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Abstract  

Prefabrication has been widely regarded as a sustainable construction method in terms of its 

impact on environmental protection. One important aspect of this perspective is the influence 

of prefabrication on construction waste reduction and the subsequent waste handling 

activities, including waste sorting, reuse, recycle, and disposal. Nevertheless, it would appear 

that existing research with regard to this topic has failed to take into account its innate 

dynamic character of the process of construction waste minimization; integrating all essential 

waste handling activities has never been achieved thus far. This paper proposes a dynamic 

model for quantitatively evaluating the possible impacts arising from the application of 

prefabrication technology on construction waste reduction and the subsequent waste handling 

activities. The resulting model was validated based on an actual building project in Shenzhen, 

China.  

The simulation results of the design scenarios indicate that the policy on providing subsidy 

for each square meter of the prefabrication adopted in the construction would have more 

significant effect on promoting the use of prefabrication and improving the performance of 

construction waste reduction compared to the increase of income tax benefits. The results 

also show that (1) interaction exists among different management measures, and (2) the 

combined effect of multiple policies is larger than the simple sum of their individual impacts, 

indicating the need for comprehensive consideration on the combined effect of these potential 

polices. This paper demonstrates the potential benefits of using a system dynamics approach 

in understanding the behavior of real-world processes. The developed model not only serves 

as a practical tool for assessing the impact of off-site prefabrication on construction waste 

reduction and the corresponding waste handling activities, but also help provide a valuable 

reference to policy makers through the comparison of simulation results generated under 

various scenarios such that the best policy mix can be identified prior to production. 
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1. Introduction 

In recent years, along with China’s rapid economic development and the expanding process 

of urbanization over the past decades, the growth in waste generation, particularly in 

construction waste, has resulted in a series of environmental problems in urban construction. 

As a large amount of construction waste is generated from various kinds of construction 

activities, construction industry is generally regarded as a major culprit of the degradation of 

environment (Wang et al., 2014). Statistics show that In Hong Kong, more than 2900 tons 

construction waste was transported to landfills per day in 2007 (HKEPD, 2007), while 

Mainland China produced 29% of the world’s municipal solid waste in 2008, of which nearly 

40% is construction waste (Wang et al., 2008). The interest of researchers and practitioners 

on the impact of construction waste on the environment has increasingly grown, emphasizing 

on waste management and putting forward various measures with potential to minimize the 

adverse impacts of construction waste. Such efforts include waste minimization, reuse, 

recycling, and disposal (Yuan, 2013). Waste minimization is a process that avoids, eliminates, 

or reduces waste at its source, enabling the reuse/recycling of waste for benign purposes. 

Thus, waste minimization has been considered as the most desirable method of waste 

management because of its benefits of eliminating waste disposal and reducing construction 

costs of waste sorting and transportation (Lu and Yuan 2011).  

Prefabrication is a manufacturing process that generally occurs at a specialized facility where 

various materials are formed as a component of the final installation (Tatum et al., 1987). 

Various forms of prefabricated construction modules normally applied in the construction 

industry in Hong Kong can be classified into three categories: (1) semi-prefabricated non-



structural elements, such as windows, ceiling, facades, and partition walls; (2) comprehensive 

prefabricated units containing structural prefabricated elements, such as columns, beams, 

floor or roof sheathing, slabs, load-bearing walls, and staircases, most of which are completed 

in the factory prior to assembly; (3) and modular buildings that are wholly completed offsite 

as a one-stop system (Tam et al., 2007). 

Prefabrication has been commonly considered as a key strategy to effectively promote 

construction waste minimization (Lu and Yuan 2013; Chiang et al., 2006; Yee and Eng 2001; 

Aye et al., 2012; Zhang et al., 2011). This consideration is largely a result of its lower 

dependence on conventional construction technologies, such as cast-in-place concrete, 

bamboo scaffolding, timber formwork, reinforcement, tiling, and plastering (Tam et al., 2007). 

Prefabrication reduces the complexity of wet-trade work, thereby contributing to construction 

waste minimization (Aye et al. 2012; Li et al., 2014). A typical sustainable prefabricated 

building is the T30 Tower Hotel constructed by The Broad Sustainable Building Co., Ltd., a 

leading enterprise specializing in factory-made skyscrapers. The On-site construction of the 

30-storey tower hotel, along with a helicopter pad, took just 15 days. Various prefabricated 

components, done during the laying of the foundation, were finished within 40 days.   This 

prefabricated hotel is said to show several benefits that include magnitude 9-earthquake 

resistance, low construction cost, high thermal efficiency (leading to low maintenance cost), 

and, especially, only 1% construction waste generation compared with conventional 

buildings. In line with the sustainable building development program proposed by the 

Chinese Housing and Urban–Rural Development Ministry in 2012, many property 

developers, including the Vanke Group, have practiced building industrialization by adopting 

prefabrication technologies. However, practical experience in the construction industry of 

Shenzhen indicates that tools for effectively forecasting the possible impact of prefabrication 

in terms of waste generation and subsequent waste disposal activities are still lacking.  



To quantify the impact of prefabrication use on construction waste reduction and subsequent 

waste handling activities, this paper proposes an evaluation model employing a system 

dynamics approach incorporated within a Vensim software package. This evaluation model 

was established to (1) explore interactional and interdependent relationships underlying the 

identified significant variables within the processes of policy implementation, prefabrication 

application, and construction waste handling; (2) quantify the merits of applying the 

prefabrication technology in terms of construction waste reduction and compare the 

performance with traditional construction methods; and (3) analyze the effects of various 

management measures on promoting the use of prefabrication technology and its potential 

contribution to construction waste reduction.  

2. Background research   

Studies in the past 10 years reveal that researchers have considered the significance of 

prefabrication technology on construction waste-related issues. For example, Tam et al. 

(2005) suggests that through prefabrication, construction waste from use of timber formwork 

could be reduced by 74% to 87% by using steel formworks, and concrete wastage could be 

reduced by 51% to 60%. A similar study revealed that waste generation can be reduced by up 

to 100% after the adoption of precast technology, in which up to 84.7% can be saved on 

wastage reduction (Tam et al., 2007). Recent studies have also contributed various 

instruments for assessing the impact of adopting prefabrication. Jaillon et al. (2009) 

compared prefabrication with conventional construction in relation to waste reduction based 

on a questionnaire survey and case study analysis. The average waste reduction level was 

found to be approximately 52% when precast construction was used.  

