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Most nature-inspired algorithms simulate intelligent behaviors of animals and insects that can move spontaneously and
independently. The survival wisdom of plants, as another species of biology, has been neglected to some extent even though
they have evolved for a longer period of time. This paper presents a new plant-inspired algorithm which is called root growth
optimizer (RGO). RGO simulates the iterative growth behaviors of plant roots to optimize continuous space search. In growing
process, main roots and lateral roots, classified by fitness values, implement different strategies. Main roots carry out exploitation
tasks by self-similar propagation in relatively nutrient-rich areas, while lateral roots explore other places to seek for better chance.
Inhibition mechanism of plant hormones is applied to main roots in case of explosive propagation in some local optimal areas.
Once resources in a location are exhausted, roots would shrink away from infertile conditions to preserve their activity. In order
to validate optimization effect of the algorithm, twelve benchmark functions, including eight classic functions and four CEC2005
test functions, are tested in the experiments. We compared RGO with other existing evolutionary algorithms including artificial
bee colony, particle swarm optimizer, and differential evolution algorithm. The experimental results show that RGO outperforms
other algorithms on most benchmark functions.

1. Introduction

In recent years, many heuristic algorithms inspired by col-
lective intelligent behaviors of insects and animals were pro-
posed to solve complex optimization problems. For example,
ant colony optimizer (ACO) simulates foraging behaviors of
ants [1]. Particle swarm optimizer (PSO) simulates swarm
behaviors of birds and fish [2, 3]. Bacterial colony optimizer
(BCO) [4] and bacterial colony foraging optimizer (BCFO)
[5] simulate typical behaviors of bacteria during their lifecy-
cle. Artificial bee colony (ABC) algorithm simulates foraging
behaviors of a swarm of bees [6]. Compared to traditional
mathematical methods, these heuristic algorithms have no
central control, and performance of the population will not
be affected by individual failures. Therefore, they are more
flexible and robust when dealing with complex, multimodal,
and dynamic problems.

In the natural world, while most of animals develop
toward a predetermined body plan, plants demonstrate
iterative growth and constantly produce new organs and
structures by actively dividing meristems [7] to adapt to
the differing environments. As another species of biology,
however, plant has attracted little attention in the field of
bioinspired computing [8] even though it has evolved for a
longer period of time. Compared with animal, plant cannot
move but grow. There is neither a brain nor neurons in its
body. As a result, it seems insensitive to external information,
dull to take actions, and far away from intelligence. In some
biologists’ opinions, however, plant can also be regarded as
“intelligent organisms” [9, 10]. During the growing process,
plant shows considerable plasticity in its morphology and
physiology in response to varieties of environments [11]. For
example, their roots can properly cope with the prevailing
conditions in soil, such as avoiding obstacles and exploring
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Figure 1: The self-similar architecture of a root system.

nutrient-rich patches or water zones by its hydrotropism,
chemotropism, gravitropism, and so on. The iterative prop-
agation mode makes them extremely flexible and adaptive in
detecting resources and concentrating their efforts on areas
that are the most profitable [12]. Consequently, roots are
always able to find the best position with nature-designed
growth strategies. This is a perfect heuristic for designing
optimization algorithms.Thus, inspired by the growth behav-
iors of plant roots, this paper presents a new algorithmnamed
root growth optimizer.

The remainder of this paper is organized as follows.
Section 2 talks about some topics about root growth. Section 3
models the root growing process. Section 4 presents the root
growth optimization algorithm step by step. Experiments
and results are given in Section 5. Section 6 discusses some
unique characteristics of RGO, and Section 7 outlines the
conclusions.

2. Some Topics about Root Growth

2.1. Self-Similar Propagation. The growth and propagation
of root are considered very important for plant to adapt to
soil environments since it is the only organ to obtain water
and inorganic nutrients below the surface of the soil [13]. In
a root system, its architecture is well known to be a major
determinant of root functions in acquiring soil resources [14,
15]. Becausemost root systems have the characteristics of self-
similarity and are considered as approximate fractal objects
over a finite range of scales [16] (as shown in Figure 1), fractal
geometry has been widely used to assess the architecture and
distribution of root systems in soil [17, 18].

There is a close correlation between the architecture and
propagation strategies as botanists have discovered. During
the growing process, root can perceive their external physical
environments and implements different strategies. If there are
enough resources, it will produce many lateral roots at the
same time of elongating forward. Otherwise, few lateral roots
are produced. Over time, the similar propagation occurs at
different positions in variant scales. As a result, thewhole root
system will cover the most profitable area with self-similar
architecture.

2.2. Inhibition of Plant Pheromones. The development pro-
cess and architecture of a root system are also determined
by internal interactive action of all kinds of plant hormones.
Among them, auxin and cytokinin are well known to be
the two crucial hormonal signals, and root growth is mainly

regulated by their cross-talk [19, 20]. Both of them can be
generated by meristematic cells. As far as we know, auxin is
a key factor for elongation of cells which is mostly generated
on the shoot and transported to root tips [21], while cytokinin
works locally to enhance the rate of cell division which is
mostly generated in roots [22]. Only with certain ratio of
auxin to cytokinin that root grows and develops into regular
architecture [20].

