in Figure 1(b).

Consider the schedule shown in Figure 1(c), where the vehicle will depart from the plant at

time 5 to visit customer 1, followed by customer 2, and return to the plant afterward. The

vehicle will then depart from the plant again at time 13 to visit customer 1 and return to

the plant afterward. Finally, it will depart from the plant at time 19 to visit customer 2.

Hence, in this feasible solution, the total job arrival time is 8 + 8 + 9 + 16 + 22 = 63.

Insert Figure 1 about here

In the following sections, we first show that our model is NP-hard in the strong sense.

This implies that the existence of a pseudo-polynomial time algorithm for determining the

optimal solution of the general problem is highly unlikely. Then, we develop polynomial

time algorithms for a number of special cases of the model.

2 Properties of the Model

The following theorem states the computational complexity of our model.

Theorem 1 The problem is NP-hard in the strong sense.

Proof: We transform the Traveling Repairman Problem (TRP) into our problem. In the

TRP, we are given a set of locations and travel times between any two of them, and we

wish to find the route through them that minimizes the sum of delays for reaching each

location (see Afrati et al. [1]). An instance of the decision problem of TRP can be described

mathematically as follows: Given a distance matrix {t′ij} between n′ locations and a distin-

guished starting location 0 (where t′ij is a positive integer) and given a threshold L′, find a

permutation (π(0), π(1), . . . , π(n′)) with π(0) = 0, such that

n′−1
∑

i=1

i
∑

j=1

t′π(j−1),π(j) ≤ L′. (1)

Sahni and Gonzalez [13] have shown that TRP is NP-hard. In fact, from the construction

of Sahni and Gonzalez’ proof, it is easy to see that TRP is NP-hard in the strong sense.
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Given such an instance of TRP, we construct the following instance of our problem:

m = n = K = n′;

pi = 1/n′, (i = 1, 2, . . . , n);

tij = t′ij, (i, j = 0, 1, . . . , m);

threshold, L = L′ + n′;

where Ji belongs to customer i (i = 1, 2, . . . , n).

Clearly, this construction can be achieved in polynomial time. It is easy to show that in

this constructed instance, it is optimal to deliver all n jobs in a single shipment and have

the vehicle leave the plant at time 1. Indeed, compare this single-shipment schedule with

a two-shipment schedule having k jobs (1 ≤ k < n) delivered in the first shipment. The

first k jobs in the two-shipment schedule can get delivered earlier by a total of no more than

k(1− k
n
) units of time, but the remaining n − k jobs will get delayed by a total of at least

(n−k)(1+ k
n
) because all tij’s are positive integers and hence every round trip takes at least

2 time units. Note that k(1 − k
n
) < (n − k)(1 + k

n
). Hence, in order to attain the minimal

total job arrival time, all n jobs must be delivered together in a single trip, with the vehicle

leaving the plant at time 1 and following a minimum distance “traveling repairman tour”

to deliver the jobs. Therefore, it is easy to see that the TRP has a solution satisfying (1) if

and only if the above instance of our problem has a solution with a total job arrival time no

greater than L, which includes the total time that the n′ jobs spent at the plant (i.e., 1 unit

of time for each of the n′ jobs) and the total time that the jobs spent on traveling (i.e., L′).

This completes the proof of the theorem. 2

Note that from the proof of Theorem 1, we know that the problem remains strongly

NP-hard if the delivery vehicle is uncapacitated. Next, we present some properties of the

optimal solution to the problem.

Theorem 2 There exists an optimal schedule that satisfies the following properties:

(i) Jobs are processed in the plant without idle time.

(ii) If Ji is processed earlier than Jj in the plant, then Ji leaves the plant no later than Jj.
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(iii) For k = 1, 2, . . . , m, jobs J
(k)
1 , J

(k)
2 , . . . , J (k)

nk
are processed in the plant in this order,

i.e., in SPT order.

(iv) When the vehicle finishes a delivery and returns to the plant, if there are still jobs

that need to be transported, then the vehicle either (a) transports the next batch of jobs

immediately or (b) waits and starts the next delivery at a completion time of a job, say

Jj, at the plant. In case (b), the vehicle departs at time Cj.

Proof: (i) If there exists idle time in the plant, we can always move the subsequent jobs

earlier without increasing the objective value. (ii) Suppose that in an optimal schedule, Ji is

processed earlier than Jj in the plant but leaves the plant later than Jj. Then interchanging

the positions of these two jobs at the plant while retaining the same delivery schedule will

provide us with a new solution with the same total job arrival time. Thus, by repeatedly

applying this argument, an optimal schedule that satisfies property (ii) can be obtained.

