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Abstract

Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify
drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of
single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational
methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features.
However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper
proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term
occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the
semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene
ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The
frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and
semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-
decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental
results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-
feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art
predictors. For readers’ convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available
online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.
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Introduction

Proteins located in appropriate physiological contexts within a

cell are of paramount importance to exert their biological

functions. Subcellular localization of proteins is essential to the

functions of proteins and has been suggested as a means to

maximize functional diversity and economize on protein design

and synthesis [1]. Aberrant protein subcellular localization is

closely correlated to a broad range of human diseases, such as

Alzheimer’s disease [2], kidney stone [3], primary human liver

tumors [4], breast cancer [5], pre-eclampsia [6] and Bartter

syndrome [7]. Knowing where a protein resides within a cell can

give insights on drug targets identification and drug design [8,9].

Wet-lab experiments such as fluorescent microscopy imaging, cell

fractionation and electron microscopy are the gold standard for

validating subcellular localization and are essential for the design

of high quality localization databases such as The Human Protein

Atlas (http://www.proteinatlas.org/). However, wet-lab experi-

ments are time-consuming and laborious. With the avalanche of

newly discovered protein sequences in the post-genomic era,

computational methods are required to assist biologists to deal

with large-scale proteomic data to determine the subcellular

localization of proteins.

Conventionally, subcellular-localization predictors can be

roughly divided into sequence-based and annotation-based.

Sequence-based methods use (1) amino-acid compositions

[10,11], (2) sequence homology [12,13], and (3) sorting signals

[14,15] as features. Annotation-based menthods use information

beyond the protein sequences, such as Gene Ontology (GO) terms

[16–21], Swiss-Prot keywords [22], and PubMed abstracts [23,24].

A number of studies have demonstrated that methods based on

GO information are superior to methods based on sequence-based

features [25–28]. Note that the GO database contains not only

experimental data but also predicted data (http://www.

geneontology.org/GO.evidence.shtml), which may be determined

by sequence-based methods. From this point of view, the GO-

based prediction, which uses the GO annotation database to

retrieve GO terms, is a filtering method for sequence-based

predictions.

The GO comprises three orthogonal taxonomies whose terms

describe the cellular components, biological processes, and

molecular functions of gene products. The GO terms in each
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taxonomy are organized within a directed acyclic graph. These

terms are placed within structural relationships, of which the most

important being the ‘is-a’ relationship (parent and child) and the

‘part-of’ relationship (part and whole) [29,30]. Recently, the GO

consortium has been enriched with more structural relationships,

such as ‘positively-regulates’, ‘negatively-regulates’ and ‘has-part’

[31,32]. These relationships reflect that the GO hierarchical tree

for each taxonomy contains redundant information, for which

semantic similarity over GO terms can be found.

Instead of only determining subcellular localization of single-

label proteins, recent studies have been focusing on predicting

both single- and multi-location proteins. Since there exist multi-

location proteins that can simultaneously reside at, or move

between, two or more subcellular locations, it is important to

include these proteins in the predictors. Actually, multi-location

proteins play important roles in some metabolic processes that take

place in more than one cellular compartment, e.g., fatty acid b-

oxidation in the peroxisome and mitochondria, and antioxidant

defense in the cytosol, mitochondria and peroxisome [33].

Recently, several multi-label predictors based on GO have been

proposed, including Plant-mPLoc [34], Virus-mPLoc [35], iLoc-

Plant [36], iLoc-Virus [37], KNN-SVM [38], mGOASVM [39]

and others [40,41]. These predictors have demonstrated superi-

ority over sequence-based methods. These predictors use the

occurrences of the GO terms but do not take the semantic

relationships between GO terms into account.

Since the relationship between GO terms reflects the association

between different gene products, protein sequences annotated with

GO terms can be compared on the basis of semantic similarity

measures. The semantic similarity over GO has been extensively

studied and have been applied to many biological problems,

including protein function prediction [42,43], subnuclear locali-

zation prediction [44], protein-protein interaction inference [45–

47] and microarray clustering [48]. The performance of these

predictors depends on whether the similarity measure is relevant to

the biological problems. Over the years, a number of semantic

similarity measures have been proposed, some of which have been

used in natural language processing.