Biologists have discovered that there is a mutually
inhibitory interaction between auxin and cytokinin. If one
of them increases out of balance, the other will promote
the signaling of inhibitors [7]. For instance, when roots
grow rapidly in a nutrient-rich area, abundant cytokinin
will be synthesized in meristematic cells of newborn roots.
Nevertheless, there is no proportional auxin yet provided
in time by polar transport. Thus, cytokinin signaling will
promote the expression of auxin signaling inhibitors so as
to form a negative feedback loop until the root growth rate
returns to a balancing level. In summary, roots will never
propagate explosively in a local area even if all environmental
conditions meet their needs.

2.3. Shrinkage. Theenvironment around roots is an open and
dynamic system varying with the time. In a local optimal
area, water and inorganic nutrients may diffuse gradually
because of the gradient effect. Meanwhile, roots themselves
keep consuming resources all the time.Therefore, the soil will
becomemore andmore infertile unless external resources are
added in time.

When the environments change, roots must adjust their
behaviors to adapt to new conditions. In fact, most of
the roots are able to respond effectively to the variational
conditions evenwhen theymeet unexpectedly [23]. Typically,
they will stop growing in the area and shrink away from
poor conditions, which make the whole root architecture a
robust system with high diversity in searching for water and
nutrients as much as possible.

3. Artificial Root Growth

3.1. Basic Concepts. In the artificial model, an objective
function is treated as the growing environments of plant
roots, and the initial roots are considered as a homogeneous
biomass [24]. Each root apex stands for a feasible solution of
the problem. All roots try to adjust their growing directions
and propagation strategies in order to search for the optimal
growing conditions, which feed back to improve root growth
further.

In growing process, all the root apices can select their
growth strategies composed of the following three basic
actions.

(1) Each root apexmay elongate forward (or sideways) in
the search space.

(2) Each root apexmay produce new root apices (namely,
daughter apices).

(3) Each root apex may stop functioning as above and
become an ordinary piece of root mass.
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In a word, a root apex may regrow itself, produce new
roots, or stop growing for some reason.

According to fitness values, thewhole rootmass is divided
into three groups. The group with the best fitness values is
called main roots. The group with the worst fitness values
is called aging roots. The rest of root mass is called lateral
roots. In the three groups, except for aging roots that will stop
growing in the next generation, main roots and lateral roots
implement different growth strategies.

3.2. The Growth Strategy of Main Roots: Monopodial Branch-
ing. According to monopodial branching strategy, a main
root itself regrows to form an axis firstly, and then branching
roots appear in the lateral position. As a result, the growth
strategy contains three operators as follows.

(1) Regrowing. This operator means that a root apex regrows
towards a local best position where there are better water
and nutrient conditions. The operator is formulated as the
following expression:

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ 𝑙 ⋅ rand ( ) ⋅ (𝑥

𝑙best − 𝑥
𝑡−1

𝑖
) , (1)

where 𝑥𝑡−1
𝑖

is the original position of the 𝑖th root apex and 𝑥𝑡
𝑖

is the new position. 𝑙 is the local learning constant. rand( ) is
a random number with uniform distribution in [0, 1]. 𝑥

𝑙best is
the local best position in the generation.

(2) Branching.This operator means that a root apex produces
some new apices around it. The number of newborn root
apices is calculated as follows:

𝑤
𝑖
=

𝑓 − 𝑓min
𝑓max − 𝑓min

⋅ (𝑠max − 𝑠min) + 𝑠min, (2)

where 𝑓max and 𝑓min are the best and the worst fitness values
in the generation, respectively. 𝑓 is the fitness value of the
original root apex. 𝑠max and 𝑠min are the maximal branching
number and the minimal branching number which are
preset.

The positions of new root apices surround the original
root apex with Gauss distribution 𝑁(𝑥

𝑡

𝑖
, 𝜎
2
). The standard

deviation 𝜎 is calculated as follows:

𝜎
𝑖
= (

(𝑖max − 𝑖)

𝑖max
)

𝑛

⋅ (𝜎ini − 𝜎fin) + 𝜎fin, (3)

where 𝑖max and 𝑖 are the maximal iteration number and cur-
rent iteration number, respectively. 𝜎ini is the initial standard
deviation depending on the value of searching range and
𝜎fin is the final standard deviation determined by expected
accuracy standard in the program.

In formula (3) we can see that when the value of 𝑖
increases during the iterative process, 𝜎 will become smaller
and smaller. In this way, the similar architecture will appear
in variant scales. As a whole, all root apices will form
approximate self-similar architecture.
(3) Inhibition Mechanism of Plant Hormones. Because the
newborn root apices may be classified into the main root

group with high probability in the next generation if the area
is really nutrient-rich enough and all main roots will elongate
and propagate again, the number of roots in this area may
increase explosively in several generations, which we called
“root number explosion.”

