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Abstract: Computational intelligence
(CI) technologies are robust, can be suc-
cessfully applied to complex problems, are
efficiently adaptive, and usually have a parallel
computational architecture. For those reasons they
have been proved to be effective and efficient in bio-
metric feature extraction and biometric matching tasks,
sometimes used in combination with traditional meth-
ods. In this article, we briefly survey two kinds of major
applications of CI in biometric technologies, CI-based fea-
ture extraction and CI-based biometric matching. Varieties of
evolutionary computation and neural networks techniques have
been successfully applied to biometric data representation and
dimensionality reduction. CI-based methods, including neural
network and fuzzy technologies, have also been extensively investi-
gated for biometric matching. CI-based biometric technologies are
powerful when used in the representation and recognition of incom-
plete biometric data, discriminative feature extraction, biometric
matching, and online template updating, and promise to have an
important role in the future development of biometric technologies.
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1. Introduction

A
utomatic identification and authentication systems
that make use of biometric data, such as, distinctive
anatomical and behavioral characteristics, are becom-
ing ever more widely used for access control, surveil-

lance, computer security, and in law enforcement. Several
governments are now using or will soon be using biometric
technology. The U.S. INSPASS immigration card and the
Hong Kong ID card, for example, both store biometric fea-
tures for authentication. Measured against alternative
approaches, current automatic biometric systems are reliable,
efficient, convenient and secure, yet at each module of auto-

matic biometric authentication systems (Figure 1)
there remains room for improvement. In the
acquisition and pre-processing module, biometric
data is sometimes noisy, partially occluded, or
inaccurately located. In the feature extraction and
recognition module, biometric authentication sys-
tems cannot yet completely eliminate or counter

the adverse effects of limited training samples and
within-class variations. In applications, current bio-

metric systems have only a limited ability in adapting to
different situations. All of these and other issues can be very

effectively dealt with by making use of computational intelli-
gence (CI) technologies including neural networks, fuzzy sets,
and evolutionary computation, either alone or in combination
with more traditional techniques.

CI techniques exhibit four particular features which make
them useful for the purposes of biometric identification and
authentication. First, they are adaptive. This is useful because,
while it is a primary assumption of identification/authentica-
tion that features should be stable, in reality they do change
over time. It is very complicated to model such changes but
evolutionary computation and neural networks, for example,
could solve this problem by allowing biometric feature
extraction and matching to be updated adaptively. Second,
CI approaches allow uncertainty modeling. Traditionally, com-
plexity and uncertainty should be addressed in the modeling
of the within-class variations between biometric data. Fuzzy
technology, or probabilistic fuzzy technology, however,
offers various ways to model uncertainty in these highly
complex variations of biometric characteristics. Third, CI
approaches are robust. Hopfield associative memory net-
works, which utilize local interactions to achieve a content-
addressable memory function, can reliably retrieve patterns
from memory even when incomplete or corrupted samples
are presented. Finally, computational intelligence technolo-
gies usually have a parallel computational architecture and this
means faster computation on highly complex systems.

It is beyond the scope of this article to describe all
existing and potential applications of CI methodologies in
biometric technologies. In the following, we will intro-
duce and briefly describe two major CI applications, CI-
based biometr ic  feature extract ion and CI-based
biometric matching.

2. Computational Intelligence-Based 
Biometric Feature Extraction
Feature extraction, a basic part of any biometric system, usually
has two main stages, biometric data representation and dimen-
sionality reduction. Biometric data representation involves using
signal and image processing technologies to extract a set of salient
or discriminatory features. The feature dimensionality is then
reduced and the redundancy and correlation between different
features is eliminated using dimensionality reduction techniques. 

2.1. Intelligent Biometric Data Representation
Biometric data is usually represented in one of three forms:
one-dimensional waveforms, two-dimensional images, or
three-dimensional geometric data. To date, various signal pro-
cessing technologies, especially image processing techniques,
have been extensively investigated and successfully applied to
biometric data representation, however, currently, no biomet-
ric data representation scheme exists which can extract all
invariance and discriminative information from biometric data.