Semantic similarity measures can be applied at the GO-term

level or the gene-product level. At the GO-term level, methods are

roughly categorized as node-based and edge-based. The node-

based measures basically rely on the concept of information

content of terms, which was proposed by Resnik [49] for natural

language processing. Later, Lord et al. [50] applied this idea to

measure the semantic similarity among GO terms. Lin et al. [51]

proposed a method based on information theory and structural

information. Subsequently, more node-based measures [52–54]

were proposed. Edge-based measures are based on using the

length or the depth of different paths between terms and/or their

common ancestors [55–58]. At the gene-product level, two most

common methods are pairwise approaches [59–63] and groupwise

approaches [64–67]. Pairwise approaches measure similarity

between two gene products by combining the semantic similarities

between their terms. Groupwise approaches, on the other hand,

directly group the GO terms of a gene product as a set, a graph or

a vector, and then calculate the similarity by set similarity

techniques, graph matching techniques or vector similarity

techniques. More recently, Pesquita et al. [68] reviewed the

semantic similarity measures applied to biomedical ontologies, and

Guzzi et al. [69] provides a comprehensive review on the

relationship between semantic similarity measures and biological

features.

This paper proposes a multi-label predictor based on hybrid-

izing frequency of occurrences of GO terms and semantic

similarity between the terms for protein subcellular localization

prediction. Compared to existing multi-label subcellular-localiza-

tion predictors, our proposed predictor has the following

advantages: (1) it formulates the feature vectors by hybridizing

GO frequency of occurrences and GO semantic similarity features

which contain richer information than only GO term frequencies;

(2) it adopts a new strategy to incorporate richer and more useful

homologous information from more distant homologs rather than

using the top homologs only; (3) it adopts an adaptive decision

strategy for multi-label SVM classifiers so that it can effectively

deal with datasets containing both single-label and multi-label

proteins. Results on two recent benchmark datasets and a new

dataset containing novel proteins demonstrate that these three

properties enable the proposed predictor to accurately predict

multi-location proteins and outperform several state-of-the-art

predictors.

Methods

Legitimacy of Using GO Information
Despite their good performance, GO-based methods have

received some criticisms from the research community. The main

argument of these criticisms is that the cellular component GO

terms already have the cellular component categories, i.e., if the

GO terms are known, the subcelluar locations will also be known.

The prediction problem can therefore be easily solved by creating

a lookup table using the cellular component GO terms as the keys

and the cellular component categories as the hashed values. Such a

naive solution, however, will lead to very poor prediction

performance, as demonstrated and explained in our previous

studies [28,39]. A number of studies [70–72] by other groups also

strongly support the legitimacy of using GO information for

subcellular localization. For example, as suggested by [72], the

good performance of GO-based methods is due to the high

representation power of the GO space as compared to the

Euclidean feature spaces used by the conventional sequence-based

methods.

Retrieval of GO Terms
The proposed predictor can use either the accession numbers

(AC) or amino acid (AA) sequences of query proteins as input.

Specifically, for proteins with known ACs, their respective GO

terms are retrieved from the Gene Ontology annotation (GOA)

database (http://www.ebi.ac.uk/GOA) using the ACs as the

searching keys. For proteins without ACs, their AA sequences are

presented to BLAST [73] to find their homologs, whose ACs are

then used as keys to search against the GOA database.

While the GOA database allows us to associate the AC of a

protein with a set of GO terms, for some novel proteins, neither

their ACs nor the ACs of their top homologs have any entries in

the GOA database; in other words, no GO terms can be retrieved

by using their ACs or the ACs of their top homologs. In such case,

the ACs of the homologous proteins, as returned from BLAST

search, will be successively used to search against the GOA

database until a match is found. With the rapid progress of the

GOA database, it is reasonable to assume that the homologs of the

query proteins have at least one GO term [17]. Thus, it is not

necessary to use back-up methods to handle the situation where no

GO terms can be found. The procedures are outlined in Fig 1.

