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1 Introduction

Project scheduling with time-cost tradeoff decisions plays a significant role in project management.

In particular, discrete time-cost tradeoff models with deadline or budget constraints are important

tools for project managers to perform time planning and budgeting for their projects. As a result,

efficient and effective solution procedures for such models are highly attractive to those practition-

ers. Unfortunately, these models are computationally intractable, and constructing near-optimal

polynomial-time heuristics for them is highly challenging. In this paper, we develop fully polyno-

mial time approximation schemes (FPTASs) for an important class of time-cost tradeoff problems

in which the underlying project network is series-parallel (see Section 4 for a discussion of how our

results can be applied to problems with “near-series-parallel” networks).

Time-cost tradeoff problems in series-parallel networks have applications not only in project

management. Rothfarb et al. [11] and Frank et al. [5] have applied the time-cost tradeoff model to

natural-gas pipeline system design and centralized computer network design, respectively. In their

applications, the underlying network is a tree network, which is a special kind of series-parallel

network, and they proposed an (exponential time) enumeration method for their problems.

Consider the following time-cost tradeoff model for project scheduling: There is a (directed

acyclic) project network of n activities in activity-on-arc representation. Associated with each

activity i are two nonincreasing functions fi : Ti → Z+ and gi : Ci → Z+, where fi(ti) is the cost

incurred when the activity time is ti, gi(ci) is the activity time when an amount ci of monetary

resource is spent on the activity, Ti = {ti, ti+1, . . . , t̄i} ⊂ Z+ is the set of all possible time duration

of activity i, Ci = {ci, ci+1, . . . , c̄i} ⊂ Z+ is the set of all possible cost consumption of activity

i, and Z+ is the set of all nonnegative integers. In other words, gi(ci) = min{t | fi(t) ≤ ci} and

fi(ti) = min{c | gi(c) ≤ ti}. Here, we assume that all activity times and costs are integer-valued.

Denote the activities as 1, 2, . . . , n. Let φ(t1, t2, . . . , tn) denote the total duration of the project

(i.e., the length of the longest path in the network) when the time duration of activity i is ti for

i = 1, 2, . . . , n. We are interested in two different variants of the problem: (i) given a deadline

d, determine t1, t2, . . . , tn so that φ(t1, t2, . . . , tn) ≤ d and that f1(t1) + f2(t2) + · · · + fn(tn) is

minimized, and (ii) given a budget b, determine c1, c2, . . . , cn so that c1 + c2 + · · ·+ cn ≤ b and that
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φ(g1(c1), g2(c2), . . . , gn(cn)) is minimized. We refer to the first problem as the deadline problem and

the second problem as the budget problem. In the deadline problem, we assume, for simplicity, that

for each activity i, function fi can be evaluated in constant time (i.e., for any given t ∈ Ti, fi(t)

can be determined in constant time). In the budget problem, we assume, for simplicity, that for

each activity i, function gi can be evaluated in constant time. However, our FPTASs remain valid

as long as fi and gi can be evaluated in an amount of time which is polynomial in the input size of

the problems.

Note that in our model the time-cost tradeoff function of an activity can be any nonincreasing

function (with nonnegative integer domain and range). In fact, our model is a generalization of the

traditional discrete time-cost tradeoff model, which is defined in such a way that every activity i

has m(i) alternatives, of which alternative j requires t(i, j) ∈ Z+ time units and c(i, j) ∈ Z+ cost

units (j = 1, 2, . . . ,m(i)). In the discrete time-cost tradeoff model, for every activity i, all possible

durations are explicitly given such that the encoding length of activity i is linear in the number of

possible durations. In other words, in the discrete model functions f and g are specified pointwise,

while in our model these functions can be encoded compactly via a fast oracle algorithm.

De et al. [3] have shown that both the deadline problem and the budget problem are NP-

hard in the strong sense for the discrete time-cost tradeoff model when the underlying project

network is a general directed acyclic network. Thus, it is unlikely that there exists an FPTAS for

either the deadline problem or the budget problem of our model. In fact, developing polynomial-

time approximation algorithms for the discrete time-cost tradeoff model is a challenging task.