Models of real-world biometric data are often highly non-
linear and very complex, yet most representation schemes are
based on simplistic mathematical models that are linear,
Gaussian, or least-square, and fail to model the richness and
complexity of information in a biometric characteristic. Fur-
ther, factors such as ageing and abrasion of the biometric char-
acteristic, or changes in the sensor or capture environment,
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FIGURE 1  A generic biometrics system. In the enrollment stage, the
biometric characteristic of an individual is first captured in the acqui-
sition module, and then processed and stored in the prototype data-
base. Similarly, in identification stage, biometric characteristic is
captured and identified, and then the system makes a real-time
respond according to recognition result.
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can affect the quality of captured biometric data and thus in
turn affect the performance of biometric systems.

In general, CI technologies can be used to represent bio-
metric data by extracting as much discriminatory information
as possible from the input biometric data. Unlike traditional
signal processing techniques, CI-based methods can adaptively
model a complex biometric characteristic, thereby obviating
the need to make many assumptions about the precise mathe-
matical model of the biometric data. In the following we pre-
sent an overview of three major CI-based biometric data
representation methods.

Multilayer Perceptron (MLP)
MLP is one of the most extensively used neural networks.
Given two sets of data, input/output pairs, MLP is able to
develop a specific nonlinear mapping by adjusting the net-
work weights by using a learning algorithm. It has been
demonstrated that a two-layer MLP will adequately approxi-
mate any nonlinear mapping. The most used MLP training
method is the backpropagation (BP) algorithm, where a steepest
descent gradient approach and a chain-rule are adopted for
back-propagated error correction from the output layer. 

Considerable efforts have been put into improving the
speed of convergence, generalization performance, and the
discriminative ability of MLP. To accelerate the BP algo-
rithm, several heuristic rules have been proposed to adjust
the learning rates or modify error functions [3]. Acceleration
of training MLP can also be achieved by the use of other
modifications to the standard BP algorithm, such as conju-
gate gradient BP, recursive least-square-based BP, and the
Levenberg-Marquardt algorithm. To verify the generaliza-
tion ability of MLP, the independent validation method can be
used by dividing the available data set into a number of sub-
sets for training, validation and testing [4]. To improve the
discriminative capability of MLP when applied to a classifi-
cation task, Juan and Katagiri proposed a discriminative

MLP learning rule which is more suit-
able for pattern classification tasks [5].

Applications: MLP is capable of adap-
tively approximating the function of any
linear or nonlinear filter, and thus is
very competitive when applied to bio-
metric data representation such as the
extraction of efficient discriminative fea-
tures, filtering, and enhancement of bio-
metric signals. MLPs have been widely
used in varieties of intelligent signal pro-
cessing tasks, such as signal noise reduc-
tion [6], [7], edge enhancement [8], and
singular point detection, which are very
valuable in the pre-processing and fea-
ture extraction of biometric data. In
biometric data presentation, MLP has
been successfully used in skin segmenta-

tion, face detection and facial feature location [9]–[11]. For
example, Figure 2 shows the architecture of an MLP-based
neural palm-line enhancer. This enhancer has a number of
advantages over classical line detectors in that it can be
trained to be noise-robust and palm-line-specific, and thus is
more suitable for palm-line enhancement.