Other techniques, such as the environmental management system and the design structure 

matrix technique, have also been employed to assist designers in visualizing the complex 

construction design process and analyzing the impact of precast techniques on construction 



waste reduction on site (Zeng et al., 2005; Baldwin et al., 2009). Chen et al. (2010) developed 

a decision support model for evaluating the potential merits (including construction waste 

reduction) of prefabrication use in concrete buildings by employing the multi-attribute utility 

theory. Moreover, the sustainable construction aspect considerations in the reduction of 

construction dust, noise, and waste were examined by a comparative case study through an 

environmental perspective between prefabrication and traditional construction methods 

(Jaillon and Poon, 2008).  

Given their contributions on analyzing the influence of prefabrication adoption on waste 

reduction, two problems were found in these studies that require further investigation. First, 

Existing decision support tools only consider the impact of prefabrication adoption from the 

perspective of waste generation, failing to consider the impact on other significant 

construction waste management activities, including waste sorting, reuse, recycle, and 

disposal. Second, most of previous studies have been approached from a static point of view 

that takes each identified variable as independent subject that are not supposed to affect each 

other in the process of construction, that is, the interrelationships among different influence 

factors are ignored to a large extent, thereby failing to consider the impact of feedback loops 

and complex interactions among policy, prefabrication, and subsequent waste handling 

activities.    

Furthermore, given that the objectives of this paper lie in formulating, simulating, and 

validating the impacts of prefabrication on construction waste reduction and waste handling 

activities, the major characteristics of this process should be first given sufficient 

consideration, namely:  

(1) The quantitative assessment of the influence of prefabrication on construction waste 

management demands a full understanding of the related material flows, covering holistic 

processes, including prefabricated component application, waste generation, waste sorting, 



reuse, recycle, and landfilling. As such, the process is better viewed as a complex system 

with numerous variables to be considered;  

(2) The vast majority of the variables involved in this system tend to be interactional and 

interdependent, whereas existing studies have treated them as independent variables;  

(3) More significantly, from the application of prefabricated components to the generation 

and disposal of construction waste, the entire process is dynamic, compared with 

traditional approaches that have adopted a static perspective.  

Recent developments in system dynamics theory have integrated the features of conventional 

management with dynamic feedback regulation, which has been applied extensively in 

various domains, including the construction process. Shen et al. (2009) formulated a system 

dynamics model that comprises an integrated environmental-social-economic system for 

sustainable land use and urban development. Their findings confirm that the methodology can 

effectively examine the interactions among its five sub-systems. Thus, applying the system 

dynamics discipline to assess the social performance of construction waste management, 

Yuan (2012) found that the method is ideal in simplifying various complex interrelationships 

and feedback loops underlying numerous variables in the systems that were investigated. All 

of these studies expressly indicate that system dynamics is an appropriate method for better 

depicting the interrelationships between underlying variables within a complex system from a 

dynamic point of view. Thus, it would seem that system dynamics can ideally match the 

major characteristics of material flows and can help fill the knowledge gap in existing 

research. Thus, the system dynamics approach is applied in this paper to quantify the impact 

of prefabrication on construction waste management. 

3. Research Methodology  

System dynamics, introduced by Jay Forrester in the 1960s at the Massachusetts Institute of 



Technology, is defined as a computer-aided approach for understanding the behavior of a 

system with time (Forrester, 1968). System dynamics is now widely applied in various fields, 

such as social science, agriculture, management, economics, and engineering. It is accepted 

as a conceptual modeling technique capable of understanding, studying, simulating, and 

analyzing large-scale complex systems. The conventional methodology applied to system 

issues tends to depict relationships underlying system variables and comprehend subsequent 

system behavior from a narrow or isolated perspective. By contrast, large-scale complex 

systems normally comprise numerous sub-systems. Among these sub-systems are causal 

relationships that are interactive and interactional: one value-changed variable would have a 

feedback-based impact on another, eventually influencing the behavior of the whole system. 

The system dynamics methodology specializes in handling stated characteristics because it 

can simplify a complex system into operable units through its special analytical tools. These 

analytical tools include causal-loop diagram and stock-flow diagram, which also contribute in 

analyzing feedback relationships from a multi-dimensional and dynamic perspective.  

Causal-loop diagrams and stock-flow diagrams are two major tools for system dynamics 

modeling. Causal-loop diagrams serve as the preliminary sketches of causal hypotheses 

during model formulation and simplified representation of the real-world behavior. 

Meanwhile, a stock-flow diagram is a computer-based tool visualized for quantitative 

simulation and anal ysis, which is built based on the causal-loop diagram. . A feedback loop 

would be determined as positive feedback if it includes an even number of negative causal 

links and as negative feedback when containing an odd number of negative causal links. 

Stock-flow diagrams can be represented by four structural elements: stocks (represented by a 

rectangle) indicate major accumulation within a system; flows (values with block arrow 

symbol) serve as an instrument that hinder or prompt the flow of information from the stock; 

converters (symbolized by a lone circle) act as intermediate variables for miscellaneous 



calculation; and connectors (symbolized as simple arrows) serve as information links that 

represent the reasons and impacts within the model structure (Yuan et al., 2012). 

4. Model formulation 

 Normally, a five-step procedure as shown in Figure 1 is adopted to develop a system 

dynamics model, which includes: (1) system description, in which researchers are required to 

determine the scope of a proposed system, and identifying the major variables associated with 

the research questions is emphasized; (2) causal-loop diagram and (3) stock-flow diagram, 

where qualitative analysis is conducted to depict the interrelationships underlying the 

identified variables before mapping them into causal-loop diagrams, and stock-flow diagrams 

are subsequently constructed based on the causal-loop diagram and visualized by the Vensim 

software package for quantitative analysis; (4) model validation, which serves as an essential 

process for increasing confidence in the proposed model, in which, a series of tests suggested 

by Coyle (1996) would be run prior to the model implementation; and (5) policy analysis, 

which mainly comprises a base run simulation and scenario simulations that would be finally 

conducted to analyze the possible impacts of various devised management strategies after the 

model has been validated.   