GO Frequency Features
Let W denote a set of distinct GO terms corresponding to a data

set. W is constructed in two steps: (1) identifying all of the GO

terms in the dataset and (2) removing the repetitive GO terms.

HybridGO-Loc

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e89545

http://www.ebi.ac.uk/GOA


Suppose W distinct GO terms are found, i.e., jWj~W ; these GO

terms form a GO Euclidean space with W dimensions. For each

sequence in the dataset, a GO vector is constructed by matching

its GO terms against W, using the number of occurrences of

individual GO terms in W as the coordinates. Specifically, the GO

vector pi of the i-th protein i is defined as:

pF
i ~½bi,1, � � � ,bi,j , � � � ,bi,W �T,bi,j~

fi,j , GO hit

0 , otherwise

�
ð1Þ

where fi,j is the number of occurrences of the j-th GO term (term-

frequency) in the i-th protein sequence. The rationale is that the

term-frequencies contain important information for classification.

Note that bi,j ’s are analogous to the term-frequencies commonly

used in document retrieval.

Similarly, for the t-th query protein t, the GO frequency

vector is defined as:

qF
t ~½bt,1, � � � ,bt,j , � � � ,bt,W �T,bt,j~

ft,j , GO hit

0 , otherwise

�
ð2Þ

In the following sections, we use the superscript F to denote the

GO frequency features in Eq. 2.

Semantic-Similarity Features
Semantic similarity (SS) is a measure for quantifying the

similarity between categorical data (e.g., words in documents),

where the notion of similarity is based on the likeliness of

meanings in the data. It is originally developed by Resnik [49] for

natural language processing. The idea is to evaluate semantic

similarity in an ‘is-a’ taxonomy using the shared information

contents of categorical data. In the context of gene ontology, the

semantic similarity between two GO terms is based on their most

specific common ancestor in the GO hierarchy. The relationships

between GO terms in the GO hierarchy, such as ‘is-a’ ancestor-

child, or ‘part-of’ ancestor-child can be obtained from the SQL

database through the link: http://archive.geneontology.org/

latest-termdb/go_daily-termdb-tables.tar.gz. Note here only the

‘is-a’ relationship is considered for semantic similarity analysis

[51]. Specifically, the semantic similarity between two GO terms

x and y is defined as [49]:

sim(x,y)~ max c[A(x,y)½{ log (p(c))�, ð3Þ

where A(x, y) is the set of ancestor GO terms of both x and y, and

p(c) is the probability of the number of gene products annotated to

the GO term c divided by the total number of gene products

annotated in the GO taxonomy.

While Resnik’s measure is effective in quantifying the shared

information between two GO terms, it ignores the distance

between the terms and their common ancestors in the GO

hierarchy. To further incorporate structural information from

the GO hierarchy into the similarity measure, we have

explored three extension of Resnik’s measure, namely Lin’s

measure [51], Jiang’s measure [74], and relevance similarity

(RS) [52].

Given two GO terms x and y, the similarity by Lin’s measure is:

simLin(x,y):sim1(x,y)~ max
c[A(x,y)

2:½{ log (p(c))�
{ log (p(x)){ log (p(y))

� �
ð4Þ

Figure 1. Procedures of retrieving GO terms. i : the i-th query protein; kmax: the maximum number of homologs retrieved by BLAST with the
default parameter setting; Qi,ki

: the set of GO terms retrieved by BLAST using the ki-th homolog for the i-th query protein i ; ki : the ki-th homolog
used to retrieve the GO terms.
doi:10.1371/journal.pone.0089545.g001
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The similarity by Jiang’s measure is:

simJiang(x,y):sim2(x,y)

~max
c[A(x,y)

1

1{ log (p(x)){ log (p(y))z2:½{ log (p(c))

� �ð5Þ

The similarity by RS is calculated as:

simRS(x,y):sim3(x,y)

~ max
c[A(x,y)

2:½{ log (p(c))�
{ log (p(x)){ log (p(y))

:(1{p(c))

� � ð6Þ

Among the three measures, simLin(x,y) and simJiang(x,y) are

relative measures that are proportional to the difference in

information content between the terms and their common

ancestors, which is independent of the absolute information

content of the ancestors. On the other hand, simRS(x,y)
incorporates the probability of annotating the common ancestors

as a weighing factor to Lin’s measure. To simplify notations, we

refer simLin(x,y), simJiang(x,y) and simRS(x,y) as sim1(x,y),

sim2(x,y) and sim3(x,y), respectively.