Associative Memory Networks
Associative memory networks include linear associative memory
and Hopfield associative memory. Linear associative memory is an
effective single-layer network for the retrieval and reduction of
information. Given a key input pattern X = [x1, x2, . . . , xK ]
and the corresponding output Y = [y1, y2, . . . , yK ], associa-
tive memory learns the memory matrix W to map the key
input x i to the memorized output ŷ i . There are a number of
ways to estimate the memory matrix. One estimate of the
memory matrix W is the sum of the outer product matrices
from pairs of key input and memorized patterns

W =
K∑

k =1

ykx
T
k . (1)

To further reduce the memorized error, an error correction
approach has been introduced to minimize the error function

E (W) = 1
2

∥∥yk − Wxk

∥∥2
. (2)

Hopfield associative memory is a nonlinear content-
addressable memory for storing information in a dynamically
stable environment [12]. The Hopfield network is a single-
layer recurrent network which contains feedback paths from
the output nodes back into their inputs. Given an input x(0),
the Hopfield network iteratively updates the output vector by

x(k + 1) = f (Wx(k) − θθθ), (3)
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FIGURE 2  The architecture of the MLP-based neural palm-line enhancer.
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until the output vector become constant,
where f (·) is the activation function. 

Applications: Associative memory is
able to deduce and retrieve the memo-
rized information from possibly incom-
plete or corrupted biometric data. This
makes it very competitive in robust bio-
metric data representation. In [13], [14], kernel associative
memory (KAM) network has been used for the retrieval of the
corresponding prototypes of input face images. Compared
with some popular face recognition methods, KAM can
achieve better recognition accuracy and is robust in recogniz-
ing incomplete face images.

Self-Organizing Neural Networks
Kohonen’s self-organizing map (SOM) is an unsupervised neural
network model which uses a competitive learning rule to pro-
ject a structured, high-dimensional data manifold onto a low-
dimensional, topologically ordered set of nodes. SOM
preserves the topological relationship of the data. This makes
SOM capable of simultaneously acquiring the topological
ordering and good clusters of the input data.

Given a training vector x and a SOM with m nodes
{w1,w2, . . . ,wm}, a typical training algorithm usually include
three major steps:
1. Determine the best matching node (winner) wk according

to the minimum distance between the nodes and the
training vector x, 

k = arg min(d(x,w i)), (4)

2. Update the nodes of SOM using the learning rule

w i =
{

w i + η�( i, k)[x − w i], i f i ∈ N (k)

w i, i f i /∈ N (k)
, (5)

where N (k) denotes the neighborhood of the node k,
�( i, k) is the neighborhood function.

3. Modify the learning rate η, size of the neighborhood, and
the neighborhood parameters σ .
A central problem with SOMs is that if the learning rate is

not gradually reduced to zero, clusters formed by SOM may
not be stable. This is known as the stability/plasticity dilemma.
To overcome this dilemma, Carpenter and Grossberg pro-
posed another self-organized neural network method, adaptive
resonance theory, which involves accepting and adapting the
nodes only when the input is sufficiently similar to it [15]. To
accelerate the computation of SOM, Luttrell introduced a
hierarchical SOM scheme [16], and Kohonen suggested using
the batch formation of the SOM algorithm [17].

Applications: There are many examples of successful applica-
tions of self-organized neural networks in biometric data repre-

sentation. In [18], a face image is first divided into a number of
local image samples. A SOM is then applied to the samples, and
the input is quantized into a number of topologically ordered
values. SOMs have also been used for recognizing partially
occluded and expression variant faces, where a multiple SOM
scheme is adopted to train a single SOM for each class [19]. 

2.2. CI-based Dimensionality Reduction
Dimensionality reduction is an important task in biometric sys-
tems for three major reasons. First, biometric data is high
dimensional and most current recognition approaches suffer
from the “curse of dimensionality” problem. Second, original
biometric data always contains information that is less discrimi-
native or that is not useful for recognition. Dimensionality
reduction allows this information to be efficiently suppressed
without losing discriminative information. Third, dimensional-
ity reduction reduces the system’s memory and computational
requirements. Dimensionality reduction techniques have been
extensively applied to face [20], [21], ear [22], palmprint [23],
[24], fingerprint [25], gait recognition [26], and even multi-
modal biometrics [22], [27]. Since dimensionality reduction
usually can be formalized to an optimization problem, CI
technologies have been very successful in biometric data
dimensionality reduction. The following provides a survey of
five of these CI-based dimensionality reduction techniques.