Skutella [13] has developed a polynomial-time algorithm for the budget problem with performance

guarantee O(log l), where l is the ratio of the maximum duration and minimum nonzero duration

of any activity. However, as pointed out by Deineko and Woeginger [4], unless P=NP, the budget

problem does not have a polynomial-time approximation algorithm with performance guarantee

strictly less than 3
2 . Skutella [13] has also developed a polynomial-time algorithm for the deadline

problem with performance guarantee O(l). However, as pointed out by Grigoriev and Woeginger [6],

unless P=NP, the deadline problem does not have a polynomial-time approximation algorithm with

performance guarantee strictly less than 7
6 . (Note: The deadline problem and the budget problem

2



are clearly equivalent to each other in terms of polynomial-time solvability. However, these problems

may behave differently with respect to their approximability.)

When the underlying network is series-parallel, the time-cost tradeoff problems are more “com-

putationally tractable.” Grigoriev and Woeginger [6] have developed an O(nd3) algorithm for the

deadline problem of the discrete time-cost trade-off model when the underlying network is series-

parallel. This also implies that the budget problem of the discrete time-cost trade-off model is

polynomial-time solvable when the underlying network is series-parallel. On the other hand, they

have given an elegant proof that both the deadline problem and the budget problem are NP-hard

in the ordinary sense for the compactly encoded time-cost tradeoff model, even when the project

network consists of only two activities that are connected in series.

Although the deadline and budget problems for the compactly encoded time-cost tradeoff model

are NP-hard, they can be solved in pseudo-polynomial time by dynamic programming whenever

the underlying network is series-parallel [3, 10, 6]. However, to the best of our knowledge, no

known polynomial-time approximation scheme has been developed for these problems. Note that

Woeginger [15] and Halman et al. [7] have developed different frameworks for deriving FPTASs for

dynamic programs. Our problems do not fit into either of these frameworks. They do not fit into

Woeginger’s framework because his framework requires the cardinality of the action space of the

dynamic program to be bounded by a polynomial of the binary input size (see Condition C.4(ii)

in [15]). They do not fit into Halman et al.’s framework because their framework is presented as

a finite-horizon dynamic program, and our problems, if formulated as dynamic programs, do not

appear to match the form required by the framework. In addition, Halman et al.’s framework does

not support a min-max operation that is needed when dealing with the parallel activities in the

budget problem. We summarize in Table 1 the past results, as well as our new results, for the

deadline problem under different models and underlying networks.

A series-parallel network can be reduced to a single-arc network efficiently via a sequence of

simple series and parallel reduction operations [14]. In what follows, we will make use of series and

parallel reductions, together with the K-approximation sets and functions introduced by Halman

et al. [8], to develop FPTASs for the deadline and budget problems in series-parallel networks. To
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Table 1: Past and new results of the deadline problem

Underlying network \ Model Discrete Compactly encoded

General Strongly NP-hard [3]; Strongly NP-hard [3]

not < 7
6 -approximable unless P=NP [6];

admits an O(l)-approximation [13]∗

Series-parallel Solvable in O(nd3) time [6] Ordinarily NP-hard [6];

admits an FPTAS (Section 3.1)
∗[13] achieved an O(log l)-approximation for the budget problem

simplify the discussion, we only consider the case where the problem is feasible. Note that it is easy

to detect feasibility of the problem. The budget problem is feasible if and only if
∑

i fi(t̄i) ≤ b. The

feasibility of the deadline problem can be detected by setting all activity times to their lower limits,

solving the problem by the standard critical path method, and comparing the resulting project

completion time with the deadline d.