Figure 1: Research path for model development 

4.1 Identification of key influencing factors 

To facilitate the illustration of the prefabrication-adoption-to-waste-disposal process, a 

definition of the material flow is provided, that is, a flow consisting of a series of material 

processing activities. The activities mainly include prefabricated component adoption, 

prefabrication assembly, waste generation, waste sorting, waste reuse and recycle, and waste 

disposal. Construction materials undergo all of these activities in sequence, with the 

preceding activity having an impact on the succeeding activity. For instance, the adoption of 



prefabricated facades would reduce the amount of conventional construction trades, such as 

concreting, rebar fixing, and plastering, which minimize the generation of waste in concrete, 

wood, and metal. Naturally, the quantity of on-site waste sorting will decrease along with 

waste reduction, thereby affecting other relevant waste-handling issues. Thus, modeling the 

material flow can provide a framework to elucidate the stream direction of building materials 

and the manner by which prefabrication influences the waste disposal activities as a result of 

a reduction in the in situ construction trades. Furthermore, the material flow is a cluster of 

separate material handling activities as well as a complex system where various activities are 

interdependent and interactive. Thus, system dynamics is adopted as the major methodology 

of this study. A list of typical variables influencing the material handling activities are 

presented, as derived from existing literature, site surveys, and related reports. These 

variables along with the concept model of material flow are shown in Figure 2.   

Figure 2: A conceptual framework of the material flow 

4.2 Causal-loop diagram  

After the identification of variables with the potential of influencing the behavior of the 

proposed system, qualitative analysis was conducted to identify the underlying 

interrelationships among these variables based on an extensive literature review and semi-

structured interviews with practitioners and professionals. The diagram (Figure 3), which 

consists of a series of feedback loops that determine the behavior of the whole system by 

establishing connections among various factors, serves as a visualized conceptual model for 

presenting the results of the qualitative analysis. The definitions of the key variables and their 

underlying causal relationships within the diagram are defined as follows: 

(1) Prefabrication adoption refers to the application of innovative prefabricated items, 

such as facades, dry walls, cooking benches, precast slabs, and staircase units, which 



are produced, assembled, and pre-finished in off-site factories to replace on-site 

activities/trades, such as timber formwork, cast-in-situ concrete, painting, scaffolding, 

and plastering. The interviewees emphasized that the adoption of prefabrication can 

reduce the quantity of traditional labor-intensive construction trades including 

concreting, rebar fixing, bricklaying, and plastering. These construction activities 

normally result in poor workmanship quality and the overwhelming use of multi-

layered subcontractors, which both hampers management control and generates 

excessive waste. Thus, along with the reduction in construction trades, various waste 

streams (concrete, bricks, mortar, metal, and wood) tend to be minimized.  

(2) Inert waste and non-inert waste are the categories used to classify construction waste. 

Inert construction materials, containing mainly concrete, building blocks, and tiles, 

are deposited at public filling areas for land reclamation, whereas non-inert waste, 

comprising mainly wood, plastics, and other organic materials, is disposed at landfills 

as solid waste (Yuan et al., 2013). The “recycling and reusing” in this paper is 

narrowly defined within the non-inner waste, referring to the most common activities 

such as metal waste collection and the reuse of wooden scaffolding discarded. 

Broadly speaking, the inner construction waste that is crashed and transported to the 

public landfilling site for the purpose of land reclamation are typically a form of 

recycling and reusing activity, while this research has classified this kind of recycling 

activities as public landfilling. Besides, prior to transporting construction waste to 

public landfilling site, the relatively intact inner materials would be sorted and reused. 

This research simply boils down these activities involved in the waste management 

process as public landfilling for simplification purpose. 

(3) On-site sorting refers to the separation of construction waste in cases where a mixture 

of both inert and non-inert construction materials exist (Poon et al., 2001). On-site 



sorting separates construction waste according to their categories so that some of the 

waste can be reused and recycled, whereas the rest can be deposited at public filling 

areas or landfills. 

(4) Reuse and recycle, deposit at public landfill, deposit at landfill, and illegal dumping 

are the four major methods suggested by the interviewed contractors. These methods 

are commonly adopted for handling construction waste generated from new 

residential construction projects in mainland China. These approaches are listed in 

ascending order according to their adverse impact to the environment from low to 

high. Among these methods, reuse and recycle is regarded as the best alternative for 

managing the generated waste because of its minimal influence on the environment in 

while reducing the cost of waste disposal (Tam, 2009). When reuse and recycle 

becomes difficult, waste should be disposed at landfills and/or public fills to avoid 

polluting the environment (Seadon, 2010). Furthermore, the interviewees indicated 

that uncontrolled and illegal dumping widely occurs in inadequately supervised 

districts.  

(5) Construction waste management performance refers to the overall performance 

comprising four attributes, namely, recycle and reuse waste, landfilling waste, public 

landfilling waste, and illegal dumping waste. These attributes cover all the 

perspectives of the ultimate disposal of construction waste management activities. 

Among the four attributes, the recycle-and-reuse-waste attribute is positively 

correlated with the overall performance, that is, the more construction waste is 

recycled and/or reused, the more contribution it would make toward the overall 

improvement in performance. Meanwhile, the remaining attributes have negative 

correlation with the overall performance. 

(6) Incentives for promoting prefabrication adoption indicate the combined effect of the 



policies of the measures proposed by the government for facilitating the application of 

prefabrication technologies. Construction is not an environment-friendly activity, and 

economic benefit is the priority target of various construction participants (Chen et al., 

2002; Shen et al., 2010). Economic incentives from the government are necessary to 

promote the use of prefabrication because compared with conventional building 

methods, the overall construction cost of prefabrication is still relatively higher (Diao 

et al., 2009). Developers will not likely spontaneously abandon the pursuit for profits 

over better environmental benefit, as suggested by the interviewees. In addition, the 

definitions of incentives in this study are mainly confined to economic incentives, 

such as tax relaxation and fiscal subsidy. Other environmental or social regulations are 

out of the scope of this study. 

Based on the analyses above, two typical feedback loop clusters are defined within the 

diagram: 

Feedback loop cluster A: 

Construction waste management performance → Incentives for promoting prefabrication 

adoption → Prefabrication adoption → (Rebar fixing, Plastering, Bricklaying, Concreting) → 

Waste generation → Waste on-site sorting → (Metal waste, Wood waste) → Non-inert waste 

→ (Recycle and reuse waste, Landfilling waste) → Construction waste management 

performance 

Feedback loop cluster B: 

Construction waste management performance → Incentives for promoting prefabrication 

adoption → Prefabrication adoption → (Rebar fixing, Plastering, Bricklaying, Concreting) → 

Waste generation → Waste on-site sorting → (Concrete waste, Bricks and building blocks 

waste, Mortar waste) → Inert waste → (Illegal dumping waste, Landfilling waste, Public 



landfilling waste) → Construction waste management performance 

Each feedback loop is a closed loop circuit, within which one variable influences another 

along the arrow direction in either positive or negative feedback. All of the feedback loops 

constitute the complete causal-loop diagram, as displayed in Figure 3. 