Root number explosion is absolutely harmful to the
adaptability of a root system. From some points of optimiza-
tion view, it will make the algorithm plunge into local optima
and lose essential diversities since the total number of root
apices is rigidly limited. In fact, the phenomenon is rarely
seen in natural plant roots because plant hormones play an
important role in inhibiting explosive propagation, which has
been described in Section 2.2.

To simulate the inhibition mechanism of plant hormones
in the model, we will calculate the local standard deviation
𝜎local(𝑓) of new apices produced by a main root and then
get rid of some apices according to the calculating results by
greedy principle. The operator is implemented as follows:

𝑤
−𝑖
= 𝛼 ⋅ (1 −

𝜎local (𝑓)

𝑓max − 𝑓min
) ⋅ 𝑤
𝑖
, (4)

where 𝑤
−𝑖

is the number of root apices which should be
abandoned and 𝛼 is a control parameter.

From formula (4) we can know that the smaller 𝜎local(𝑓)
is, the more root apices will be removed in the next gen-
eration. On the one hand, rapid local increase of roots is
controlled in this way so that root number explosion can be
avoided. On the other hand, essential diversity can be kept to
prevent the algorithm from prematurity.

3.3. The Growth Strategy of Lateral Roots: Sympodial Branch-
ing. In sympodial branching mode, the root apex produces a
new branching apex at the lateral position instead of regrow-
ing along the original direction, and the new branching apex
grows into an axis by replacing the original one. The new
branching apex may locate at a random position around
the original root with a random angle 𝛽. This strategy is
formulated as follows:

𝑥
𝑡

𝑖
= rand ( ) ⋅ 𝛽 ⋅ 𝑥𝑡−1

𝑖
, (5)

where rand( ) is a random number with uniform distribution
in [0, 1]. 𝛽 is calculated as follows:

𝛽 =

𝜆
𝑖

√𝜆
𝑇

𝑖
⋅ 𝜆
𝑖

, (6)

where 𝜆
𝑖
is a random vector.

3.4. Shrinkage. Both monopodial branching roots and sym-
podial branching roots consume local resources to keep
growing all the time. The decrease of local resources may
lead to loss of activity of roots in nondynamic environments.
According to the model, if a root axis has been active for a
long time and still fails to join the elite team, it will cease to
function and be classified into the aging group in the next
generation. In another word, the root systemwill shrink away
from this area after the local resources are exhausted.
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(1) Initialize the positions of root apices
(2) Calculate the fitness values of each root apex
(3) While not meet the terminal condition
(4) Divide all the root apices into main roots, lateral roots and aging roots
(5) For each main root apex

Regrow with the root regrowing operator
Branch with the root branching operator
Evaluate the fitness value of new root apices
Implement inhibition mechanism of plant hormones

End for
(6) For each lateral root apex

Produce a new apex replacing the original one
End for

(7) Implement shrinkage operator
(8) Rank root apices and label elite roots
(9) End while
(10) Postprocess results

Pseudocode 1: Pseudocode of RGO.

Table 1: Classical test functions.

Name Function Limits

Sphere 𝑓
1
=

𝐷

∑

𝑖−1

𝑥
𝑖

2
𝑥 ∈ [−100, 100]

𝐷

Schwefel 1.2 𝑓
2
=

𝐷

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

𝑥 ∈ [−100, 100]
𝐷

Schwefel 2.22 𝑓
3
=

𝐷

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
+

𝐷

∏

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

𝑥 ∈ [−10, 10]
𝐷

Rosenbrock 𝑓
4
=

𝐷

∑

𝑖−1

(100 (𝑥
𝑖

2
− 𝑥
𝑖+1
)

2

+ (1 − 𝑥
𝑖
)
2

) 𝑥 ∈ [−30, 30]
𝐷

Rastrigin 𝑓
5
=

𝐷

∑

𝑖=1

(𝑥
𝑖

2
− 10 cos (2𝜋𝑥

𝑖
) + 10) 𝑥 ∈ [−5.12, 5.12]

𝐷

Schwefel 𝑓
6
= 418.9829*𝐷 +

𝐷

∑

𝑖=1

(−𝑥
𝑖
sin(√󵄨󵄨󵄨

󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
)) 𝑥 ∈ [−500, 500]

𝐷

Ackley 𝑓
7
= 20 + 𝑒 − 20 exp(−0.2√

1

𝐷

𝐷

∑

𝑖=1

𝑥
𝑖

2
) − exp( 1

𝐷

𝐷

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) 𝑥 ∈ [−32, 32]

𝐷

Griewank 𝑓
8
=

1

4000

(

𝐷

∑

𝑖=1

𝑥
𝑖

2
) − (

𝐷

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)) + 1 𝑥 ∈ [−600, 600]
𝐷

4. Root Growth Optimization Algorithm

Root growthmechanism presents a wonderful inspiration for
designing a new optimization algorithm. It can be seen that
the artificial root growth model has described the original
appearance of natural plant roots with few assumptions.
Corresponding algorithm is consequently given based on the
above model.