Adaptive Principal Component Analysis
(PCA)/Linear Discriminant Analysis (LDA)
PCA and LDA are two powerful dimensionality reduction
techniques for data representation/discrimination. The classical
PCA and LDA algorithms are batch-based where all the train-
ing samples are already available. In many real-world applica-
tions, however, training data are received incrementally. In
these cases, principal components (PCs) or discriminant vectors
are best extracted using adaptive methods.

PCs have been adaptively extracted using various neural
network approaches. Most adaptive PCA approaches can be
derived from Oja’s Hebbian learning rule, where a single linear
neuron is used to learn the first principal component [28].
Sanger proposed a generalized Hebbian learning rule (GHA)
to adaptively extract the first several PCs [29]. In many real-
world applications, the GHA method may suffer from the
overflow problem, where with the increment of the training
samples, the first PC totally dominates and the influence of
other PCs is diminished. To overcome this, Kung and
Diamantaras introduced an anti-Hebbian learning rule, adap-
tive principal components extraction, which adds lateral
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At each module of automatic biometric authentication
systems there remains room for improvement, which can
be very effectively dealt with by making use of
computational intelligence technologies.



connections at the output of the Hebbian-based PCA net-
works [30]. Other learning rules that have been investigated
for adaptively extracting PCs include projection approximation
subspace tracking [31] and candid covariance-free incremental
PCA [32]. 

Neural network approaches have also been applied in adap-
tive LDA. Mao and Jain developed a two-layer PCA network
architecture to perform LDA of training data [33]. In this net-
work architecture, the training of the two layers cannot pro-
ceed simultaneously. Rather, the second layer should be
trained after the convergence of the first layer. Chatterjee and
Roychowdhury further proposed to use a Q−1/2 algorithm to
train the first layer and an adaptive eigenvector computation
algorithm to train the second layer [34]. Subsequently
Moghaddam and Zadeh introduced a modified version of a
self-organizing neural network by using the steepest descent
optimization method to compute Q−1/2, and thus accelerate
the convergence of adaptive LDA [35], [36].

Applications: When the biometric data are non-stationary
or are received incrementally, adaptive PCA/LDA is a useful
approach for online/dynamic extraction of PCs and discrimi-
nant vectors. In [32] and [37], adaptive PCA has been applied
to face representation. In [38], Zhao et al. developed a novel
adaptive PCA using the singular value decomposition updat-
ing algorithm and applied it to PCA- and PCA + LDA-based
face recognition.

Independent Component Analysis (ICA)
ICA is an efficient extension of PCA and has been widely
applied to blind signal separation and feature extraction. Unlike
PCA, where the second-order dependence (correlation) is
eliminated in the PCA-transformed space, ICA aims to make its
projection coefficients mutually independent by eliminating
both the second-order and the high-order dependence. There
are a number of methods for performing ICA, such as the info-
max algorithm [39] and the fixed-point (FastICA) algorithm
[40]. The infomax algorithm is derived from a neural network
point by maximizing the mutual information between the
input data and the network output. Subsequently, Hyvärinen et
al. developed a FastICA algorithm which uses a fixed-point
iteration scheme to train the ICA projection matrix. 

Applications: High-order dependence among biometric
data may be very important for biometric verification and

identification. Bartlett et al. [41], Yuen
[42], and Liu [43] were among the first
to apply ICA to face representation and
recognition, and found that ICA out-
performs PCA in face recognition.
Subsequently, inconsistent results have
been reported [44], [45]. Recently,
Draper et al. [46] independently carried
out a comprehensive comparison
between the performances of PCA and

ICA. They found the relative performance of ICA and
PCA mainly depends on the ICA architecture (I and II)
and the distance metric. 

ICA can also be used for robust recognition of biometric
data with local distortion and partial occlusion. In [47], Kim
et al. proposed an efficient part-based local representation
method, locally salient ICA (LS-ICA). LS-ICA employs only
locally salient information from important facial parts in order
to maximize the benefit of applying the idea of “recognition
by parts,” and thus creates part-based local basis images by
imposing an additional localization constraint in the process of
computing ICA architecture I basis images.