Figure 3: Causal-loop diagram of the effect of prefabrication on construction waste reduction 

 

4.3 Stock-flow diagram 

With the interrelationships underlying the identified variables qualitatively defined within the 

causal-loop diagram, a stock-flow diagram should be constructed to mathematically quantify 

their impacts by employing the Vensim software. The stock-flow diagram is a more detailed 

model compared with the causal-loop diagram. A number of auxiliary variables absent in the 

causal-loop diagram are added to the stock-flow diagram to ensure that the previously 

defined relationships can be smoothly converted to quantitative expressions. To facilitate 

understanding, the established model, along with brief definitions of the variables within the 

model, is presented as shown in the Figure 4 and Table 1.  

Figure 4: Stock-flow diagram of the effect of prefabrication on construction waste reduction  

Table 1: Depiction of variables used in the model 

Data were obtained primarily through two channels. One source involved access to numerous 

publications, government reports, and webpage information. Construction waste stream 

(concrete, wood, metal, mortar, and brick) generation indexes are typically extracted from a 

technical manual issued by the Housing and Construction Bureau of Shenzhen (2011). The 

other source of data was an on-site survey that was conducted in a practical project located at 

the junction of Shenzhen and Huizhou. The studied project covers a net area of about 

34,000 m
2
, consisting of six 34-storey residential buildings with several shops at podiums, a 



two-storey garage, and an equipment room. The construction area of the project is about 

180,000 m
2
, with a project duration period of 22 months. An interview questionnaire was 

designed as a supplementary tool to determine the values of several qualitative variables 

influencing material flow. Investigators ranked the qualitative variables based on a five-point 

Likert scale according to the response of the professionals on the importance level of the 

qualitative variables, where 1 and 0 indicate the most important and the least important 

variables, respectively. 

Variables within the model can be divided into three categories, namely, constant, dependent, 

and qualitative variables. Each type of variable has corresponding data sources. The values of 

constant variables, which are expected to remain unchanged throughout the entire simulation 

period, are assigned by referring to the collected materials, such as the literature 

(Quantification approach A). The values of dependent variables depend on one or more 

variables within the model in terms of mathematical functions; their values are quantified by 

various functions within the Vensim software. This software specializes in describing the 

interrelations among any two or more variables (Quantification approach B). The values of 

qualitative variables are quantified based on the following formula (Quantification approach 

C): 

1 2 3 4 5
(

1 2 3 4 5

*0 *0.25 *0.5 *0.75 *1
)*100ij

n n n n n
I

n n n n n


   

     

where I is the value of the qualitative variable, and n1, n2, n3, n4, and n5 represent the number 

of interviewees who rated the qualitative variable as 0, 0.25, 0.5, 0.75, and 1, respectively. 

The major variables, along with their corresponding quantification approach are shown in 

Table 2.   

Table 2: Quantification method classification 

5. Model validation 

Prior to conducting the simulation analyses, the model should be tested to verify the extent to 



which it could reflect the real-world situation. Two types of validation were conducted in this 

study, one for structural validity and another for behavioral validity. Extreme conditions and 

behavior sensitivity are generally accepted as the most effective and practical structure test. 

An extreme condition test examines whether the generated system behavior is consistent with 

the expected behavior of the real situation under extreme condition. This test is conducted by 

assigning extreme values to typical variables. Meanwhile, the behavioral sensitivity analysis 

mainly focuses on identifying the variables to which the system is highly sensitive, and the 

rationality of the system behavior after adjusting the value of the identified sensitive variables 

is then examined (Talyan et al., 2007). A typical example related to these sensitivity analyses 

is presented in Figure 5. Regulation implement supervision (RIS), a qualitative variable, with 

a score of 100 demonstrating the strongest supervision and 0 indicating the most relaxed 

supervision, is regarded as one of the most critical variables affecting the illegal dumping rate 

(IDR) (Poon et al., 2001). For the devised positive (A) and negative (B) scenarios, the RIS 

value is first increased to twice the base value and then decreased to half of the base value. 

The Figure 5 shows that IDR is stable at very low levels under scenario A and then sharply 

increases in scenario B. The simulation result is consistent with the true situation in 

Shenzhen, as suggested by interviewees. They stated that if governmental supervision for 

illegal dumping is limited, contractors may not transport the collected waste to the appointed 

landfill, which is normally located in a remote suburb, thereby saving the cost of 

transportation and landfilling. Similar tests regarding other significant variables were also 

conducted, and all of the tests produced favorable effects. This result indicated that the 

established model can reasonably forecast the outcomes when changes in system behavior 

occur.  

Figure 5: An example of a sensitivity analysis 

Historical data comparison analysis was adopted for behavioral validity. The common 



practice is to check whether the simulation results of certain typical quantitative variables 

within the model are in agreement with the corresponding historical data. This verification is 

performed by comparing the error percentage between the historical data and simulation 

results. Nevertheless, the on-site survey indicated that the contractors are not likely to record 

the actual generated construction waste, which makes common practice become impossible to 

assess. Thus, an alternative approach to compensate the lack of historical data was introduced 

by Housing and Construction Bureau of Shenzhen (2011), named as Base Calculation in this 

study. This method was adopted for forecasting the outcomes of significant quantitative 

variables including concrete waste generation (CWGe), wood waste generation (WWGe), 

metal waste generation (MeWGe), mortar waste generation (MWGe), and brick and building 

block waste generation (BBBWGe). The results will be adopted as substitute for historical 

data for comparison with the simulation results based on the tolerance analysis for verifying 

the credibility of the established model. The matching effect of the model will be considered 

as preferable if the variable, whose relative error is less than 5%, accounts for 70% or more 

of the total tested variables, and the average relative error of each variable is less than 10% 

(Maddala, 1983). Table 3 shows that the relative errors of all of the tested variables are lower 

than 10%, with an average error of 3.91%. These results demonstrate the satisfactory 

matching effect of the model and verify the established model could reflect the real-world 

situation to a large extend. Thus, further simulation can be conducted to analyze the impact of 

related policy on the use of prefabrication and construction waste reduction.  

Table 3: Behavioral validity based on two different calculation methods 

6. Policy analysis  

6.1 Baseline scenario 

After completing the necessary tests for verifying the developed model, a simulation analysis 

can be further conducted. The simulation period of the established model was set to 22 



months, which is consistent with the duration of the studied project. The selected input and 

output variables of the baseline scenario are presented in Table 4. Subsidy for prefabrication 

of each square meter (SPESM), income tax benefits (ITB), and unit landfilling charge (ULC) 

was constant throughout the entire simulation period, which was assigned as 20 Yuan/m2, 

15%, and 5.88 Yuan/tons, respectively. Willingness to adopt prefabrication (WAP) is a 

dependent variable determined by the effect of regulation. This variable is dependent on the 

above three constant variables, with 0 demonstrating the least willingness and 100 the 

greatest willingness. The simulation results imply that WAP remained at a relatively low level 

at the beginning and gradually increased as the project proceeded, reaching a record high of 

7.63 in the middle of the project. Afterward, the value decreased until the end of the project. 