The pseudocode of RGO is listed in Pseudocode 1.

5. Experiments and Results

In order to test the performance of RGO, PSO, ABC algo-
rithm, and DE algorithm are employed for comparison as

they were widely used in recent years [25–30]. According to
the state of the art, eventually we select CCPSO2 [31] and
MDE pBX [32] to replace the basic PSO and DE since they
have been reported to perform much better than the original
versions. In the experiments, twelve test functions, including
eight classical functions (Table 1) and four CEC2005 [33] test
functions (Table 2), are used to test its efficiency.

5.1. Experiment Sets and Benchmark Functions. The eight
classic benchmark functions are widely adopted by other
researchers to test their algorithms in many works [25–
30]. Among these functions, sphere is a unimodal function
with separable variables which is easy to solve. Schwefel 1.2,
Schwefel 2.22, and Rosenbrock are unimodal functions with
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Table 2: CEC05 test functions.

Name Function Limits

Shifted Schwefel 1.2
with noise

𝑓
9
=

𝐷

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑧
𝑗
)

2

* (1 + 0.4 |𝑁 (0, 1)|) + 𝑓
−
bias
1
,

z = x − o
𝑥 ∈ [−100, 100]

𝐷

Shifted rotated
Rastrigin

𝑓
10
=

𝐷

∑

𝑖=1

(𝑥
𝑖

2
− 10 cos (2𝜋𝑥

𝑖
) + 10) + 𝑓

−
bias
2
,

z = (x − o) ∗M
𝑥 ∈ [−5.12, 5.12]

𝐷

Shifted rotated
Ackley on bounds

𝑓
11
= 20 + 𝑒 − 20 exp(−0.2√

1

𝑛

𝑛

∑

𝑖=1

𝑥
𝑖

2
) − exp(1

𝑛

𝑛

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 𝑓

−
bias
3
,

z = (x − o) ∗M

𝑥 ∈ [−32, 32]
𝐷

Shifted rotated
Griewank without
bounds

𝑓
12
=

1

4000

(

𝑛

∑

𝑖=1

𝑥
𝑖

2
) − (

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)) + 1 + 𝑓
−
bias
4
,

z = (x − o) ∗M
No bounds

Table 3: Results on benchmark functions with dimension of 2.

Function ABC RGO CCPSO2 MDE pBX

𝑓
1

Mean 3.58450𝐸 − 18 7.36342𝐸 − 17 3.14582𝐸 − 14 2.12323E − 19
Std 2.24525𝐸 − 18 4.23478𝐸 − 18 4.93483𝐸 − 14 1.23894E − 18

𝑓
2

Mean 2.26545𝐸 − 05 3.57662𝐸 − 02 3.14535𝐸 − 02 3.84756E − 06
Std 1.98977𝐸 − 05 4.76342𝐸 − 03 2.03457𝐸 − 03 2.74629E − 07

𝑓
3

Mean 1.87394E − 03 3.64537𝐸 − 03 4.30984𝐸 − 02 5.39844𝐸 − 02

Std 1.64534E − 03 2.85437𝐸 − 03 2.37488𝐸 − 02 2.37476𝐸 − 02

𝑓
4

Mean 3.45686𝐸 − 02 2.35624𝐸 − 02 2.34446E − 04 4.23837𝐸 − 03

Std 2.98749𝐸 − 02 4.63453𝐸 − 04 4.03456E − 04 2.37484𝐸 − 03

𝑓
5

Mean 0.00000E + 00 5.58621𝐸 − 03 3.26793𝐸 − 02 6.37364𝐸 − 02

Std 0.00000E + 00 4.22344𝐸 − 04 1.34532𝐸 − 01 2.93846𝐸 − 02

𝑓
6

Mean 4.54567E − 05 3.39383𝐸 + 02 5.34880𝐸 + 01 8.38764𝐸 − 03

Std 2.33454E − 05 1.35345𝐸 + 01 4.36780𝐸 + 01 4.27364𝐸 − 03

𝑓
7

Mean 2.35681𝐸 − 01 6.84567E − 02 3.03453𝐸 − 01 5.27343𝐸 − 01

Std 3.37654𝐸 − 01 3.08749E − 02 3.00930𝐸 − 01 3.29374 − 01

𝑓
8

Mean 5.34686𝐸 + 04 3.14986E + 02 2.23453𝐸 + 03 7.27364𝐸 + 03

Std 3.45685𝐸 + 04 2.33454E + 02 3.62444𝐸 + 03 2.63744𝐸 + 03

𝑓
9

Mean −450 −450 −450 −450
Std 4.69821E − 15 2.74875E − 14 4.58764E − 16 5.65842E − 17

𝑓
10

Mean −325.64 −330 −326.82 −316.31

Std 3.89576 3.69860E − 05 1.68521 5.68325

𝑓
11

Mean −125.98 −130.75 −135.64 −123.23

Std 3.48967 5.36214 2.89723 3.85236

𝑓
12

Mean −155.39 −164.88 −135.69 −156.89

Std 3.26984 4.47895 1.78542 2.64782

nonseparable variables. Rosenbrock function has a narrow
valley sloping gently from local optima to the global optimum
and thus can be treated as a multimodal function.