Based on the semantic similarity between two GO terms, we

adopted a continuous measure proposed in [48] to calculate the

similarity between two proteins. Specifically, given two proteins i

and j , we retrieved their corresponding GO terms Pi and Pj as

described in the subsection ‘‘Retrieval of GO Terms’’. (Note that

strictly speaking, Pi should be Pi,ki
, where ki is the ki-th homolog

used to retrieve the GO terms for the i-th protein. To simplify

notations, we write it as Pi.) Then, we computed the semantic

similarity between two sets of GO terms fPi,Pjg as follows:

Sl(Pi,Pj)~
X
x[Pi

max y[Pj
siml(x,y), ð7Þ

where l[f1,2,3g, and siml(x,y) is defined in Eq. 4 to Eq. 6.

Sl(Pj ,Pi) is computed in the same way by swapping Pi and Pj .

Finally, the overall similarity between the two proteins is given by:

SS l(Pi,Pj)~
Sl(Pi,Pj)zSl(Pj ,Pi)

Sl(Pi,Pi)zSl(Pj ,Pj)
, ð8Þ

where l[f1,2,3g. In the sequel, we refer the SS measures by Lin,

Jiang and RS to as SS1, SS2 and SS3, respectively.

Thus, for a testing protein t with GO term set t, a GO

semantic similarity (SS) vector qSl
t can be obtained by computing

the semantic similarity between t and each of the training

protein f igN
i~1, where N is the number of training proteins. Thus,

t can be represented by an N-dimensional vector:

q
Sl
t ~½SS l( t,P1), � � � ,SS l( t,Pi), � � � ,SS l( t,PN )�T , ð9Þ

where l[f1,2,3g. In other words, q
Sl
t represents the SS vector by

using the l-th SS measure.

Hybridization of Two GO Features
As can be seen from the subsections ‘‘GO Frequency Features’’

and ‘‘Semantic-Similarity Features’’, we know that the GO

frequency features (Eq. 2) use the frequency of occurrences of

GO terms, while GO SS features (Eq. 4 to Eq. 6) use the semantic

similarity between GO terms. These two features are developed

from two different perspectives. It is therefore reasonable to

believe that these two kinds of information complement each

other. Based on this assumption, we combine these two GO

features and form a hybridized vector as:

q
Hl
t ~

qF
t

q
Sl
t

2
64

3
75, ð10Þ

where l[f1,2,3g. In other words, q
Hl
t represents the hybridizing-

feature vector by combining the GO frequency features and the

SS features derived from the l-th SS measure. We refer them to as

Hybrid1, Hybrid2 and Hybrid3, respectively.

Multi-label Multi-class SVM Classification
The hybridized-feature vectors obtained from the previous

subsection are used for training multi-label one-vs-rest support

vector machines (SVMs). Specifically, for an M-class problem

(here M is the number of subcellular locations), M independent

binary SVMs are trained, one for each class. Denote the hybrid

GO vectors of the t-th query protein using the l-th SS measure as

qHl
t . Given the t-th query protein t, the score of the m-th SVM

using the l-th SS measure is

sm,l( t)~
X
r[Sm

am,rym,rK(p
Hl
r ,q

Hl
t )zbm ð11Þ

where q
Hl
t is the hybrid GO vector derived from (See Eq. 10),

Sm,l is the set of support vector indexes corresponding to the m-th

SVM, am,r are the Lagrange multipliers, ym,r[f{1,z1g indicates

whether the r-th training protein belongs to the m-th class or not,

and K(:,:) is a kernel function. Here, the linear kernel was used.