(iii) Consider an optimal schedule where J
(k)
i+1 is processed earlier than J

(k)
i in the plant.

Interchanging the positions of these two jobs at the plant and their positions in the delivery

schedule will provide us with a new solution with the same total job arrival time. An optimal

schedule in which jobs J
(k)
1 , J

(k)
2 , . . . , J (k)

nk
are processed in SPT order can be obtained by

repeatedly applying this argument. (iv) If the vehicle does not immediately transport the

next batch of jobs and if it does not start the next delivery at a job completion time, then

we can move the delivery time of the next batch of jobs earlier and the objective value will

be lower. If the vehicle waits and starts the next delivery at Cj, then clearly, the schedule is

not optimal unless the vehicle’s waiting is for the purpose of delivering Jj. 2

It suffices to restrict our search of solutions that satisfy the properties in the above

theorem. In the following sections, we will focus on the development of solution procedures

for various cases of the problem. We will consider only schedules that satisfy properties

(i)–(iv) of Theorem 2.
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3 The Single-Customer Case

In this section, we consider the special case of a single customer. Lee and Chen [8] developed

an algorithm for solving this special case, and their algorithm has a running time complexity

of O(n3). We now present a more efficient dynamic programming algorithm for solving

this special case. For computational purposes that become evident below, we include a

dummy job Jn+1 with pn+1 = max{pn, n·2t01}. By Theorem 2(i)&(iii), the jobs are processed

consecutively at the plant in SPT order, i.e., J1, J2, . . . , Jn+1. Define

f(j) = minimum total job arrival time for jobs J1, J2, . . . , Jj when the last shipment

departs from the plant at time Pj and delivers Jj (maybe along with some

other jobs), for 1 ≤ j ≤ n+1.

Consider the delivery schedule of the job subset {J1, J2, . . . , Jj} and suppose that there is a

vehicle departure at time Pj. There are two possible cases.

Case 1: Pj < P1 +2t01. In this case, no job departs from the plant before time Pj. Thus,

by Theorem 2(ii), jobs J1, J2, . . . , Jj are batched together to depart from the plant at time

Pj . This batch of jobs arrives at the customer at time Pj + t01. Hence, the contribution of

this delivery to the objective value is

Fj ≡ j(Pj + t01).

Case 2: Pj ≥ P1 +2t01. In any optimal schedule of this case, at least one job must depart

from the plant before time Pj. Let

i = max{i′ | i′ < j and the vehicle departs from the plant at time Pi′ and delivers Ji′}.

By Theorem 2(iv), the vehicle departs from the plant at time Pi and is followed by a number

of consecutive nonstop shipments as depicted in Figure 2. In the last one of these nonstop

shipments, the vehicle returns to the plant at time τ , where τ ≤ Pj. By Theorem 2(ii), jobs

Ji+1, Ji+2, . . . , Jj are delivered either by these nonstop shipments or by the shipment that

departs from the plant at time Pj . Let Sij be the number of nonstop shipments between time

Pi and Pj (see Figure 2), and let ηi(k) be the number of jobs delivered in the k-th nonstop
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shipment after time Pi. Clearly, Sij ≤ b
Pj−Pi

2t01
c. Also, Sij ≤ n, since a shipment must carry

at least one job. Then, the contribution of jobs Ji+1, Ji+2, . . . , Jj to the objective value is

F ′
ij ≡

Sij
∑

k=2

ηi(k)·
[

Pi + (2k − 1)t01

]

+ ηij ·(Pj + t01),

where ηij is the number of jobs completed by time Pj that are not delivered by these nonstop

shipments (ηij = +∞ if the number of those jobs is greater than the vehicle capacity K).

The contribution of the ηij jobs that are not delivered by the nonstop shipments is captured

by the second term in the above expression. The contribution of the nonstop shipments

is captured by the first term in which “Pi + (2k − 1)t01” is the arrival time of the k-th

shipment. The contribution of the first nonstop shipment is not included here, since it is

already included in f(i).

Insert Figure 2 about here

The above observations establish the recurrence relation of

f(j) = min
i>0 s.t.

Pi≤Pj−2t01

{

f(i) + F ′
ij

}

,

for j = 1, 2, . . . , n+1 such that Pj ≥ P1 + 2t01, and the boundary condition of

f(j) = Fj,

for j = 1, 2, . . . , n+1 such that Pj < P1 + 2t01. They provide the optimal schedule for the

single-customer case with objective function value

f∗ = f(n+1) − (Pn+1 + t01).