Rastrigin and Schwefel are multimodal functions with
separable variables. Ackley and Griewank are multimodal
functions with nonseparable variables. They all have a large
number of local optima tomake it difficult to reach the global
optimum.

Functions 𝑓
9
–𝑓
12
are selected from CEC2005 test bed. 𝑓

9

is shifted Schwefel 1.2 with noise. 𝑓
10
–𝑓
12
are shifted rotated

Rastrigin, shifted rotated Ackley on bounds, and shifted
rotated Griewank without bounds. In a shifted function, the
global optimum is shifted with a vector 𝑓 bias

𝑖
. In a rotated

function, a rotated variable 𝑧, which produced by the original
variable 𝑥 leftmultiplying an orthogonal matrix𝑀, is used to
calculate the fitness instead of 𝑥. The orthogonal matrix does
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Table 4: Results on benchmark functions with dimension of 10.

Function ABC RGO CCPSO2 MDE pBX

𝑓
1

Mean 4.96545𝐸 − 07 3.14857E − 12 3.00736𝐸 − 04 3.28376𝐸 − 05

Std 1.24467𝐸 − 06 3.16293E − 12 2.55414𝐸 − 04 4.83273𝐸 − 05

𝑓
2

Mean 4.45633𝐸 + 01 4.32395E − 04 5.60171𝐸 − 02 4.95863𝐸 − 01

Std 2.44566𝐸 + 01 3.33065E − 04 3.01647𝐸 − 02 2.38475𝐸 − 01

𝑓
3

Mean 2.64553𝐸 − 01 2.13645𝐸 − 01 4.65534E − 02 4.27354𝐸 − 01

Std 2.47955𝐸 − 01 2.64859𝐸 − 01 3.29110E − 02 1.28364𝐸 − 01

𝑓
4

Mean 5.75084𝐸 + 00 2.32340𝐸 + 01 3.39054𝐸 + 01 2.39474E − 01
Std 5.25142𝐸 + 00 3.52424𝐸 − 02 4.30184𝐸 + 01 2.38476E − 01

𝑓
5

Mean 4.30184𝐸 + 01 0.00000E + 00 2.79516𝐸 + 01 3.82736𝐸 + 02

Std 1.22010𝐸 + 00 0.00000E + 00 1.11010𝐸 + 01 2.01927𝐸 + 02

𝑓
6

Mean 3.43993𝐸 + 02 4.33650E + 00 2.73225𝐸 + 03 5.93843𝐸 + 01

Std 1.08184𝐸 + 02 3.50760E + 00 5.48055𝐸 + 02 1.28364𝐸 + 01

𝑓
7

Mean 3.38283𝐸 − 02 1.03444E − 03 1.73043𝐸 + 00 3.28374𝐸 + 02

Std 2.37433𝐸 − 02 1.13671E − 03 8.12113𝐸 − 01 1.20378𝐸 + 02

𝑓
8

Mean 3.67391𝐸 + 02 3.99659E − 01 2.18996𝐸 + 01 3.82703𝐸 + 02

Std 2.13001𝐸 + 02 3.93455E − 00 9.42148𝐸 + 01 1.29374𝐸 + 02

𝑓
9

Mean −450 −450 −450 −450
Std 1.58462E − 12 2.36548E − 13 1.78512E − 10 1.24782E − 11

𝑓
10

Mean −321.89 −330 −299.36 −311.36

Std 2.38562 0.21546 6.53548 4.97564

𝑓
11

Mean −122.86 −135.89 −134.54 −124.33

Std 3.65489 2.65423 4.57896 1.25846

𝑓
12

Mean −162.35 −163.45 −171.25 −152.91

Std 3.65214 2.36542 1.88756 3.98211

not change the shape of the function. However, when one
dimension of vector 𝑥 is changed, all dimensions of vector 𝑧
will be affected.Thus, the rotated function differs totally from
the original function in the view of searching.

In this paper, all functions use their standard ranges and
variable data. The experiments compare the performance
using all accuracies of algorithms for a fixed number of
function evaluations. The max evaluation count is 10,000.
Experiments have been carried out using Matlab 7.0 on
a standard 2.5GHZ desktop computer. All parameters in
CCPSO2,ABC, andMDE pBX are set as their original values.
The population size of four algorithms is 50. In order to do
meaningful statistical analysis, each algorithm runs for 20
times, and the mean value and standard deviation value are
taken as final results. In RGO, the number of root apices
in main root group is thirty percent of the selected root
apices in each generation. 𝑠max and 𝑠min are set as 3.0 and
1.0, respectively. 𝛼 and 𝑙 are all set as 1.0. All the benchmark
functions are listed in Tables 1 and 2.