Unlike the single-label problem where each protein has one

predicted label only, a multi-label protein could have more than

one predicted labels. In this work, we compared two different

decision schemes for this multi-label problem. In the first scheme,

the predicted subcellular location(s) of the i-th query protein are

given by

M�
l ( t)~

SM
m~1fm : sm,l( t)w0g, when A m[f1, . . . ,Mg s:t: sm,l( t)w0 ;

arg maxM
m~1 sm,l ( t), otherwise:

8>>>><
>>>>:

ð12Þ

The second scheme is an improved version of the first one in

that the decision threshold is dependent on the test protein.

Specifically, the predicted subcellular location(s) of the i-th query

protein are given by:

If A sm,l( t)w0,

Ml( t)~
[M

m~1

m : sm,l( t)§ minf1:0,f (smax ,l( t))gð Þ ð13Þ

otherwise,

(12)

HybridGO-Loc
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M( t)~ arg max
M

m~1

sm,l( t): ð14Þ

In Eq. 13, f (smax ,l( t)) is a function of smax ,l(Qt), where

smax ,l(Qt)~ maxM
m~1 sm,l(Qt). In this work, we used a linear

function as follows:

f (smax ,l( t))~hsmax ,l( t), ð15Þ

where h[½0:0,1:0� is a hyper-parameter that can be optimized

through cross-validation.

In fact, besides SVMs, many other machine learning models,

such as hidden Markov models (HMMs) and neural networks

(NNs) [75,76], have been used in protein subcellular-localization

predictors. However, HMMs and NNs are not suitable for GO-

based predictors because of the high dimensionality of GO vectors.

The main reason is that under such condition, HMMs and NNs

can be easily overtrained and thus lead to poor performance. On

the other hand, linear SVMs can well handle high-dimensional

data because even if the number of training samples is smaller than

the feature dimension, linear SVMs are still able to find an optimal

solution.

Materials and Performance Metrics

Datasets
In this paper, a virus dataset [35,37] and a plant dataset [36]

were used to evaluate the performance of the proposed predictor.

The virus and the plant datasets were created from Swiss-Prot 57.9

and 55.3, respectively. The virus dataset contains 207 viral

proteins distributed in 6 locations. Of the 207 viral proteins, 165

belong to one subcellular locations, 39 to two locations, 3 to three

locations and none to four or more locations. This means that

about 20% of the proteins in the dataset are located in more than

one subcellular location. The plant dataset contains 978 plant

proteins distributed in 12 locations. Of the 978 plant proteins, 904

belong to one subcellular locations, 71 to two locations, 3 to three

locations and none to four or more locations. The sequence

identity of both datasets was cut off at 25%.

The breakdown of these two datasets are listed in Figs. 2(a) and

2(b). Fig. 2(a) shows that the majority (68%) of viral proteins in the

virus dataset are located in host cytoplasm and host nucleus while

proteins located in the rest of the subcellular locations totally

account only around one third. This means that this multi-label

dataset is imbalanced across the six subcellular locations. Similar

conclusions can be drawn from Fig. 2(b), where most of the plant

proteins exist in chloroplast, cytoplasm, nucleus and mitochon-

drion while proteins in other 8 subcellular locations totally account

for less than 30%. This imbalanced property makes the prediction

of these two multi-label datasets difficult. These two benchmark

datasets are downloadable from the hyperlinks in the HybridGO-

Loc server.

Performance Metrics
Compared to traditional single-label classification, multi-label

classification requires more complicated performance metrics to

better reflect the multi-label capabilities of classifiers. Convention-

al single-label measures need to be modified to adapt to multi-label

classification. These measures include Accuracy, Precision, Recall, F1-

score (F1) and Hamming Loss (HL) [77,78]. Specifically, denote

L( i) andM( i) as the true label set and the predicted label set

for the i-th protein i (i~1, . . . ,N), respectively. Here, N~207

for the virus dataset and N~978 for the plant dataset. Then the

five measurements are defined as follows:

Accuracy~
1

N

XN

i~1

jM( i)\L( i)j
jM( i)|L( i)j

� �
ð16Þ

Precision~
1

N

XN

i~1

jM( i)\L( i)j
jM( i)j

� �
ð17Þ

Recall ~
1

N

XN

i~1

jM( i)\L( i)j
jL( i)j

� �
ð18Þ

F1~
1

N

XN

i~1

2jM( i)\L( i)j
jM( i)jzjL( i)j

� �
ð19Þ

HL~
1

N

XN

i~1

jM( i)|L( i)j{jM( i)\L( i)j
M

� �
ð20Þ

where j:j means counting the number of elements in the set therein

and \ represents the intersection of sets.