In the calculation of f∗, we exclude the contribution of the dummy job Jn+1. This is because

its processing time is no less than n ·2t01, and hence, there exists an optimal schedule in

which it is shipped by itself. The technical reason for introducing Jn+1 is precisely to make

the presentation of f∗ easier. Otherwise, one would have to know the time that the last

shipment departs from the plant. Assuming that all the values of F ′
ij have been determined,

the computational time required by the above recurrence relation is O(n2).
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To demonstrate how this dynamic program works, consider an example with m = 1,

n = 4, K = 2, and t01 = 3. The processing times of the jobs (including the dummy job J5)

are given in Figure 3(a). The boundary conditions are:

f(1) = F1 = (1)(P1 + t01) = (1)(1 + 3) = 4;

f(2) = F2 = (2)(P2 + t01) = (2)(3 + 3) = 12;

f(3) = F3 = (3)(P3 + t01) = (3)(5 + 3) = 24.

For j = 4, 5, the values of Sij, ηi(k) (k = 2, 3, . . . , Sij), ηij , and F ′
ij are shown in Figure 3(b).

Thus,

f(4) = min{f(1)+F ′
14, f(2)+F ′

24}

= min{4+∞, 12+26} = 38;

f(5) = min{f(1)+F ′
15, f(2)+F ′

25, f(3)+F ′
35, f(4)+F ′

45}

= min{4+73, 12+67, 24+51, 38+37} = 75;

f∗ = f(5) − (P5 + t01) = 75− (34 + 3) = 38.

Since f(5) attains its minimum when i = 3, an optimal solution is to have the vehicle

leave the plant at P3 = 5, followed by some nonstop shipment(s). This optimal schedule is

depicted in Figure 3(c). Note that f(5) also attains a minimum when i = 4 and f(4) attains

its minimum when i = 2. Hence, an alternative optimal solution is to have the vehicle leave

the plant at P2 = 3, followed by some nonstop shipment(s), and then have the vehicle leave

the plant again at P4 = 10. This alternative optimal schedule is shown in Figure 3(d).

Insert Figure 3 about here

We now describe how the values of F ′
ij are computed efficiently.

Lemma 1 For each i = 1, 2, . . . , n, the values of Sij (j = i+1, i+2, . . . , n+1), the values of

ηi(k) (k = 2, 3, . . . , Si,n+1), and the values of ηij (j = i+1, i+2, . . . , n+1) can be determined

in O(n) time.
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Proof: Consider the consecutive nonstop shipments after the vehicle departs from the plant at

time Pi. Define Π(y) =
∑i+y

j=i+1 pj , where Π(0) = 0. Clearly, Π(1), Π(2), . . . , Π(n−i+1) can be

predetermined in O(n) time. Let y` denote the total number of jobs delivered in nonstop ship-

ments 2, 3, . . . , `. Then, the values of Si,i+1, Si,i+2, . . . , Si,n+1 and ηi(2), ηi(3), . . . , ηi(Si,n+1)

can be determined by the following procedure:

Step 1: Set y1 ← 0 and `← 2.

Step 2: Search for the largest integer y` (y`−1 ≤ y` ≤ y`−1 +K) such that Π(y`) ≤ (`−1)·2t01.

Step 3: If y` > y`−1, then

set ηi(`) ← y` − y`−1;

set `← ` + 1 and go to Step 2.

If y` = y`−1, then

set Sij ← min
{

`−1, b
Pj−Pi

2t01
c
}

for j = i+1, i+2, . . . , n+1.

Note that in Step 3, if y` > y`−1, then the `-th nonstop shipment will deliver (y` − y`−1)

jobs. Otherwise, there is not enough time between the completion of shipment l − 1 and

time Pj for an additional shipment. Therefore, Sij ≤ `− 1 for j = i+1, i+2, . . . , n+1. It is

easy to see that the running time of this procedure is O(n).

For j > i, the number of jobs completed during the time interval (Pi, Pj ] that are not

delivered by the nonstop shipments is equal to

η̄ij = (j − i)−
Sij
∑

k=2

ηi(k).

Note that

ηij =











η̄ij, if η̄ij ≤ K;

+∞, if η̄ij > K.