5.2. Experiment Results and Analysis. Themean fitness values
and standard deviation values obtained by the four algo-
rithms with 2, 10, 30, 50, and 100 dimensions are listed in
Tables 3, 4, 5, 6, and 7. Best values obtained on each function
are marked as bold.

As can be seen in Table 3, with dimension of 2, ABC
performs better than others on functions 𝑓

3
, 𝑓
5
, and 𝑓

6
.

MDE pBX shows the best performance on functions 𝑓
1
and

𝑓
2
. CCPSO2 shows the best performance on functions 𝑓

4

and 𝑓
11
. Though RGO only gets the best results on functions

𝑓
7
, 𝑓
8
, 𝑓
10
, and 𝑓

12
, it gets satisfactory accuracy on other

functions. All algorithms get the best results on function
𝑓
9
. From Table 4, RGO performs much better than ABC,

CCPSO2, and MDE pBX on most functions except 𝑓
3
, 𝑓
4
,

and 𝑓
12
. From Tables 5, 6, and 7, we can see that most of

the best results are obtained by RGO. It outperforms other
algorithms obviously in terms of accuracy on high dimension
functions.

The convergence results of classical benchmark functions
with 30 dimensions are present in Figure 2, which prove that
the RGO can converge much faster than other algorithms to
the best results on most of functions except Schwefel func-
tion. From the figures, it can be seen that the curve of RGO
often goes down with certain stability while other algorithms
are suffering from stagnation in the middle of searching
process, which is shown more apparently on CEC2005 test
functions in Figure 3. Additionally, convergence characteris-
tics show that RGOusually converges quickly to an acceptable
solution with fewer generations, which can be seen typically
in (a), (b), (c), (d), and (g) of Figure 2. Figure 3 also shows
the features. It is a proof that heuristic information of root
growth in the algorithm always works well so that appropriate
searching directions can be guided by main roots. Only the
shifted rotated Griewank function without bounds (as shown
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Figure 2: Continued.
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Figure 2: The median convergence characteristics of classical functions.

Table 5: Results on benchmark functions with dimension of 30.

Function ABC RGO CCPSO2 MDE pBX

𝑓
1

Mean 6.13416𝐸 − 03 4.03557E − 08 2.93943𝐸 − 02 4.27384𝐸 − 06

Std 1.13337𝐸 − 02 2.06790E − 08 1.14802𝐸 − 02 2.37489𝐸 − 06

𝑓
2

Mean 2.58658𝐸 + 02 2.29437𝐸 − 03 6.67699𝐸 + 00 2.38475E − 04
Std 5.87078𝐸 + 01 2.87363𝐸 − 03 2.76913𝐸 + 00 1.28374E − 04

𝑓
3

Mean 7.94874𝐸 + 01 3.80101E − 02 3.87476𝐸 + 00 3.27365𝐸 − 01

Std 5.39476𝐸 + 01 2.74364E − 02 1.38402𝐸 + 00 2.37488𝐸 − 01

𝑓
4

Mean 1.23425𝐸 + 02 2.83248𝐸 + 01 1.62023E − 02 2.38747𝐸 + 02

Std 2.42345𝐸 + 02 4.48363𝐸 − 02 6.00192E − 01 3.29387𝐸 + 02

𝑓
5

Mean 2.77214𝐸 + 01 0.00000E + 00 1.04094𝐸 + 02 7.28374𝐸 + 03

Std 8.58644𝐸 + 00 0.00000E + 00 1.76451𝐸 + 01 2.38475𝐸 + 03

𝑓
6

Mean 2.02340𝐸 + 03 1.34095𝐸 + 04 6.17883E + 01 3.28364𝐸 + 02

Std 3.14094𝐸 + 02 3.34594𝐸 + 02 8.70712E + 01 1.28364𝐸 + 02

𝑓
7

Mean 3.83236𝐸 + 00 2.96457E − 02 3.54363𝐸 + 00 2.90650𝐸 + 02

Std 7.92856𝐸 − 01 2.62388E − 02 6.32969𝐸 − 01 3.86972𝐸 + 01

𝑓
8

Mean 5.82235𝐸 − 01 2.95679E − 02 1.09786𝐸 + 00 2.94691𝐸 + 00

Std 3.01241𝐸 − 01 3.93452E − 02 4.47926𝐸 − 02 4.86930𝐸 + 00

𝑓
9

Mean −450 −450 −450 −450
Std 2.65782E − 02 3.45822E − 06 3.65492E − 02 4.10854E − 05

𝑓
10

Mean −328.14 −324.55 −326.78 −314.29

Std 6.39801 3.44109 4.68970 2.98254

𝑓
11

Mean −109.33 −134.89 −126.54 −128.29

Std 3.69001 2.85403 4.60352 5.86331

𝑓
12

Mean −142.99 −168.96 −153.20 −147.60

Std 2.13045 3.25852 3.21500 5.43256

in Figure 3(d)) makes an exception. Obviously, the lack of
bounds in this function makes challenge to the searching
capability of RGO. Therefore, the strategies of searching in
variant-scale area, for example, large scale area, should be
reconsidered in the algorithm.