To simplify our analysis, we expand the domains of functions fi and gi to {0, 1, . . . , U} for each

activity i, where U = maxi{max{t̄i, c̄i}}. We can do so by defining fi(t) = M for t = 0, 1, . . . , ti−1,

defining fi(t) = fi(t̄i) for t = t̄i + 1, t̄i + 2, . . . , U , defining gi(c) = M for c = 0, 1, . . . , ci − 1, and

defining gi(c) = gi(c̄i) for c = c̄i + 1, c̄i + 2, . . . , U , where M is a large integer. (Note: It suffices to

set M = max{
∑

i fi(ti),
∑

i gi(ci)} + 1.)

Throughout the paper, all logarithms are base 2 unless otherwise stated.

2 K-approximation Sets and Functions

Halman et al. [8] have introduced K-approximation sets and functions, and used them to develop

an FPTAS for a stochastic inventory control problem. Halman et al. [7] have applied these tools

to develop a general framework for constructing FPTASs for stochastic dynamic programs. In this

section we provide an overview of K-approximation sets and functions. In the next section we will

use them to construct FPTASs for our time-cost tradeoff problems. To simplify the discussion, we

modify Halman et al.’s definition of the K-approximation function by restricting it to integer-valued
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functions.

Let K ≥ 1, and let ψ : {0, 1, . . . , U} → Z+ be an arbitrary function. We say that ψ̂ :

{0, 1, . . . , U} → Z+ is a K-approximation function of ψ if ψ(x) ≤ ψ̂(x) ≤ Kψ(x) for all x =

0, 1, . . . , U . The following property of K-approximation functions is extracted from Proposition 4.1

of [7], which provides a set of general computational rules ofK-approximation functions. Its validity

follows directly from the definition of the K-approximation function.

Property 1 For i = 1, 2, let Ki ≥ 1, let ψi : {0, 1, . . . , U} → Z+ be an arbitrary function, let

ψ̃i : {0, 1, . . . , U} → Z+ be a Ki-approximation function of ψi, and let α, β ∈ Z+. The following

properties hold:

Summation of approximation: αψ̃1 + βψ̃2 is a max{K1,K2}-approximation function of αψ1 + βψ2.

Approximation of approximation: If ψ2 = ψ̃1 then ψ̃2 is a K1K2-approximation function of ψ1.

Let K > 1. Let ϕ : {0, 1, . . . , U} → Z+ be a nonincreasing function and S = (k1, k2, . . . , kr)

be an ordered subset of {0, 1, . . . , U}, where 0 = k1 < k2 < · · · < kr = U . We say that S is a K-

approximation set of ϕ if ϕ(kj) ≤ Kϕ(kj+1) for each j = 1, 2, . . . , r− 1 that satisfies kj+1 − kj > 1.

(The term used in [7] is weak K-approximation set of ϕ.) Given ϕ, there exists a K-approximation

set of ϕ with cardinality O(logK Ū), where Ū is any constant upper bound of ϕ(0). Furthermore,

this set can be constructed in O
(
(1 + τ(ϕ)) logK Ū logU

)
time, where τ(ϕ) is the amount of time

required to evaluate ϕ (see Lemma 3.1 of [7]).

Given ϕ and a K-approximation set S = (k1, k2, . . . , kr) of ϕ, a K-approximation function of ϕ

can be obtained easily as follows (Definition 3.4 of [7]): Define ϕ̂ : {0, 1, . . . , U} → Z+ such that

ϕ̂(x) = ϕ(kj) for kj ≤ x < kj+1 and j = 1, 2, . . . , r − 1,

and that

ϕ̂(kr) = ϕ(kr).

Note that ϕ(x) ≤ ϕ̂(x) ≤ Kϕ(x) for x = 0, 1, . . . , U . Therefore, ϕ̂ is a nonincreasing K-

approximation function of ϕ. We say that ϕ̂ is the K-approximation function of ϕ corresponding

to S.
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3 Series and Parallel Reductions

Two-terminal edge series-parallel networks (or simply “series-parallel networks”) are defined recur-

sively as follows [14]: (i) A directed network consisting of two vertices (i.e., a “source” and a “sink”)

joined by a single arc is series-parallel. (ii) If two directed networks G1 and G2 are series-parallel,

then so are the networks constructed by each of the following operations: (a) Two-terminal series

composition: Identify the sink of G1 with the source of G2. (b) Two-terminal parallel composition:

Identify the source of G1 with the source of G2 and the sink of G1 with the sink of G2.