Therefore, ηi,i+1, ηi,i+2, . . . , ηi,n+1 can be obtained recursively in O(n) time as well. 2

After the quantities in Lemma 1 are predetermined, F ′
i,i+1, F

′
i,i+2, . . . , F

′
i,n+1 can be ob-

tained recursively in O(n) time for each i = 1, 2, . . . , n+1. This implies that the overall

running time required for the dynamic program presented here is bounded by O(n2).
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4 The Multiple-Customer Case

In this section, we consider the general problem with m customers. In subsection 4.1, we will

develop an algorithm for solving this general case. This algorithm has a polynomial time

complexity when m is a fixed number. Note that the general problem allows the vehicle to

visit multiple customers in each delivery trip (i.e., milk runs are allowed). In subsection 4.2,

we will discuss the special case when no milk runs are allowed, that is, the vehicle has to

return to the plant immediately after a delivery is made.

4.1 The general case

We first present a dynamic programming algorithm for solving the problem with two cus-

tomers. By Theorem 2(iv) and assuming that the vehicle will stay idle before the completion

time of the first job, there can only be a finite number of time points for the start time of

a trip of the vehicle. The vehicle will transport a batch of jobs either at the completion of

the last job in this batch or immediately after it returns to the plant. Thus, the possible

departure times of the vehicle from the plant are C` + q1 ·2t01 + q2 ·2t02 + q3 ·(t01 + t02 + t12)

(` = 1, 2, . . . , n; q1 = 0, 1, . . . , n1; q2 = 0, 1, . . . , n2; q3 = 0, 1, . . . , min{n1, n2}). Let T be the

set of these departure times. By Theorem 2(i)&(iii), C` = P
(1)
i +P

(2)
j for some i = 0, 1, . . . , n1

and j = 0, 1, . . . , n2. Thus, |T | = O(n5).

Define g(i, j, t) as the minimum possible total arrival time for jobs J
(1)
i , J

(1)
i+1, . . . , J

(1)
n1

and

J
(2)
j , J

(2)
j+1, . . . , J

(2)
n2

given that the vehicle is available for these jobs at time t, where t ∈ T ,

i = 1, 2, . . . , n1, and j = 1, 2, . . . , n2. Define

δx =











1, if x > 0;

0, if x = 0.

We have the following recurrence relation:

g(i, j, t) = min
0≤u≤n1−i+1
0≤v≤n2−j+1

0<u+v≤K

{

(1− δv)·u(t̂ + t01) + (1− δu)·v(t̂ + t02)

+ δuδv ·min{u(t̂ + t01) + v(t̂ + t01 + t12), v(t̂ + t02) + u(t̂ + t02 + t12)}

+ g(i+u, j+v, t̂+(1−δv)·2t01 + (1−δu)·2t02 + δuδv ·(t01+t02+t12))
}

,

12



for t ∈ T , i = 1, 2, . . . , n1 +1, and j = 1, 2, . . . , n2+1, where t̂ = max{t, P
(1)
i+u−1 +P

(2)
j+v−1}.

The boundary condition is

g(n1+1, n2+1, t) = 0,

for all t ∈ T , and the objective is g(1, 1, 0).

In the above recurrence relation, we consider the delivery of jobs J
(1)
i , J

(1)
i+1, . . . , J

(1)
n1

and

J
(2)
j , J

(2)
j+1, . . . , J

(2)
n2

. Variables u and v are the number of jobs to be delivered to customers 1

and 2, respectively, during the first trip. By Theorem 2(ii)–(iii), these u + v jobs are

J
(1)
i , J

(1)
i+1, . . . , J

(1)
i+u−1 and J

(2)
j , J

(2)
j+1, . . . , J

(2)
j+v−1. If the vehicle is available for delivering these

jobs at time t, then it departs at time t̂. If v = 0 (i.e., δv = 0) then the batch will arrive at

customer 1 at time t̂ + t01. If u = 0 (i.e., δu = 0), then the batch will arrive at customer 2

at time t̂ + t02. If u, v > 0 (i.e., δuδv = 1), then the batch will either arrive at customers 1

and 2 at times t̂ + t01 and t̂ + t01 + t12, respectively, or arrive at customers 2 and 1 at times

t̂ + t02 and t̂ + t02 + t12, respectively. The condition “u + v ≤ K” ensures that the vehicle

capacity is not violated. Note that the total number of possible combinations of i, j, and

t is O(n4 ·|T |). Therefore, this dynamic program solves the two-customer problem in O(n9)

time.