This result was confirmed by the consulted project managers, who stated that conventional 

methods are more suitable for construction in foundations and basements because these two 

building elements (constructing at the beginning of the project duration) require non-standard 

designs that are adaptable to changes related to underground conditions. Prefabricated 

components and advance forecast are difficult to apply in these two elements, whereas 

structural frame elements (constructing at the middle of project duration), such as column, 

beam, bearing wall, and slab, are recommended for prefabrication to improve construction 

productivity and waste reduction. Based on the model shown in Figure 3, prefabrication 

adoption rate (PAR) is positively correlated with WAP, that is, more prefabricated 

components would be adopted when the value of WAP increases. This effect eventually 

influenced the performance of construction waste reduction and the corresponding waste 

handling activities. This relationship was confirmed by the simulation results displayed in 

Table 4, in which CWRe, BBBWRe, MWRe, MeWRe, and WWRe are approximately 

214.47, 30.38, 22.58, 45.91, and 77.41 tons, respectively (Note that due to the limited length, 

the table only presents the final-month stock results in terms of total value, that is, the sums 



of flow value of the selected output variables represent the final month stock value of CWRe, 

BBBWRe, MWRe, MeWRe, WWRe, and etc). Furthermore, the simulation results indicated 

a significant reduction in construction waste after adopting prefabrication: (1) the on-site 

sorting process saved 277.23 tons of construction waste; (2) 121.77 tons were prevented from 

disposition in landfill; (3) 120.34 tons were prevented from disposition in public landfill; and 

(4) a reduction of 40.11 tons of illegal dumping waste was achieved. Such a reduction in 

construction waste would be helpful in decreasing construction cost by reducing the number 

of workers for sorting waste as well as saving landfill charge and transportation cost. The 

reduction also contributes to the alleviation of the environmental problem.  

 

Figure 6a, 6b and Table 4 show that CWRe, BBBWRe, and MWRe were mainly concentrated 

in the middle of the project, whereas a higher amount of WWRe was recorded at the early 

stage. The possible explanations for these results include the following: (1) the studied 

project proposes to adopt a portion of metal formwork to replace conventional bamboo 

scaffolding, resulting in a reduction in wood waste at the beginning of the project; and (2) 

rebar fixing and wet trade would be avoided by an early installation of semi-precast external 

facades and prefabricated staircase units into the structural frame during its construction 

stage, thereby decreasing the generation of concrete, bricks, mortar, and metal waste. 

Furthermore, the value of recycle and reuse waste reduction (RRWRe) is reflected by the 

model as negative, with an amount of 46.03 tons of waste saved from the reuse and recycle at 

the end of the project duration. This finding indicates an increase in collected recycle-and-

reuse waste rather than reduction, in agreement with the previous studies conducted by Poon 

et al. (2001), who suggested waste reuse and recycle would be much easier when 

prefabricated components are used because they lead to convenient disassembly.  

Figure 6a and 6b: Baseline Scenario of construction waste reduction and handling 



Table 4: Simulation results of the Baseline Scenario on a monthly basis 

6.2 Scenario analysis  

Recognizing the benefits of adopting prefabrication technology, many district governments 

have proposed various policy options to promote the application of prefabricated component 

in the building industry. Among these policies, economic incentives are commonly 

considered as necessary. This supposition is attributed to the probable high cost of 

construction if prefabricated components are adopted for construction in a large area when 

prefabrication has not been industrialized in a large-scale. Therefore, the scenario analysis in 

this study mainly focuses on economic policy. Moreover, given that exhaustively illustrating 

all possible policies with respect to prefabrication applications is impractical, two widely 

accepted typical policies were selected for simulation. By implementing the two policies 

individually and in combination with each other, various possible scenarios were generated 

for analysis.  

Policy scenario A (PSA) – subsidy for prefabrication of each square meter (SPESM): This 

scenario is a single-policy scenario, aiming at examining the influence of changing SPESM 

on WAP and total construction waste reduction (TCWR) in the building project. 

Table 5: Simulation results of the Policy scenario A 

To analyze the various possible situations, two operational subsidy policies aside from the 

baseline policy for promoting prefabrication adoption were assumed as 40 and 60 Yuan/m2. 

These two policies were defined, respectively, as sub-scenarios PSA-1 and PSA-2. Table 5 

shows that the increase in subsidy for the construction area that adopted prefabrication 

significantly contributed to the improved willingness of the participants to use prefabrication 

technology, thus enhancing the performance of construction waste reduction. This condition 

is manifested by the average values of WAP and TCWR, which respectively increased from 

5.56 and 17.76 tons under the baseline scenario to 7.43 and 27.9 tons in run PSA-1 and to 



8.91 and 63.13 tons in run PSA-2. These values generated an improvement of 60.25% for 

WAP and 255.46% for TCWR over this simulation period. The simulation results clearly 

showed the large and significant effects that can be obtained through the adoption of 

prefabrication as promoted by improving the subsidy toward its use.  

Policy scenario B (PSB) –income tax benefits (ITB): This scenario, which is similar to A, is 

also a single-policy scenario that is devised to verify the effect of the increase in ITB on WAP 

and TCWR in the building project. 

Table 6: Simulation results of the Policy scenario B 

To examine the impact of the increase in ITB on WAP, two devised sub-scenarios were 

simulated under this scenario for comparison with the base run, namely PSB-1 and PSB-2, 

which have assumed values of 15% and 30%, respectively. Unexpectedly, the simulation 

results indicated that even the rise in ITB toward construction corporations could increase to 

a certain extent the willingness to adopt prefabrication, as presented in Table 6. The expected 

effect is more moderate, which verified the increase in WAP and TCWR from 5.56 and 

17.76 tons of the baseline scenario to 6.08 and 19.54 tons in the run PSB-1 and to 6.08 and 

19.72 in the last run with the largest ITB, indicating non-significant enhancements of 9.35% 

(WAP) and 11.04% (TCWR) over this scenario simulation compared with PSA. Therefore, 

according to the dual factors theory raised by Herzberg (2005), the ITB policy can only be 

treated as a maintenance factor rather than incentive measures for the promotion of 

prefabrication adoption.     