Accuracy, Precision, Recall and F1 indicate the classification

performance. The higher the measures, the better the prediction

performance. Among them, Accuracy is the most commonly used

criteria. F1-score is the harmonic mean of Precision and Recall, which

allows us to compare the performance of classification systems by

taking the trade-off between Precision and Recall into account. The

Hamming Loss (HL) [77,78] is different from other metrics. As can

be seen from Eq. 20, when all of the proteins are correctly

predicted, i.e., jM( i)|L( i)j~jM( i)\L( i)j (i~1, . . . ,N),

then HL~0; whereas, other metrics will be equal to 1. On the

other hand, when the predictions of all proteins are completely

wrong, i.e., jM( i)|L( i)j~M and jM( i)\L( i)j~0, then

HL~1; whereas, other metrics will be equal to 0. Therefore, the

lower the HL, the better the prediction performance.

Two additional measurements [37,39] are often used in multi-

label subcellular localization prediction. They are overall locative

accuracy (OLA) and overall actual accuracy (OAA). The former is

given by:

OLA~
1P

N
i~1jL( i)j

XN

i~1

jM( i)\L( i)j, ð21Þ

and the overall actual accuracy (OLA) is:

OAA~
1

N

XN

i~1

½M( i),L( i)� ð22Þ

where

D½M( i),L( i)�~
1 , if M( i)~L( i)

0 , otherwise:

�
ð23Þ
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According to Eq. 21, a locative protein is considered to be

correctly predicted if any of the predicted labels matches any labels

in the true label set. On the other hand, Eq. 22 suggests that an

actual protein is considered to be correctly predicted only if all of

the predicted labels match those in the true label set exactly. For

example, for a protein coexist in, say three subcellular locations, if

only two of the three are correctly predicted, or the predicted

result contains a location not belonging to the three, the prediction

is considered to be incorrect. In other words, when and only when

all of the subcellular locations of a query protein are exactly

predicted without any overprediction or underprediction, can the

prediction be considered as correct. Therefore, OAA is a more

stringent measure as compared to OLA. OAA is also more objective

than OLA. This is because locative accuracy is liable to give biased

performance measures when the predictor tends to over-predict,

i.e., giving large jM( i)j for many i. In the extreme case, if

every protein is predicted to have all of the M subcellular

locations, according to Eq. 20, the OLA is 100%. But obviously,

the predictions are wrong and meaningless. On the contrary, OAA

is 0% in this extreme case, which definitely reflects the real

performance.

Among all the metrics mentioned above, OAA is the most

stringent and objective. This is because if only some (but not all) of

the subcellular locations of a query protein are correctly predict,

the numerators of the other 4 measures (Eqs. 16 to 21) are non-

zero, whereas the numerator of OAA in Eq. 22 is 0 (thus contribute

nothing to the frequency count).

In statistical prediction, there are three methods that are often

used for testing the generalization capabilities of predictors:

independent tests, sub-sampling tests (or K-fold cross-validation)

and leave-one-out cross validation (LOOCV). For independent

tests, the selection of independent dataset often bears some sort of

arbitrariness [79]; for the K-fold cross validation, different

partitioning of a dataset will lead to different results, thus still

being liable to statistical arbitrariness; for LOOCV, it will yield a

unique outcome and is considered to be the most rigorous and

bias-free method [80]. Hence, LOOCV was used to examine the

performance of all predictors in this work. More detailed analysis

of the statistical methods can be found in the supplementary

materials. Note that the jackknife cross validation in iLoc-Plant

and its variants is the same as LOOCV, as mentioned in [36,79].