Evolutionary Feature Extraction (EFE)
Feature extraction is essentially a kind of optimization prob-
lem. Genetic algorithms (GAs) can contribute substantially to
solving such problems. GA first encodes a set of candidate
transform functions into individuals. These individuals are then
iteratively evolved to generate a new generation of individuals
according to the fitness function and the selection, crossover,
and mutation rules. When the GA converges, the optimal
transform function is satisfied by producing a final generation
of the fittest individuals. Compared with other feature extrac-
tion algorithms, EFE has the advantage of potential paralleliz-
ability and are thus expected to be more applicable on
large-scale and high-dimensional data.

When EFE is used for linear feature extraction or feature
selection, the candidate transform function would be a pro-
jection matrix (feature transform) or a number of variables (fea-
ture selection). The projection matrix can be represented as a
number of basis vectors. Some approaches have been pro-
posed to encode and evolve the basis vectors. Liu and
Wechsler presented an evolutionary pursuit method to
search the optimal projection basis vectors by rotating the
standard basis of the search space [48]. Most recently, Zhao
et al. proposed to generate the projection basis vectors via
linear combination of the basis vectors of the search space
[50]. Zheng et al. introduced a two-step EFE framework,
where GA is used for selecting principal components before
the subsequent LDA in PCA subspace [49].

Applications: Face recognition is one of the major applica-
tions of evolutionary feature extraction. In [48], evolution-
ary pursuit was successfully applied to face recognition and
achieved a better performance than the popular Eigenfaces

30 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2007

Models of real-world biometric data are often highly
nonlinear and very complex. CI-based methods can
adaptively model a complex biometric characteristic,
thereby obviating the need to make many assumptions
about the precise mathematical model.



and Fisherfaces methods. In GA-Fisher,
GA is used to select principal compo-
nents, and LDA is then performed in
the GA-PCA subspace [49]. To over-
come the computational and memory
complexity of evolutionary pursuit,
Zhao et al. presented a direct EFE
method by introducing a novel basis
vectors generation method and adopting
a constrained search space strategy [50].

Kernel Dimensionality Reduction Methods
Kernel dimensionality reduction (KDR) methods provide an
efficient means of handling nonlinear feature extraction
problems. One of the simplest ways to make the linear
dimensionality reduction techniques nonlinear is to map the
d-dimensional input data to an m-dimensional feature space.
In kernel-based methods, data x are implicitly mapped into a
higher dimensional or infinite dimensional feature space
� : x → �(x). The inner product in feature space can be eas-
ily computed using the kernel function

K(x, y) =<�(x),�(y)>. (6)

From this, Schölkopf et al. pointed out that “every (linear) algo-
rithm that only use scalar (inner) products can implicitly be executed
in � by using kernels, i.e., one can very elegantly construct a nonlin-
ear version of a linear algorithm.” [51] Now a number of kernel-
methods, such as kernel PCA (KPCA) [51], [52], kernel
Fisher discriminant (KFD) [53], [54], complete kernel Fisher
discriminant (CKFD) [55], and kernel direct discriminant
analysis (KDDA) [56], and kernel canonical correlation analy-
sis (KCCA) [57], have been developed from their correspond-
ing linear dimensionality reduction algorithms. 

Applications: When the variations of biometric data or fea-
tures are complex and nonlinear, KDR outperform the classi-
cal linear methods. So far, varieties of KDR methods have
been proposed and used in biometric data dimensionality
reduction. Recent developments on KDR techniques can be
grouped into two categories as either solutions to the singular-
ity and poor estimation problem or as combinations with
image transform techniques. 