Next, we consider the case with m customers, where m is fixed. The above dynamic

programming method can easily be extended to this case by extending the optimal value

function to g(i1, i2, . . . , im, t). When there are m customers located at different locations, the

number of possible departure times, |T |, is O(nm(m+3)/2). This is because there are (n+1)m

possible values for the job completion time P
(1)
i1 + · · · + P

(m)
im and (n+1)m(m+1)/2 possible

values for the travel time of a set of nonstop shipments (since there are m(m + 1)/2 links in

the network of customers and each of them is traversed at most n times). Thus, the number

of possible states in the dynamic program is O(nm(m+5)/2), because there are (n+1)m possible

values for the m-tuple (i1, i2, . . . , im). Evaluating each g(i1, i2, . . . , im, t) takes O(nm) time.

(Note that the number of terms in the right-hand side of the recurrence relation is dependent

on m. However, it becomes a constant when m is fixed.) Hence, the overall complexity of the

dynamic program is O(nm(m+7)/2). This implies that the m-customer problem is polynomial

time solvable when m is fixed.
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4.2 The case with no milk run allowed

We now discuss a special situation in which the vehicle is only allowed to deliver to customers

directly and no milk runs are allowed. Note that this can be viewed as a special case of our

model with tij = t0i + t0j for any pair of customers i and j. This is because if tij = t0i + t0j

for all i and j, then each milk run can be converted into a set of direct shipments without

affecting the job arrival times.

We first consider the problem with only two customers. In this case, the possible depar-

ture times of the vehicle at the plant are C`+q1·2t01+q2·2t02 (` = 1, 2, . . . , n; q1 = 0, 1, . . . , n1;

q2 = 0, 1, . . . , n2). Thus, the number of possible departure times, |T |, is O(n4). Moreover,

the recurrence relation presented in subsection 4.1 can be simplified to

g(i, j, t) = min
{

min
0<u≤min{n1−i+1,K}

{

u(t̂ + t01) + g(i+u, j, t̂ + 2t01)
}

,

min
0<v≤min{n2−j+1,K}

{

v(t̂ + t02) + g(i, j+v, t̂ + 2t02)
}

}

,

for t ∈ T , i = 1, 2, . . . , n1+1, and j = 1, 2, . . . , n2+1. Thus, the number of possible states is

O(n6), and each iteration of the dynamic program takes only O(n) time. Hence, when milk

runs are not allowed, the complexity of the dynamic program for the two-customer problem

is reduced to O(n7).

Now, consider the case with m customers, where m is fixed. The above dynamic pro-

gramming method can easily be extended to this case. When there are m customers located

at different locations and milk runs are not allowed, the number of possible departure times,

|T |, is O(n2m). Thus, the number of possible states in the dynamic program is O(n3m).

When m is fixed, evaluating each g(i1, i2, . . . , im, t) takes O(n) time. Hence, the overall

complexity of the dynamic program is O(n3m+1). Note that this computational complexity

is significantly lower than that of the general case presented in subsection 4.1. However,

it remains an interesting open question whether or not this special case is polynomial time

solvable when m is not fixed.

Next, we consider the special case of the no-milk-run problem when the vehicle is unca-

pacitated and present a dynamic program that can solve this special case with a lower compu-

tational complexity. We first consider the case with only two customers. Define h(i, j, τ, k)

as the minimum possible total arrival time for jobs J
(1)
1 , J

(1)
2 , . . . , J

(1)
i , J

(2)
1 , J

(2)
2 , . . . , J

(2)
j if

14



the vehicle’s last departure from the plant with any of these jobs takes place at time τ , and

that last shipment is delivered to customer k, where i ∈ {0, 1, . . . , n1}, j ∈ {0, 1, . . . , n2},

τ ∈ {τ ′ ∈ T | τ ′ ≥ P
(1)
i + P

(2)
j }, and k ∈ {1, 2}. We have the following recurrence relations:

h(i, j, P
(1)
i +P

(2)
j , 1) = min

{

h(i−1, j, P
(1)
i +P

(2)
j , 1), min

k′=1,2; τ′∈T ;

τ′≤P
(1)
i

+P
(2)
j

−2t
0k′

{

h(i−1, j, τ ′, k′)
}

}

+ P
(1)
i + P

(2)
j + t01; (2)

h(i, j, P
(1)
i +P

(2)
j , 2) = min

{

h(i, j−1, P
(1)
i +P

(2)
j , 1), min

k′=1,2; τ′∈T ;