Policy scenario C (PSC) - Multiple policies combined: this scenario is a multi-policy scenario 

designed to simulate the influence of the concurrent changes in SPESM and ITB on WAP and 

the performance of TCWR.  

Table 7: Simulation results of the Policy scenario C 

As mentioned in the previous section, factors within a system are not isolated. These factors 



are interactive and influence each other in a certain manner. To verify such interrelationships 

and to evaluate the combined effect of the integrated policies, two alternative management 

measures were implemented concurrently in this scenario. PSA-2 and PSB-2, which were 

identified by the above simulations as the most effective in promoting the use of 

prefabrication and enhancing the performance of construction waste reduction, were 

included. The simulation results are exhibited in Table 7. 

The results show an obvious increase in WAP and TCWR when the two most effective 

management measures were adopted simultaneously. Particularly, the average improvement 

in WAP reached up to 82.44% until the end of the project duration, 14.31% larger than the 

simple sum of PSA-2 and PSB-2 of 69.13% (recorded at 59.91% and 9.22%, respectively) 

over the same period. Thus, TCWR had a better performance of 111.39 compared with the 

simple sum. The results demonstrate that (1) interaction exists among different management 

measures, and (2) the integrated impact of multiple policies on the promotion of 

prefabrication adoption is greater than the simple sum of the two measures. These findings 

are also confirmed by the results of construction waste reduction shown in Table 7. The most 

plausible reason that may account for this phenomenon is that the system is an organic whole 

running in a highly iterative manner such that one verified factor within the system may 

result in another enhancement in a blown-up feedback loop, leading to amplified 

effectiveness. A deeper understanding of this “systemic” behavior can provide a valuable 

perspective to policy makers, in which the combined effect of possible various management 

measures should be fully considered to achieve the expected performance (Shin et al. 2008). 

Furthermore, this result can only be obtained when a systems dynamic method of analysis, or 

a similar approach, is applied to the data. The Vensim software allows for this type of analysis 

to be applied in a relatively easy manner. 

7. Conclusion 



With the expectation of improving construction productivity and alleviating the adverse 

environmental impacts brought by various construction wastes, a number of developers have 

pioneered the adoption of prefabrication. However, practical experience in the construction 

industry of Shenzhen indicates the lack of straightforward methods for measuring the 

different impact on construction waste reduction and subsequent waste handling activities 

between cast in-situ and prefabrication construction method. This study, therefore, proposes a 

model that can facilitate the quantification of the impact of adopting prefabrication on 

construction waste reduction by holistically considering the dynamics and interdependences 

of the variables underlying the processes of prefabricated construction. Major variables in 

relation to the material flow were first identified. Then, a causal-loop diagram was developed 

to depict the potential interrelationships underlying the identified variables prior to the 

establishment of the quantitative model. The resulting model was validated using data 

obtained from a construction project in Shenzhen, China.  

The simulation results demonstrate that the policy of increasing the subsidy for the 

construction process to adopt prefabrication have the largest influence on promoting the 

adoption of prefabrication, whereas income tax benefits tend to have more moderate impacts 

on the promotion of prefabrication adoption and construction waste reduction. Moreover, the 

simulation results also show that the combined impact of the two selected policies (STESM 

and ITB) is larger than the simple sum of the impact of each single policy. Given the limited 

length, only three policy scenarios are simulated and analyzed through the comparison with 

the results of the base scenario. Nevertheless, based on the established model, similar 

simulations can be conducted and analyzed under scenarios comprising other designed 

policies.   

This paper demonstrates the potential benefits of using a system dynamics approach in 

understanding the behavior of real-world processes in two dimensions. First, the causal-loop 



diagram depicting the interrelationships among key variables within the material flow can not 

only enrich the research in the management of prefabricated construction, but also facilitate 

deepening project stakeholders’ understanding on the influence of the prefabrication and 

related policies on construction waste reduction and subsequent handling activities. 

Meanwhile, the application of the stock-flow model to the prefabrication of the construction 

process shows significant and tangible savings in costs and reduction in wastage, which can 

be achieved compared with the conventional methods of construction. The proposed model 

serves as a practical tool for quantitatively assessing the impact of off-site prefabrication on 

construction waste reduction and corresponding waste handling activities. Moreover, this 

model provides a valuable reference for policy makers through the comparison of simulation 

results generated under various scenarios, thereby identifying the best policy mix prior to 

production. 
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Figure 1: Research path for model development 
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Figure 2: A conceptual framework of the material flow 
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Figure 3: Causal-loop diagram of the effect of prefabrication on construction reduction 
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Figure 4 

 

 

Figure 4: Stock-flow diagram of the effect of prefabrication on construction reduction 
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Figure 5 

 
 

Figure 5: An example of a sensitivity analysis 
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Figure 6a: Baseline Scenario of construction waste reduction and handling 

 
 

Figure 6b: Baseline Scenario of construction waste reduction and handling 
 

Table 1: Depiction of variables used in the model  

No. Acronym Variable definition 
Variable 
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Input/output 
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IDWRe : Base run 1 1 
LWRe : Base run 2 2 2 
OSWRe : Base run 3 3 