There are two popular strategies to avoid the singularity
of the scatter matrix, the transform-based and the algorithm-
based. The transform-based strategy,
such as KFD [58] and kernel uncorre-
lated discriminant analysis [59], first
reduces the feature dimensions and
then uses LDA/CCA for feature
extraction. Note however, that
because some potential discriminatory
information contained in some small
PCs is lost in the KPCA step, these
methods are only approximate. Dif-

ferent from the transform-based strategy, the algorithm-
based, such as KDDA, finds an algorithm that can circum-
vent the singular case directly [56].

Another unfavorable effect of KDR is that limited sam-
ple size can cause the poor estimation of the scatter matri-
ces, resulting in an increase in classification errors.
Regularization technique, where a small perturbation is
added to the within-class scatter matrix Sw , can be used for
estimating SR

w [60]. So far, regularization methods (e.g., 3-
parameter and 1-parameter regularization), have been
developed for estimating SR

w [61]. 
Image transforms have been used in combination with

KDR techniques for dimensionality reduction. Figure 3
illustrates the procedure for transforming domain KDR
techniques. After image transformation, the transform coeffi-
cients might be more robust against variations of landmark
location and illumination. KDR has been found to be effec-
tive on the transform domains of the Gabor, wavelet, and
discrete cosine transforms [62], [63]. 

The Iteratively Reweighted Least-Squares Method (IRLS)
IRLS is an efficient method for solving nonlinear optimal
problems [64]–[66]. Assume that we are given a set of training
data, X = {x1, · · · , xm} ⊆ R

d with the corresponding labels
y = {y1, · · · , ym}. The IRLS algorithm can be used to fit an
optimal linear mapping model between x and
y, y = wTx + b . Let β = [b wT ]T , z i = [1 xT

i ]T , and
Z = [z1, z2, · · · , zm]T . IRLS computes the optimal vector β̂̂β̂β
which minimizes the criterion

J(βββ) =
m∑

i =1

ϕ{(yi − βββTz i)
2}, (7)

where the function ϕ(·) should be defined according to the
application tasks. The optimal vector βββ can be obtained by
iteratively performing the next two steps until convergence:
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FIGURE 3  Procedure of the image transform domain kernel dimensionality reduction technique.
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1. Compute the weights

W i i = ∂ϕ{(yi−βββ
T
z i)

2}
∂[(yi−βββ

T
z i)

2]
;

2. Update the vector
βββ = (ZTWZ)−1ZTWy.

Applications: IRLS has been suc-
cessfully applied to the development
of robust PCA, where outliers would
cause significant deterioration in the
performance of PCA. IRLS can also
be combined with Eigenfaces to
extract robust features from the noise
and partial occluded facial images. For
example, iteratively reweighted fitting
of Eigenfaces (IRF-Eigenfaces) can
address this by first defining a general-
ized objective function and then using
the IRLS algorithm to compute the
feature vector y by minimizing the
objective function [67]. 

IRF-Eigenfaces is more robust when
it comes to reconstructing or recogniz-
ing noisy and occluded facial images.
Using the AR face database [68], the
addition of salt and pepper noise has lit-

tle effect on the reconstruction performance of IRF-Eigenfaces,
as shown in Figure 4. IRF-Eigenfaces also has a robust recon-
struction performance for partially occluded facial images, as
shown in Figure 5. For other modalities of biometric image
(e.g., palmprint), IRF-Eigenfaces also has achieve a robust
reconstruction performance for noisy or partially occluded
images, as shown in Figure 6 and Figure 7.

3. Computational Intelligence-Based
Biometric Matching
In the matching module, a feature vector extracted from bio-
metric data is compared against the stored prototype templates
and a decision is then made. In biometric verification, the
matching issue is one of whether a person is “who he claims to
be” whereas in biometric identification the matching issue is
one of “whose biometric data is this?” based on a one-to-many
comparison. Thus biometric matching can be formalized into a
two-class or multi-class classification problem, and CI can be
used to enhance the robustness, adaptivity, and recognition
performance of the matching module. For example, neural
networks can be used to train a neural biometric matcher and
fuzzy technologies can be used as an uncertainty modeling tool
to fuse the matching results obtained from different biometric
systems. In the following we present an overview of three
main CI-based biometric matching methods.