From comparison shown in Tables 3–7, we can see that
RGO is a very promising algorithm. It has manifested quite
strong optimizing ability on test functions. When dimension
of functions increases, RGO shows more obvious advantage
than other evolutionary algorithms.
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Figure 3: The median convergence characteristics of CEC2005 test functions.

6. Discussions

6.1. Local Learning. In RGO, formula (1) is similar in form
to the iteration formula of PSO, which can be expressed as
follows:

V𝑡+1
𝑖

= V𝑡
𝑖
+ 𝑐
1
⋅ rand1 ( ) ⋅ (𝑝best𝑡

𝑖
− 𝑥
𝑡

𝑖
)

+ 𝑐
2
⋅ rand2 ( ) ⋅ (𝑔best𝑡 − 𝑥𝑡

𝑖
) ,

(7)

where 𝑐
1
and 𝑐
2
are local learning factor and social learning

factor, respectively. Compared with formula (7), in RGO, the
elongation of main root apex is determined only by the local
best position and local learning factor, which means that
social learning factor and global best fitness value have no

influence on behaviors of a main root apex. The reason con-
tains two points. Firstly, as far as natural plant is concerned,
there is no biological proof that a root apex can get global
information which may be on another apex far away from it.
To the best of our knowledge, it can only get local information
by hydrotropism, chemotropism, gravitropism, and so forth.
Secondly, from the perspective of optimization, actual global
optimum does not always locate near the temporary global
optimum found so far in multimodal environments. There is
even no direct evidence that one can find the global optimum
with higher probability while running towards the temporary
global optimum.

In comparison, local learning is necessary because a
group of individuals may be in pursuit of the same actual
local optimum in a unimodal area, where running towards
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Table 6: Results on benchmark functions with dimension of 50.

Function ABC RGO CCPSO2 MDE pBX

𝑓
1

Mean 3.56423𝐸 − 02 2.56321𝐸 − 05 3.65210𝐸 − 04 1.36795E − 05
Std 2.36545𝐸 − 02 1.32632𝐸 − 05 2.89563𝐸 − 04 2.36546E − 06

𝑓
2

Mean 2.68953𝐸 + 00 2.36589𝐸 − 02 6.32150E − 04 2.35788𝐸 − 02

Std 1.36899𝐸 − 01 3.05898𝐸 − 02 3.28036E − 04 1.04565𝐸 − 02

𝑓
3

Mean 6.25144𝐸 + 02 4.25689E − 03 5.32456𝐸 − 01 2.58402𝐸 − 02

Std 2.36589𝐸 + 01 3.65458E − 03 4.26565𝐸 − 01 1.02890𝐸 − 02

𝑓
4

Mean 3.44532𝐸 + 01 1.65856E − 02 3.98520𝐸 − 01 2.99514𝐸 + 01

Std 6.89530𝐸 + 00 1.56203E − 02 2.56300𝐸 − 01 8.32556𝐸 + 00

𝑓
5

Mean 3.56203𝐸 + 01 2.63520E + 00 5.12354𝐸 + 02 3.01235𝐸 + 03

Std 3.63215𝐸 + 00 2.05896E + 00 3.55633𝐸 + 02 7.32560𝐸 + 02

𝑓
6

Mean 3.25891E + 00 5.92310𝐸 + 01 5.12365𝐸 + 02 4.01259𝐸 + 03

Std 8.36254E − 01 1.56875𝐸 + 01 9.36851𝐸 + 01 3.25652𝐸 + 03

𝑓
7

Mean 5.39911𝐸 + 01 5.36982E − 02 4.36521𝐸 − 01 3.02621𝐸 + 02

Std 2.32562𝐸 + 01 2.35621E − 02 2.03652𝐸 − 01 8.36122𝐸 + 01

𝑓
8

Mean 5.36215𝐸 + 00 5.02152E − 01 3.02584𝐸 + 00 4.25635𝐸 + 01

Std 2.20147𝐸 + 00 3.21450E − 01 2.14562𝐸 + 00 2.36502𝐸 + 01

𝑓
9

Mean −450 −450 −450 −450
Std 3.25630E − 02 5.02984E − 02 2.32130E − 03 6.32152E − 06

𝑓
10

Mean −319.52 −326.32 −295.78 −310.25

Std 5.10231 3.85752 5.03620 8.39541

𝑓
11

Mean −122.06 −140 −137.25 −138.57

Std 5.01452 1.23652E − 02 3.26544 2.12478

𝑓
12

Mean −154.36 −176.25 −169.52 −148.96

Std 6.56321 7.65432 2.56356 8.25654

a better solution is reasonably beneficial to one’s own fitness
improvement.