As mentioned in Section 1, a series-parallel network can be reduced to a single-arc network

via a sequence of series and parallel reduction operations. A series reduction is an operation that

replaces two series arcs by a single arc, while a parallel reduction is an operation that replaces

two parallel arcs by a single arc (see Figure 1). In a project network, a reduction of two series

activities with time duration t′ and t′′ will result in a single activity with time duration t′ + t′′,

while a reduction of two parallel activities with time duration t′ and t′′ will result in a single activity

with time duration max{t′, t′′}. For a given series-parallel project network of n activities, it takes

n− 1 series/parallel reduction operations to reduce it to a single-activity network. However, when

there are time-cost tradeoff decisions for the activities, the integration of the two time-cost tradeoff

functions during a series/parallel reduction operation becomes a challenge if we want to perform the

computation efficiently. In the following subsections, we explain how to apply series and parallel

reductions, together with K-approximation sets and functions, to develop FPTASs for the deadline

and budget problems.

Note that series-parallel graphs have tree-width 2 (see [12], where “tree-width” was first intro-

duced). It is known that many optimization problems on low tree-width graphs admit dynamic

programs, which often lead to efficient exact/approximation algorithms that are unlikely to exist if

the graphs were general [1]. Our paper goes along this line of research.

3.1 The Deadline Problem

For a given error tolerance ε ∈ (0, 1], our approximation algorithm for the deadline problem can be

described as follows:
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Step 1: Let K = 1 + ε
2n .

Step 2: For each activity i, obtain aK-approximation set Si of fi, and obtain theK-approximation

function f̂i of fi corresponding to Si.

Step 3: Select any pair of series or parallel activities i1 and i2.

Case (a): If i1 and i2 are series activities, then perform a series reduction to replace these

two activities by an activity i. Obtain a K-approximation set S̄i of f̄i, where

f̄i(t) = min
t′∈{0,1,...,t}∩(Si1

∪{t−x | x∈Si2
})

{
f̂i1(t

′) + f̂i2(t− t′)
}
. (1)

Obtain the K-approximation function f̂i of f̄i corresponding to S̄i (i.e., obtain and store

the values of {f̂i(t) | t ∈ S̄i} in an array arranged in ascending order of t).

Case (b): If i1 and i2 are parallel activities, then perform a parallel reduction to replace

these two activities by an activity i. Obtain a K-approximation set S̄i of f̄i, where

f̄i(t) = f̂i1(t) + f̂i2(t). (2)

Obtain the K-approximation function f̂i of f̄i corresponding to S̄i.

Step 4: If the project network contains only one activity i0, then the approximated solution value

is given by f̂i0(d). Otherwise, return to Step 3.

We first discuss Case (a) of Step 3. Suppose that we allocate t time units to a pair of series

activities i1 (along arc u → v) and i2 (along arc v → w); that is, we allow these two activities to

spend no more than a total of t time units. Then, the merged activity i (along with merged arc

u→ w, as shown in Figure 1(a)), which has a duration of t, will incur a cost of

fi(t) = min
t′=0,1,...,t

{
fi1(t

′) + fi2(t− t′)
}
, (3)

where fi1(t
′) and fi2(t− t′) are the costs of the original activities i1 and i2 if they are allocated t′

and t− t′ time units, respectively. Suppose we do not know the exact time-cost tradeoff functions

fi1 and fi2 of these two activities, but instead we have: (i) a nonincreasing Kk−1-approximation

function f̄i1 of fi1 and a nonincreasing K`−1-approximation function f̄i2 of fi2 , where k and ` are

positive integers, and (ii) a K-approximation set Sij of f̄ij and the K-approximation function f̂ij

of f̄ij corresponding to Sij for j = 1, 2. Then, we obtain f̄i using equation (1). We first show that

f̄i is a nonincreasing function.