Radial Basis Function Neural Network (RBFNN)
RBFNN is a three-layer feed-forward neural network
made up of an input layer, a hidden layer and an output
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FIGURE 4  The reconstruction of face images with different degreess of salt and pepper noise:
(a) original image; (b) reconstructed images using Eigenfaces; (c) reconstructed images using 
IRF-Eigenfaces.
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FIGURE 5  Reconstructed face images using Eigenfaces and IRF-
Eigenfaces: (a) original partially occluded images; (b) reconstructed
images using Eigenfaces; (c) reconstructed images using 
IRF-Eigenfaces.
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layer. The output of a RBFNN with K hidden units is
represented by

f (x) =
K∑

k =1

wkφk(x, ck) =
K∑

k=1

wkφk (‖x − ck‖2), (8)

where x is an input vector, φk(x, ck)

is the RBF function, and ck is the
RBF centers in the input vector
space. One common RBF function
i s  the Gaussian basis function,
φk(x, ck) = exp(−‖x − ck‖2

2/σ
2) .

The main task in training a RBFNN
is to determine the centers ck , the
weights wk , and the parameter of
Gaussian basis function σ . One simple
algorithms is the stochastic gradient
approach, which, however, is prone to
getting stuck in a local minimum and
cannot determine the number of cen-
ters. Usually a two-step strategy is
adopted. In the first step, clustering is
used to initialize the centers and the
parameters. In the second step, the
centers, σ , and weights are adjusted as
an optimization procedure.

Applications: Being computationally
simple and robustly generalizable,
RBFNN has been applied to various
tasks in face-processing including face
detection, expression analysis, face
recognition, and gender classification
[69]–[79]. A number of RBFNN-based
face recognition systems have been
trained using PCA, LDA, pseudo
Zernike moment, and discrete cosine
transform features. In [69], [70],
RBFNN is combined with a decision
tree to implement a mixture of experts
for classification of gender, ethnic ori-
gin, and facial poses. In [71], RBFNN is
used to identify facial expression and
motion. In [73], [74], RBFNN has been
used to construct an integrated automat-
ic face detection and recognition system.

Support Vector Machine (SVM)
SVMs are powerful tools for classifica-
tion and regression with many desir-
able properties, including a good
generalization performance and
embedding a nonlinear decision func-
tion via kernel functions. The standard
SVM approach is to design a linear

optimal hyperplane as the decision boundary of a binary clas-
sification problem. Given a set of linearly separable data
{x i, yi}, x i ∈ R

d , yi ∈ {−1, 1}, i = 1, · · · , N , the optimal
hyperplane is chosen to maximize the margin between the
two classes by minimizing the objective function
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FIGURE 6  The reconstruction of palmprint images with different degrees of salt and pepper
noise: (a) original image; (b) reconstructed images using Eigenfaces; (c) reconstructed images
using IRF-Eigenfaces.
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FIGURE 7  Reconstructed palmprint images using Eigenfaces and IRF-Eigenfaces: (a) original
images; (b) reconstructed images using Eigenfaces; (c) reconstructed images using IRF-Eigenfaces.
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E = ‖w‖2
2, s.t. (〈x,w〉 + b)yi ≥ 1. (9)

Generally, the set of training data is not linearly separable, and
another objective function is defined by introducing “slack”
variable ξ i

E = ‖w‖2
2 +C

N∑

i =1

ξ i, s.t. (〈x,w〉 + b)yi ≥ 1 − ξ i, (10)

where C is a hyper-parameter controlling the tradeoff between
margin maximization and classification error. This optimiza-
tion problem can be transformed into its dual formalization

max
α

∑

i

α i +
∑

i, j

α iα j y i y j〈x i, x j〉, s.t.