PLWRe : Base run 4 4 4 
RRWRe : Base run 5 5 5 



1 BBBWG Brick and building block waste generating Flow Output tons/month 

2 BBBWGe Brick and building block waste generation Stock Output tons 

3 BBBWGI Brick and building block waste generation index Convertor Input tons/m2 

4 BBBWRe Brick and building block waste reduction Stock Output tons 

5 BBBWR Brick and building block waste reducing Flow Output tons/month 

6 BTRR Bricklaying trade reduction rate Convertor Input 1 

7 BAP Building area of the project Convertor Input m2 

8 CWG Concrete waste generating Flow Output tons/month 

9 CWGe Concrete waste generation Stock Output tons 

10 CWGI Concrete waste generation index Convertor Input tons/m2 

11 CWRe Concrete waste reduction Stock Output tons 

12 CWR Concrete waste reducing Flow Output tons/month 

13 CTRR Concreting trade reduction rate Convertor Input 1 

14 CWMP Construction waste management performance Convertor Input 1 

15 EA Environmental awareness Convertor Input 1 

16 IDR Illegal dumping rate Convertor Input 1 

17 IDWRe Illegal dumping waste reduction Stock Output tons 

18 IDWR Illegal dumping waste reducing Flow Output tons/month 

19 ITB Income tax benefit Convertor Input % 

20 IWR Inert waste reducing Flow Output tons/month 

21 IWR Inert waste reduction Stock Output tons 

22 LR Landfilling rate Convertor Input 1 

23 LWRe Landfilling waste reduction Stock Output tons 

24 LWR Landfilling waste reducing Flow Output tons/month 

25 MeWGe Metal waste generating Flow Output tons/month 

26 MeWG Metal waste generation Stock Output tons 

27 MeWGI Metal waste generation index Convertor Input 1 

28 MeWR Metal waste reducing Flow Output tons/month 

29 MeWRe Metal waste reduction Stock Output tons 

30 MWGe Mortar waste generating Flow Output tons/month 

31 MWG Mortar waste generation Stock Output tons 

32 MWR Mortar waste reducing Flow Output tons/month 

33 MWRe Mortar waste reduction Stock Output tons 

34 MWGI Mortar waste generation index Convertor Input tons/m2 

35 NWR Non-inert waste reduction Stock Output tons 

36 OSSR On-site sorting rate Convertor Input 1 

37 OSWR On-site sorting waste reducing Flow Output tons/month 

38 OSWRe On-site sorting waste reduction Stock Output tons 

39 PTRR Plastering trade reduction rate Convertor Input 1 

40 PAR Prefabrication adoption rate Convertor Input 1 

41 PLR Public Landfilling rate Convertor Input 1 

42 PLWRe Public landfilling waste reduction Stock Output tons 

43 PLWR Public landfilling waste reducing Flow Output tons/month 

44 RFRR Rebar fixing reduction rate Convertor Input 1 

45 RRR Recycle and reuse rate Convertor Input 1 

46 RRWRe Recycle and reuse waste reduction Stock Output tons 



47 RRWR Recycle and reuse waste reducing Flow Output tons/month 

48 R Regulation Convertor Output 1 

49 RC Regulation changing Flow Output 1 

50 RIS Regulation implement supervision  Convertor Input 1 

51 RS Regulation strengthening Convertor Input 1 

52 SL Space limitation Convertor Input 1 

53 
SPESM Subsidy for prefabrication of each square 

meter 
Convertor Input Yuan/m2 

54 TCWR Total construction waste reducing Convertor Output tons/month 

55 ULC Unit landfill charge Convertor Input Yuan/tons 

56 WAP Willingness to adopt prefabrication Convertor Input 1 

57 WWG Wood waste generating Flow Output tons/month 

58 WWGe Wood waste generation Stock Output tons 

59 WWGI Wood waste generation index Convertor Input tons/m2 

60 WWR Wood waste reducing Flow Output tons/month 

61 WWRe Wood waste reduction Stock Output tons 



Table 2: Quantification method classification 

                

 

 

 

  

Quantification method Variables Category 

Approach A 
BBBWGI, CWGI, MeWGI, MWGI, WWGI, 

ULC, SPESM, ITB, BAP 
Constant 

Approach B BTRR,IDR,LR,OSSR,RFRR,CTRR,RFRR,WAP Dependent 

Approach C EA,RIS,RS,SL Qualitative 



Table3: Behavioral validity based on two different calculation methods 

Selected variables CWGe MWGe BBBWGe WWGe MeWGe 

Simulation results 3241.32 229.173 304.021 1398.12 713.21 

Base calculation 3403.1 236.579 327.571 1419.48 727.936 

Relative error 4.99% 3.23% 7.75% 1.53% 2.06% 

 

 

 



Table 4: Simulation results of the Baseline Scenario on a monthly basis 

Duration 

 (months) 

Selected input variables Selected output variables 

SPESM TB WAP CWR  BWR MWR MeWR WWR OSWR PLWR LWR RRWR LWR 

1 20 15% 1.90 3.18 0.43 0.57 2.20 5.18 4.54 1.88 2.55 −2.05 0.63 

2 20 15% 3.08 5.27 0.58 0.93 2.28 5.12 7.24 3.05 3.60 −2.05 1.02 

3 20 15% 4.18 7.36 0.73 1.11 2.36 5.05 9.76 4.14 4.57 −2.05 1.38 

4 20 15% 5.24 9.45 0.79 1.29 2.48 4.97 12.19 5.19 5.50 −2.05 1.73 

5 20 15% 6.19 11.45 0.84 1.34 2.59 4.50 14.33 6.13 6.30 −2.06 2.04 

6 20 15% 6.62 11.94 1.25 1.35 2.60 4.27 15.26 6.55 6.64 −2.06 2.18 

7 20 15% 6.96 12.44 1.48 1.37 2.59 4.17 16.01 6.88 6.93 −2.07 2.29 

8 20 15% 7.29 12.94 1.69 1.38 2.56 4.06 16.75 7.20 7.20 −2.07 2.40 

9 20 15% 7.61 13.43 1.87 1.38 2.49 3.95 17.42 7.51 7.45 −2.07 2.50 

10 20 15% 7.63 13.47 1.87 1.37 2.42 3.84 17.43 7.52 7.44 −2.08 2.51 

11 20 15% 7.58 13.35 1.88 1.36 2.36 3.80 17.28 7.46 7.37 −2.08 2.49 

12 20 15% 7.54 13.24 1.88 1.34 2.19 3.76 17.13 7.41 7.30 −2.08 2.47 

13 20 15% 7.50 13.11 1.86 1.33 2.02 3.72 16.94 7.34 7.21 −2.09 2.45 

14 20 15% 6.91 12.01 1.82 1.19 1.87 3.54 15.55 6.76 6.66 −2.10 2.25 

15 20 15% 6.31 10.91 1.77 1.02 1.85 3.15 14.13 6.17 6.08 −2.11 2.06 

16 20 15% 5.70 9.81 1.71 0.86 1.83 2.76 12.70 5.57 5.50 −2.12 1.86 

17 20 15% 5.06 8.71 1.58 0.69 1.81 2.37 11.20 4.94 4.90 −2.12 1.65 

18 20 15% 4.38 7.41 1.46 0.61 1.73 2.18 9.59 4.27 4.26 −2.13 1.42 

19 20 15% 4.09 6.95 1.34 0.58 1.60 2.01 8.91 3.99 3.98 −2.14 1.33 

20 20 15% 3.82 6.48 1.26 0.54 1.48 1.84 8.27 3.73 3.71 −2.14 1.24 

21 20 15% 3.54 6.01 1.19 0.51 1.36 1.66 7.62 3.46 3.44 −2.15 1.15 

22 20 15% 3.27 5.54 1.11 0.47 1.24 1.49 6.98 3.20 3.17 −2.16 1.07 

Total 

 