Property 2 f̄i defined in (1) is a nonincreasing function.
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Proof: Consider any t ∈ {0, 1, . . . , U−1}. Then f̄i(t) = f̂i1(t
∗)+f̂i2(t−t∗) for some t∗ ∈ {0, 1, . . . , t}∩

(Si1 ∪ {t − x | x ∈ Si2}). We have t∗ ∈ Si1 or t − t∗ ∈ Si2 (or both). If t∗ ∈ Si1 , then t∗ ∈

{0, 1, . . . , t, t+1} ∩ (Si1 ∪ {t+ 1 − x | x ∈ Si2}), which implies that

f̄i(t+ 1) ≤ f̂i1(t
∗) + f̂i2(t+ 1 − t∗) ≤ f̂i1(t

∗) + f̂i2(t− t∗) = f̄i(t).

If t− t∗ ∈ Si2 , then t∗ + 1 ∈ {t+ 1 − x | x ∈ Si2} ⊆ {0, 1, . . . , t, t+1} ∩ (Si1 ∪ {t+ 1 − x | x ∈ Si2}),

which implies that

f̄i(t+ 1) ≤ f̂i1(t
∗ + 1) + f̂i2(t− t∗) ≤ f̂i1(t

∗) + f̂i2(t− t∗) = f̄i(t).

Therefore, f̄i is nonincreasing.

The following property is modified from Theorem 4.1 of [7].

Property 3 Let fi and f̄i be the functions defined in (3) and (1), respectively. Then, f̄i is a

Kmax{k,`}-approximation function of fi.

Proof: Consider any fixed t ∈ {0, 1, . . . , U}. Let t∗ = arg mint′=0,1,...,t

{
fi1(t

′) + fi2(t − t′)
}

(with

ties broken arbitrarily). Let t∗∗ = arg mint′∈{0,1,...,t}∩(Si1
∪{t−x | x∈Si2

})
{
f̂i1(t

′) + f̂i2(t − t′)
}

(with

ties broken arbitrarily). We have

f̄i(t) = f̂i1(t
∗∗) + f̂i2(t− t∗∗) ≥ fi1(t

∗∗) + fi2(t− t∗∗) ≥ fi1(t
∗) + fi2(t− t∗) = fi(t). (4)

Because f̂i1 is the K-approximation function of f̄i1 corresponding to Si1 , there exists t0 ∈ Si1 such

that t0 ≤ t∗ and f̂i1(t0) = f̂i1(t
∗). This implies that f̂i1(t0) ≤ Kf̄i1(t

∗) ≤ Kkfi1(t
∗). Note that

f̂i2(t− t0) ≤ f̂i2(t− t∗) ≤ Kf̄i2(t− t∗) ≤ K`fi2(t− t∗). Thus,

f̄i(t) = f̂i1(t
∗∗) + f̂i2(t− t∗∗) ≤ f̂i1(t0) + f̂i2(t− t0)

≤ Kkfi1(t
∗) +K`fi2(t− t∗) ≤ Kmax{k,`}fi(t). (5)

Combining (4) and (5) yields the desired result.

In Case (a) of Step 3, S̄i is a K-approximation set of f̄i. Due to Property 2, S̄i is well defined.

Function f̂i is the (nonincreasing) K-approximation function of f̄i corresponding to S̄i. By approx-

imation of approximation (Property 1), f̂i is a nonincreasing Kmax{k,`}+1-approximation function
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of fi. The amount of time required to evaluate f̄i(t) for each t is

τ(f̄i) = O
(
(|Si1 | + |Si2 |)(τ(f̂i1) + τ(f̂i2))

)
.

Let Ū be any constant upper bound of f̂i0(d). Then, |Si1 | = O(logK Ū), |Si2 | = O(logK Ū), and

τ(f̂ij ) = O(log |Sij |) for j = 1, 2 (because the values of {f̂ij (t) | t ∈ Sij} are stored in an array

arranged in ascending order of t, for any t = 0, 1, . . . , U , it takes only O(log |Sij |) time to search

for the value of f̂ij (t)). Thus, τ(f̄i) ≤ O(logK Ū log logK Ū), and therefore the time required for

constructing S̄i is O
(
(1 + τ(f̄i)) logK Ū logU

)
≤ O(log2

K Ū logU log logK Ū).