Because the term jackknife also refers to the methods that estimate

the bias and variance of an estimator [81], to avoid confusion, we

only use the term LOOCV in this paper.

Results

Comparing Different Features
Fig. 3(a) shows the performance of individual and hybridized

GO features on the virus dataset based on leave-one-out cross

validation (LOOCV). In the figure, SS1, SS2 and SS3 represent

Lin’s, Jiang’s and RS similarity measures, respectively. Hybrid1,

Hybrid2 and Hybrid3 represent the hybridized features obtained

from these measures. As can be seen, in terms of all the six

performance metrics, the performance of the hybrid features is

remarkably better than the performance of individual features,

regardless of which of the GO frequency features or the three GO

SS features were used. Specifically, the OAAs (the most stringent

and objective metric) of all of the three hybrid features are at least

3% (absolute) higher than that of the individual features, which

suggests that hybridizing the two features can significantly boost

the prediction performance. Moreover, among the hybridized

features, the performance of Hybrid2, namely combining GO

frequency features and GO SS features by Jiang’s measure,

outperforms Hybrid1 and Hybrid3. Another interesting thing is that

although all of the individual GO SS features perform much worse

than the GO frequency features, the performance of the three

hybridized features is still better that of any of the individual

features. This suggests that the GO frequency features and SS

features are complementary to each other.

Similar conclusions can be drawn from the plant dataset shown

in Fig. 3(b). However, comparison between Fig. 3(a) and Fig. 3(b)

reveals that for the plant dataset, the performance of hybridized

features outperforms all of the individual features in terms of all

metrics except OLA and Recall, while for the virus dataset, the

former is superior to the latter in terms of all metrics. However, the

losses in these two metrics do not outweigh the significant

improvement on other metrics, especially on OAA, which has

around 3% (absolute) improvement in terms of hybridized features

as opposed to using individual features. Among the hybridizing

features, Hybrid2 also outperforms Hybrid1 and Hybrid3 in terms of

OLA, Accuracy, Recall and F1-score, whereas Hybrid1 performs better

than others in terms of OAA and Precision. These results

demonstrate that the GO SS features obtained by Lin’s measure

and Jiang’s measure are better candidates than the RS measure for

Figure 2. Breakdown of the (a) virus and (b) plant datasets. The number of proteins shown in each subcellular location represents the number
of ‘locative proteins’ [37,39]. For (a), there are 207 actual proteins and 252 locative proteins; For (b), there are 978 actual proteins and 1055 locative
proteins.
doi:10.1371/journal.pone.0089545.g002
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combining with the GO frequency features; however, there is no

evidence suggesting which measure is better. It is also interesting to

see that the performance of the three individual GO SS features is

better than that of GO frequency features, in contrary to the

results shown in Fig 3(a).

Comparing with State-of-the-Art Predictors
Table 1 and Table 2 compare the performance of the proposed

predictor against several state-of-the-art multi-label predictors on

the virus and plant dataset based on leave-one-out cross validation.

Note that we used the best performing hybridizing features with

the adaptive decision strategy. Specifically, for both the virus and

plant datasets, the best performance was achieved when Hybrid2

and the adaptive decision strategy with h~0:3 were used. h was

determined by cross-validation as stated previously. Unless stated

otherwise, we used Hybrid2 to represent HybridGO-Loc in

subsequent experiments. Our proposed predictor use the GO

frequency features and GO semantic similarity features, whereas

other predictors use only the GO frequency of occurrences as

features. From the classification perspective, Virus-mPLoc [35]

uses an ensemble OET-KNN (optimized evidence-theoretic K-

nearest neighbors) classifier; iLoc-Virus [37] uses a multi-label

KNN classifier; KNN-SVM [38] uses an ensemble of classifiers

combining KNN and SVM; mGOASVM [39] uses a multi-label

SVM classifier; and the proposed predictor use a multi-label SVM

classifier incorporated with the adaptive decision scheme.