214.47 30.38 22.58 45.91 77.41 277.23 120.34 121.77 -46.03 40.11 

  Unit: tons 
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Table 5: Simulation results of the Policy Scenario A 

Months 

PSA-1 PSA-2 

WAP Variation TCWR 

(tons) 

Variation WAP Variation TCWR 

(tons) 

Variation 

1 2.20 16.00% 17.27 49.47% 2.47 0.30 30.84 78.62% 

2 3.61 17.40% 21.10 48.89% 4.09 0.33 39.14 85.50% 

3 5.23 25.10% 25.65 54.42% 6.16 0.47 57.29 123.34% 

4 6.25 19.40% 27.88 46.95% 7.16 0.37 54.46 95.33% 

5 7.01 13.20% 28.80 38.99% 7.74 0.25 47.48 64.86% 

6 8.36 26.30% 32.07 49.76% 9.91 0.50 73.52 129.24% 

7 8.50 22.20% 31.70 43.84% 9.88 0.42 66.29 109.09% 

8 8.70 19.30% 31.48 39.09% 9.96 0.36 61.33 94.84% 

9 10.43 37.10% 35.71 54.42% 12.94 0.70 100.81 182.31% 

10 10.56 38.40% 36.44 58.59% 13.17 0.73 105.20 188.70% 

11 10.59 39.70% 37.02 62.76% 12.82 0.69 103.51 179.60% 

12 10.13 34.40% 35.99 60.53% 12.05 0.60 91.99 155.63% 

13 10.60 41.40% 37.53 70.23% 12.90 0.72 81.87 118.14% 

14 9.89 43.20% 35.72 74.88% 12.10 0.75 79.76 123.28% 

15 9.05 43.40% 33.30 77.99% 11.07 0.76 74.54 123.85% 

16 8.22 44.10% 29.67 74.79% 10.08 0.77 67.00 125.84% 

17 7.23 42.70% 25.72 69.55% 8.83 0.74 57.07 121.85% 

18 6.27 43.20% 22.25 66.15% 7.67 0.75 49.67 123.28% 

19 5.88 43.90% 20.33 62.95% 7.21 0.76 45.79 125.27% 

20 5.50 44.10% 18.47 59.27% 6.74 0.77 41.72 125.84% 

21 4.80 35.40% 15.76 46.95% 5.73 0.62 31.68 101.02% 

22 4.41 34.70% 14.02 42.39% 5.25 0.60 27.91 99.02% 

Sum 163.42 724.60% 613.87 1252.85% 195.91 12.96 1388.86 2674.45% 

Average 7.43 32.94% 27.90 56.95% 8.91 0.59 63.13 121.57% 
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Table 6: Simulation results of the Policy Scenario B 

Months 

PSB-1 PSB-2 

WAP Variation TCWR 

(tons) 

Variation WAP Variation TCWR 

(tons) 

Variation 

1 1.97 4.01% 12.07 4.49% 1.98 4.05% 12.12 4.94% 

2 3.21 4.44% 14.87 4.98% 3.22 4.49% 14.95 5.47% 

3 4.44 6.38% 17.80 7.14% 4.45 6.45% 17.92 7.86% 

4 5.51 5.12% 20.06 5.73% 5.51 5.17% 20.17 6.31% 

5 6.42 3.74% 21.59 4.19% 6.43 3.79% 21.67 4.61% 

6 7.08 6.96% 23.09 7.80% 7.08 7.06% 23.25 8.58% 

7 7.38 6.09% 23.54 6.82% 7.39 6.15% 23.69 7.50% 

8 7.70 5.50% 24.02 6.15% 7.70 5.58% 24.16 6.77% 

9 8.36 9.83% 25.67 11.01% 8.37 9.99% 25.93 12.11% 

10 8.41 10.24% 25.61 11.47% 8.42 10.35% 25.88 12.62% 

11 8.39 10.65% 25.46 11.93% 8.41 10.83% 25.73 13.12% 

12 8.25 9.49% 24.80 10.63% 8.27 9.66% 25.04 11.69% 

13 8.34 11.23% 24.82 12.58% 8.35 11.35% 25.10 13.84% 

14 7.72 11.76% 23.12 13.17% 7.74 11.98% 23.39 14.49% 

15 7.06 11.91% 21.20 13.34% 7.07 12.15% 21.45 14.67% 

16 6.40 12.18% 19.29 13.64% 6.40 12.30% 19.52 15.00% 

17 5.67 11.94% 17.20 13.38% 5.68 12.19% 17.40 14.71% 

18 4.91 12.16% 15.21 13.62% 4.92 12.43% 15.40 14.98% 

19 4.60 12.43% 14.21 13.92% 4.60 12.55% 14.38 15.31% 

20 4.30 12.58% 13.23 14.08% 4.31 12.86% 13.40 15.49% 

21 3.92 10.61% 12.00 11.88% 3.93 10.86% 12.12 13.07% 

22 3.62 10.54% 11.01 11.81% 3.62 10.65% 11.13 12.99% 

Sum 133.65 199.79% 429.88 223.76% 133.83 202.89% 433.80 246.14% 

Average 6.08 9.08% 19.54 10.17% 6.08 9.22% 19.72 11.19% 
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Table 7: Simulation results of the Policy Scenario C 

Months 

PSC (PSA-2,PSB-2) 

WAP Variation TCWR 

(tons) 

Variation 

1 2.69 41.49% 31.69 83.56% 

2 4.47 45.23% 40.29 90.98% 

3 6.90 65.21% 59.31 131.20% 

4 7.89 50.62% 56.21 101.64% 

5 8.34 34.77% 48.80 69.48% 

6 11.16 68.69% 76.27 137.82% 

7 11.01 58.21% 68.66 116.59% 

8 11.01 50.89% 63.46 101.61% 

9 14.98 96.93% 105.14 194.42% 

10 15.28 100.33% 109.80 201.32% 

11 14.92 96.69% 108.36 192.73% 

12 13.88 84.12% 96.20 167.32% 

13 15.06 100.89% 87.07 131.98% 

14 14.19 105.45% 84.94 137.77% 

15 13.00 106.07% 79.42 138.52% 

16 11.84 107.73% 71.45 140.84% 

17 10.37 104.65% 60.85 136.56% 

18 9.02 105.99% 53.01 138.26% 

19 8.49 107.61% 48.91 140.58% 

20 7.95 108.41% 44.58 141.34% 

21 6.65 87.68% 33.74 114.09% 

22 6.09 85.94% 29.73 112.01% 

Sum 225.19 1813.62% 1457.89 2920.59% 

 

 