Next, we discuss Case (b) of Step 3. Suppose that we allocate t time units to a pair of parallel

activities i1 and i2; that is, we allow each of these two activities to spend no more than t time

units. Then, the merged activity, which has a maximum duration of t, will incur a cost of

fi(t) = fi1(t) + fi2(t), (6)

where fi1(t) and fi2(t) are the costs of the original activities i1 and i2, respectively. Suppose

we do not know the exact time-cost tradeoff functions fi1 and fi2 , but instead we have: (i) a

nonincreasing Kk−1-approximation function f̄i1 of fi1 and a nonincreasing K`−1-approximation

function f̄i2 of fi2 , where k and ` are positive integers, and (ii) a K-approximation set Sij of f̄ij

and the K-approximation function f̂ij of f̄ij corresponding to Sij for j = 1, 2. Then, f̂i1 is a

Kk-approximation function of fi1 , and f̂i2 is a K`-approximation function of fi2 .

By summation of approximation (Property 1), f̄i defined in (2) is a Kmax{k,`}-approximation

function of fi. Clearly, f̄i is nonincreasing. Let S̄i be a K-approximation set of f̄i, and f̂i be

the (nonincreasing) K-approximation function of f̄i corresponding to S̄i. By approximation of

approximation (Property 1), f̂i is a Kmax{k,`}+1-approximation function of fi. The amount of time

required to evaluate f̄i is

τ(f̄i) = O
(
τ(f̂i1) + τ(f̂i2)

)
= O(log |Si1 | + log |Si2 |) ≤ O(log logK Ū).

The amount of time required to construct S̄i is O
(
(1 + τ(f̄i)) logK Ū logU

)
, which is dominated by

the running time for constructing S̄i in the series reduction case.

9



Let f∗(d) denote the optimal total cost of the project for a given deadline d. We now analyze

how close f̂i0(d) is to f∗(d). Note that after performing r series/parallel reduction operations

(0 ≤ r ≤ n−1), the project network has n − r activities, namely i1, i2, . . . , in−r. Associated with

each activity ij is a function f̂ij , which is a Kβj -approximation function of fij for some positive

integer βj . We define
∑n−r

j=1 βj as the approximation level of this project.

Before performing any series/parallel reduction, the project has an approximation level n. Since

max{k, `} + 1 ≤ k + `, neither a series reduction operation nor a parallel reduction operation will

increase the approximation level of the project. Hence, at the end of the solution procedure, the

approximation level of the project is at most n, which implies that f̂i0 is a Kn-approximation of f∗.

Recall that K = 1+ ε
2n . Because (1+ ε

2n)n ≤ 1+ε, we conclude that f̂i0(d) is a (1+ε)-approximation

solution to the deadline problem.

Finally, we analyze the running time of the approximation algorithm. Step 2 obtains a K-

approximation set and function for each activity. The running time of this step is dominated by that

of the series/parallel reduction operations in Step 3. The construction of S̄i in each series/parallel

reduction takes O(log2
K Ū logU log logK Ū) time. Thus, the running time of the entire solution

procedure is O(n log2
K Ū logU log logK Ū). Since logK Ū ≤ 1

K−1 log2 Ū (because log2K ≥ K − 1 for

1 < K < 2), the running time is O
(

n3

ε2
log2 Ū logU log(n

ε log Ū)
)
. By setting Ū = Kn

∑n
i=1 fi(ti),

we get that our solution scheme is an FPTAS.