τ′≤P
(1)
i

+P
(2)
j

−2t
0k′

{

h(i, j−1, τ ′, k′)
}

}

+ P
(1)
i + P

(2)
j + t02; (3)

and for τ > P
(1)
i +P

(2)
j ,

h(i, j, τ, 1) = min
{

h(i−1, j, τ, 1), h(i−1, j, τ−2t01, 1), h(i−1, j, τ−2t02, 2)
}

+ τ + t01; (4)

h(i, j, τ, 2) = min
{

h(i, j−1, τ, 2), h(i, j−1, τ−2t01, 1), h(i, j−1, τ−2t02, 2)
}

+ τ + t02. (5)

The boundary conditions are h(0, 0, τ, k) = 0 for all τ ∈ T , k ∈ {1, 2} and h(i, j, τ, k) = +∞

if τ < P
(1)
i +P

(2)
j . The objective is minτ∈T ;k=1,2 {h(n1, n2, τ, k)}.

Equation (2) is for the case when the vehicle departs from the plant immediately at the

completion of J
(1)
i and delivers this job to customer 1 (see Figure 4(a)). There are two

possibilities. If the vehicle also carries J
(1)
i−1 on this trip, then the minimum total job arrival

time for jobs J
(1)
1 , . . . , J

(1)
i−1, J

(2)
1 , . . . , J

(2)
j is h(i−1, j, P

(1)
i +P

(2)
j , 1). Otherwise, let k′ denote

the customer that the vehicle visits in the preceeding trip and let τ ′ denote the departure

time of that trip. Then τ ′ must be no greater than P
(1)
i + P

(2)
j − 2t0k′ and the minimum

total job arrival time for jobs J
(1)
1 , . . . , J

(1)
i−1, J

(2)
1 , . . . , J

(2)
j is h(i−1, j, τ ′, k′). This explains the

construction of Equation (2). The construction of Equation (3) follows the same argument.

The computational effort required to compute each h(i, j, P
(1)
i +P

(2)
j , k) is O(|T |). Thus, the

running time required to compute all h(i, j, P
(1)
i +P

(2)
j , k) is O(n2 ·|T |).

Insert Figure 4 about here

Equation (4) is for the case when the vehicle departs from the plant at time τ > P
(1)
i +

P
(2)
j when carrying J

(1)
i to its customer. By Theorem 2(iv), there must be another trip

15



immediately before this one, that is, the departure time of the preceeding trip must be

τ − 2t0k′ if it is a delivery to customer k′ (see Figure 4(b)). Thus, there are three possible

scenarios. Either J
(1)
i−1 also departs from the plant at time τ , or it departs from the plant at

time τ − 2t01, or J
(2)
j departs from the plant at time τ − 2t02. This explains the construction

of Equation (4). The construction of Equation (5) follows the same argument. When τ >

P
(1)
i +P

(2)
j , the computational effort required to compute each h(i, j, τ, k) is O(1). The

number of combinations of i, j, τ , and k is O(n2 ·|T |). Therefore, the overall complexity of

this dynamic program is O(n2 ·|T |) = O(n6).

Now, consider the case with m customers when m is fixed. The above dynamic program-

ming method can be extended to this case. Recall that the number of possible departure

times, |T |, is O(n2m). It is easy to check that, when m is fixed, the complexity of the

extended dynamic program is nm ·|T | = O(n3m).

5 Conclusions

We have presented an analysis of the single-machine scheduling problem with deliveries to

multiple customers. While the problem is NP-hard in general, the single-customer case can

be solved efficiently in O(n2) time. We have developed a dynamic program for solving the

general case. The computational complexity of the dynamic program is quite high when m

is greater than 1, although it is a polynomial function of n when m is fixed. We have shown

that the complexity can be lowered when the deliveries are restricted to direct shipments.

The complexity is further lowered when the vehicle is uncapacitated.

In future research, it will be worth considering the development of efficient and effective

heuristics for the general problem with an arbitrary number of customers. It is also worth

considering the development of optimal algorithms with lower computational complexity for

the case when the number of customers is fixed. Furthermore, it is interesting to extend the

existing model to and develop solution methods for problems with multiple delivery vehicles

as well as problems with other objective functions.
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Figure 1.  A two-customer example 
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Figure 2.  Nonstop shipments take place after the delivery of Ji in the single-customer case 
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(a) job processing times and cumulative processing times 
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(d) an alternative optimal schedule ( 38131366ˆ =+++=Σ jC ) 
 

Figure 3. An example for the single-customer algorithm
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Figure 4. Recurrence relations of the two-customer, no-milk-run, uncapacitated problem 
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