0 ≤ α i ≤ C,
∑

i

α i y i = 0, (11)

where α i is the Largrange multiplier. The decision function of
SVM can be represented as

f (x) = 〈w, x〉 + b =
N∑

i =1

α i y i〈x i, x〉 + b, (12)

where x i is a support vector if α i > 0.

Applications: SVM have been successfully applied to speaker
and face recognition. When applied to speaker recognition,
the regular SVM method would be inefficient when the num-
ber of training frames is large [80]. One strategy to overcome
this is to classify sequences instead of frames by using sequence
discriminative kernels [81], [82]. In face biometrics, SVM has
been applied to various tasks in computational face-processing.
In [83]–[85], better results have been reported using the SVM-
based face detectors. Moghaddam and Yang carried out a
comprehensive evaluation of classification methods for recog-
nizing gender from facial images. The best classification perfor-
mance was that of SVM [87]. In face recognition, SVM can be
used to weigh the discriminatory power at the nodes of an
elastic graph, thus enhancing the performance of elastic graph
matching for face recognition [88].

Fuzzy Technology
Fuzzy sets are extensions of abstract sets by introducing
appropriate membership functions. Fuzzy technology offers
an effective, more flexible way to describe a complex sys-

tem and has been successfully applied to
artif icial intell igence, information
retrieval systems, pattern recognition,
and image processing.

Applications: Fuzzy technologies have
been successfully applied to many bio-
metric recognition systems, such as face
recognition, fingerprint recognition, and

multimodal biometrics. In face recognition, fuzzy c-means has
been applied to initialize RBFNNs and parallel neural net-
works [78], [89]. Kwak and Pedrycz proposed a fuzzy kNN
rule to assign the class membership of each sample, and incor-
porate it with Fisherfaces, resulting in a fuzzy Fisherfaces
method [90]. Wu et al. developed two fuzzy models to
describe skin color and hair color for face detection [91]. In
fingerprint recognition, a normalized fuzzy similarity measure
has been proposed to match distorted fingerprints [92]. In
palmprint recognition, Wu et al. proposed a fuzzy directional
element energy feature approach [93]. 

Another important application of fuzzy technology is mul-
timodal biometrics and multiple classifier systems. In [94],
fuzzy clustering methods have been used for decision-level
fusion of face and speaker biometrics, and achieve better per-
formance than k-mean and other popular fusion algorithms. In
[95], [96], the Choquet fuzzy integral, a fuzzy information
fusion approach, is used to combine the outputs of individual
classifiers for face recognition.

4. Conclusion and Discussion
Computational intelligence technologies, sometimes used in
combination with traditional methods, have been proved to be
effective and efficient in biometric feature extraction and
matching tasks. Some of the key reasons that make CI com-
petitive are: 
1. Biometric recognition is one of the human capabilities. CI,

characterized by imitating biological function, is a natural
candidate technology in biometrics research.

2. CI-based technologies can provide a robust scheme for rec-
ognizing non-ideal and incomplete biometric data, which
in the acquisition and pre-processing stage may sometimes
be noisy, partially occluded, or inaccurately located.

3. The tasks of feature extraction and the matching of bio-
metric data can usually be formalized as complex nonlinear
optimization problems and CI has been very successful in
solving highly complex problems.

4. CI-based technologies are efficiently adaptive. This capacity
allows the development of real-time biometric systems
capable of online learning and able to adjust to different
times and environments.
This article presents a survey of several major CI-based

applications in current biometric technologies. Varieties of
evolutionary computation and neural network techniques
have been successfully applied to biometric data representa-
tion and dimensionality reduction. CI-based methods,
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Associative memory is powerful in the deduction and
retrieval of the memorized information from possibly
incomplete (noisy, partially occluded, or locally distorted)
biometric data.



including neural networks and fuzzy technologies, have also
been extensively investigated for biometric matching. It is
our hope that this survey will encourage readers to further
explore CI-based algorithms in the future development of
biometric technologies.
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