3.2 The Budget Problem

We now consider the budget problem. Let g∗(b) denote the optimal duration of the project for a

given budget b. Suppose we allocate c units of monetary resources to a pair of series activities i1

(along arc u → v) and i2 (along arc v → w). Then, the merged activity i (along the merged arc

u→ w), which has a budget of c, will have a duration of

gi(c) = min
c′=0,1,...,c

{
gi1(c

′) + gi2(c− c′)
}
, (7)

where gi1(c
′) and gi2(c − c′) are the activity times of the original activities i1 and i2 if they are

allocated monetary resources of c′ and c− c′, respectively. Let ḡi1 be a nonincreasing Kk−1-approx-
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imation function of gi1 , and ḡi2 be a nonincreasing K`−1-approximation function of gi2 . Let Sij

be a K-approximation set of ḡij , and ĝij be the K-approximation function of ḡij corresponding

to Sij (j = 1, 2). Then, ĝi1 is a Kk-approximation function of gi1 , and ĝi2 is a K`-approximation

function of gi2 . Following the same argument as in Section 3.1, we define function ḡi such that for

t = 0, 1, . . . , U ,

ḡi(c) = min
c′∈{0,1,...,c}∩(Si1

∪{c−x | x∈Si2
})

{
ĝi1(c

′) + ĝi2(c− c′)
}
.

By Properties 2 and 3, ḡi is a nonincreasing Kmax{k,`}-approximation function of gi. Let S̄i be a

K-approximation set of ḡi, and ĝi be the (nonincreasing) K-approximation function of ḡi corre-

sponding to S̄i. Then, ĝi is a nonincreasing Kmax{k,`}+1-approximation function of gi, and S̄i can

be constructed in O(log2
K Ū logU log logK Ū) time, where Ū is any constant upper bound of ĝi0(b).

Now, suppose that we allocate c units of monetary resources to a pair of parallel activities i1

and i2. Then, the merged activity will have an activity time of

gi(c) = min
c′=0,1,...,c

{
max

{
gi1(c

′), gi2(c− c′)
}}
. (8)

We define function ḡi such that for t = 0, 1, . . . , U ,

ḡi(c) = min
c′∈{0,1,...,c}∩(Si1

∪{c−x | x∈Si2
})

{
max

{
ĝi1(c

′), ĝi2(c− c′)
}}
,

with Si1 , Si2 , ĝi1 , and ĝi2 having the same definitions as before. Using the same argument as in

the proofs of Properties 2 and 3, we can show that ḡi is a nonincreasing Kmax{k,`}-approximation

function of gi. Let S̄i be a K-approximation set of ḡi, and ĝi be the K-approximation function

of ḡi corresponding to S̄i. Then, ĝi is a Kmax{k,`}+1-approximation function of gi, and S̄i can be

constructed in O(log2
K Ū logU log logK Ū) time.

Similar to the deadline problem, we determine an approximation solution to the budget problem

by first obtaining a K-approximation set Si and the K-approximation function of fi corresponding

to Si for each activity i, and then applying series and parallel reductions recursively until the project

is reduced to a single activity i0. The solution value is given by ĝi0(b), which is a Kn-approximation

of ĝ∗(b). Let K = 1 + ε
2n , where 0 < ε ≤ 1. Then, ĝi0(b) is a (1 + ε)-approximation solution to the

budget problem, and the running time of the solution procedure is O
(

n3

ε2 log2 Ū logU log(n
ε log Ū)

)
.

Therefore, our solution scheme is an FPTAS.
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4 Concluding Remarks

We have developed FPTASs for both the deadline and budget problems. Note that although

these FPTASs generate solutions with relative errors bounded by ε, the actual relative error of

a solution is affected by the sequence of series and parallel reduction operations. For example,

consider the deadline problem with only four activities i1, i2, i3, i4 arranged in series, where ij is the

immediate predecessor of ij+1 (j = 1, 2, 3). At the beginning of the solution procedure, we obtain

a K-approximation set and a K-approximation function for each of these activities. Suppose we

perform series reductions in the following sequence: (i) merge i1 and i2 to form a new activity i12;

(ii) merge i12 and i3 to form a new activity i123; and (iii) merge i123 and i4 to form a network with

a single activity i0. Then, step (i) generates a K2-approximation function f̂i12 of fi12 . Step (ii)

generates a K3-approximation function f̂i123 of fi123 . Step (iii) generates a K4-approximation

function f̂i0 of fi0 .