As a result, social learning does not work as effectively
as people expect in the presence of elite strategy. Since
roots implement “the fittest propagate” principle in RGO,
temporary global optimum is not worthy for all root apices
to follow.

6.2. Self-Similarity. In early years, biologists have already
found that root systems have self-similarity and were con-
sidered as approximate fractal objects over a finite range
of scales [16]. Until now, the architectural characteristic of
root systems has been drawing much researchers’ attention
[18, 34].

In RGO, it can be seen from formulas (2) and (3) that
when a main root apex has a good fitness value, it will be
vigorous for propagation. According to formula (3), along
with main roots elongating into the soil, the positions of their
newborn daughter root apices complywith the same distribu-
tion law at different timepoints, except that distribution range
becomes smaller and smaller. In the meanwhile, newborn
roots may become main roots in the next generation and
propagate in the same way. With this pattern, approximate
fractal architecture with self-similarity characteristics will be
shaped.

As far as optimization is concerned, it can be confirmed
that the self-similar propagation is profitable for roots to

exploit resource-rich areas rapidly. As a novel search tech-
nique, the correlation between self-similar propagation and
searching in multimodal continuous space remains to be an
interesting problem which will be investigated in the near
future work.

7. Conclusions

Based on adaptive growth behaviors of plant roots, root
growth optimization algorithm is present in this paper.
Twelve benchmark functions, containing eight classical func-
tions and four CEC2005 test functions, were used to test
its performance. The results were compared with ABC,
CCPSO2, and MDE pBX. Comparing results show that the
performance of RGO outperforms other algorithms on most
test functions. RGO has also demonstrated faster conver-
gence speed with acceptable solutions, which helps reduce
computing cost, especially time cost. It is very meaningful
in dynamic environments with limited computing resources.
Moreover, RGO is potentially more powerful than other
algorithms on functions with high dimensions.

A further extension of the current RGOmay result in even
more effective optimizing algorithms for solving complex
multimodal problems. Future research efforts will be focused
on improvements of the algorithm, theoretical analysis on
self-similar propagation and optimization, and applications
to practical engineering problems.
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Table 7: Results on benchmark functions with dimension of 100.

Function ABC RGO CCPSO2 MDE pBX

𝑓
1

Mean 2.05907𝐸 + 02 3.87626E − 06 9.06713𝐸 + 00 3.94854𝐸 − 03

Std 2.99124𝐸 + 01 2.00512E − 06 1.48865𝐸 + 00 2.30480𝐸 − 03

𝑓
2

Mean 4.71130𝐸 + 03 3.33485E + 01 5.78462𝐸 + 02 3.28374𝐸 + 00

Std 7.44964𝐸 + 02 3.34562E + 01 1.62295𝐸 + 02 2.18263𝐸 + 00

𝑓
3

Mean 5.39203𝐸 + 03 2.82635𝐸 − 02 6.98399E − 03 4.19283𝐸 − 01

Std 3.28366𝐸 + 03 1.38460𝐸 − 02 4.10190E − 03 2.37463𝐸 − 01

𝑓
4

Mean 1.10722𝐸 + 07 2.27639E + 02 3.38841𝐸 + 04 3.28364𝐸 + 03

Std 3.03572𝐸 + 06 2.82968E + 01 8.03505𝐸 + 03 2.39476𝐸 + 03

𝑓
5

Mean 2.67134𝐸 + 03 0.00000E + 00 1.11605𝐸 + 03 1.28364𝐸 − 01

Std 2.71514𝐸 + 02 0.00000E + 00 7.93187𝐸 + 01 2.83745𝐸 − 01

𝑓
6

Mean 2.59243𝐸 + 04 4.82323𝐸 + 04 3.25326𝐸 + 04 2.83764E + 02
Std 1.31763𝐸 + 03 2.05676𝐸 + 03 2.73701𝐸 + 03 1.28364E + 02

𝑓
7

Mean 1.88570𝐸 + 01 4.11243E + 00 1.05328𝐸 + 01 3.29374𝐸 + 03

Std 2.58762𝐸 − 01 3.19674E − 01 6.95615𝐸 − 01 2.19273𝐸 + 03

𝑓
8

Mean 6.61743𝐸 + 02 2.12437E + 01 3.32923𝐸 + 01 3.28374𝐸 + 01

Std 1.08413𝐸 + 02 3.27898E + 01 4.18386𝐸 + 00 4.29374𝐸 + 00

𝑓
9

Mean −432.58 −450 −446.25 −450
Std 8.25632 2.68952E − 02 5.15624 3.02145E − 03

𝑓
10

Mean −286.25 −315.48 −258.12 −268.41

Std 5.25632 4.15232 6.25852 6.12365

𝑓
11

Mean −94.356 −136.96 −121.75 −103.20

Std 3.25632 4.26321 5.36652 1.32563𝐸 + 01

𝑓
12

Mean −152.96 −164.52 −135.75 −156.36

Std 6.23652 3.20330 2.36521 4.12052
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