Now, suppose we perform the series reductions in another sequence: (i) merge i1 and i2 to form

a new activity i12; (ii) merge i3 and i4 to form a new activity i34; and (iii) merge i12 and i34 to

form a network with a single activity i0. Then, step (i) generates a K2-approximation function

f̂i12 of fi12 . Step (ii) generates a K2-approximation function f̂i34 of fi34 . Step (iii) generates a

K3-approximation function f̂i0 of fi0 . Hence, this sequence of series reduction operations yields a

better approximation than the previous one.

Our FPTAS for the deadline problem uses only the “primal” dynamic program in (3) and (6).

It not only approximates the value of the optimal solution f∗(d) for the deadline problem, but also

stores an approximation of the function f∗ over the entire domain {0, 1, . . . , d} in a sorted array of

size O(n
ε log Ū). Therefore, for any integer x ∈ {0, 1, . . . , d}, only O(log(n

ε log Ū)) additional time

is needed to determine the approximated value of f∗(x).

We note that it is also possible to approximate the deadline and budget problems using the

traditional “scaling and rounding the data” approach. On one hand, for doing so one needs to use

the “dual” dynamic program (e.g., recursions (7) and (8) for the deadline problem). On the other

hand, by applying the elegant technique of Hassin [9], it is possible to reduce the log Ū term in

the running time to log log Ū . This is done by performing binary search in the log domain and

12



rounding/scaling gi(c) in (7) and (8) for every value c where these functions are computed. Unlike

our approach, approximating f∗(x) for any additional x will require the same running time.

Our solution method can be extended to non-series-parallel project networks. However, the

running time of the approximation algorithm will no longer be polynomial. To tackle non-series-

parallel project networks, besides series and parallel reductions, we also make use of node reduction.

Any two-terminal directed acyclic network can be reduced to a single arc via series, parallel, and

node reductions (see [2]). A node reduction operation can be applied when the node concerned

has either in-degree 1 or out-degree 1. Suppose node v has in-degree 1. Let u → v be the arc

into v, and v → w1, v → w2, ..., v → wk be the arcs out of v. Then a node reduction at v is to

replace these k + 1 arcs by arcs u → w1, u → w2, ..., u → wk. The case where v has out-degree

1 is defined symmetrically. In our deadline and budget problems, such a node reduction implies a

decomposition of the problem into m(i) separate problems, where m(i) is the number of time-cost

alternatives of the activity i corresponding to arc u→ v. In each decomposed problem, we obtain

the time-cost tradeoff functions for arcs u→ w1, u→ w2, ..., u→ wk by adding the time duration

and activity cost of u → v to the time-cost tradeoff functions of v → w1, v → w2, ..., v → wk,

respectively. Bein et al. [2] have developed an efficient method for determining the minimum

number of node reductions in order to reduce the given project network to a single activity. They

refer to this minimum number of node reductions as reduction complexity. Therefore, a discrete

time-cost tradeoff problem in a non-series-parallel project network can be decomposed into m̄h

time-cost tradeoff problems with series-parallel networks, where m̄ = maxi{m(i)} and h is the

reduction complexity. If h is bounded by a constant (i.e., the network is near-series-parallel) and

m̄ is bounded by a polynomial of the problem input size, then making such a decomposition and

applying the algorithms presented in Section 3 will give us an FPTAS for the problem.

Note that the computational complexity of this decomposition method increases exponentially

as the reduction complexity increases. Hence, this method is practical only if h is small. As

mentioned in Section 1, for general non-series-parallel project networks, it is very difficult to obtain

an ε-approximation algorithm for the time-cost tradeoff problem (for example, the budget problem

does not even have a polynomial-time approximation algorithm with performance guarantee better
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than 3
2 unless P=NP).
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(a) series reduction 

 

 

 

 

 

(b) parallel reduction 

 

Figure 1. Series and parallel reductions 
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