As shown in Table 1, the proposed predictor perform

significantly better than the other predictors. The OAA and OLA

of the proposed predictor are more than 15% (absolute) higher

than that of iLoc-Virus and Virus-mPLoc. It also performs

significantly better than KNN-SVM in terms of OLA. When

comparing with mGOASVM, the proposed predictor performs

remarkably better in of all of the performance metrics, especially

for the OAA (0.937 vs 0.889). These results demonstrate that

hybridizing the GO frequency features and GO SS features can

significantly boost prediction performance, which also suggests

that these two kinds of information are proved to be complemen-

tary to each other in terms of predicting subcellular localization.

Similar conclusions can be drawn for the plant dataset from

Table 2 except that the OLA of the proposed predictor is slightly

worse than that of mGOASVM, and the Recall is equivalent to that

of mGOASVM. Nevertheless, the small losses do not outweigh the

impressive improvement in the other metrics, especially in the OAA

(0.936 vs 0.874).

Prediction of Novel Proteins
To further demonstrate the effectiveness of HybridGO-Loc, a

newer plant dataset constructed for mGOASVM [39] was used to

compare with state-of-the-art multi-label predictors using inde-

pendent tests. Specifically, this new plant dataset contains 175

plant proteins, of which 147 belong to one subcellular location, 27

belong to two locations, 1 belong to three locations and none to

four or more locations. These plant proteins were added to Swiss-

Prot between 08-Mar-2011 and 18-Apr-2012. Because the plant

dataset used for training the predictors was created on 29-Apr-

2008, there is an almost 3-year time gap between the training data

and test data in our experiments.

Table 3 compare the performance of HybridGO-Loc against

several state-of-the-art multi-label plant predictors on the new

plant dataset. All the predictors use the 978 proteins of the plant

dataset (See Fig. 2(b)) for training the classifier and make

independent test on the new 175 proteins. As can be seen,

HybridGO-Loc performs significantly better than all the other

predictors in terms of all of the performance metrics. Similar

conclusions can also be drawn from the performance in individual

subcellular locations.

Fig. 4 shows the distribution of the E-values of the test proteins,

which were obtained by using the training proteins as the

repository and the test proteins as the query proteins in the

BLAST search. If we use a common criteria that homologous

proteins should have E-value less than 10{4, then 74 out of 175

test proteins are homologs of the training proteins, which account

for 42% of the test set. Note that this homologous relationship does

not mean that using BLAST’s homology transfers can predict all of

the 74 test proteins correctly. In fact, BLAST’s homology transfers

(based on the CC field of the homologous proteins) can only

achieve a prediction accuracy of 26.9% (47/175). As the

Figure 3. Performance of the hybrid features and individual features on the (a) virus and (b) plant datasets. Freq: GO frequency
features; SS1, SS2 and SS3: GO semantic similarity features by using Lin’s measure [51], Jiang’s measure [74] and RS measure [52], respectively; Hybrid1,
Hybrid2 and Hybrid3: GO hybrid features by combining GO frequency features with GO semantic similarity features based on SS1, SS2 and SS3,
respectively.
doi:10.1371/journal.pone.0089545.g003
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prediction accuracy of HybridGO-Loc on this test set (see Table 3)

is significantly higher than this percentage, the extra information

available from the GOA database plays a very important role in

the prediction.

Discussion

Semantic Similarity Measures
In this paper, we have compared three of the most common

semantic similarity measures for subcellular localization, including

Table 1. Comparing the proposed predictor with state-of-the-art multi-label predictors based on leave-one-out cross validation
(LOOCV) using the virus dataset.

Label Subcellular Location LOOCV Locative Accuracy (LA)

Virus-mPLoc [35] KNN-SVM [38] iLoc-Virus [37] mGOASVM [39] HybridGO-Loc

1 Viral capsid 8/8 = 1.000 8/8 = 1.000 8/8 = 1.000 8/8 = 1.000 8/8 = 1.000

2 Host cell membrane 19/33 = 0.576 27/33 = 0.818 25/33 = 0.758 32/33 = 0.970 32/33 = 0.970

3 Host ER 13/20 = 0.650 15/20 = 0.750 15/20 = 0.750 17/20 = 0.850 18/20 = 0.900

4 Host cytoplasm 52/87 = 0.598 86/87 = 0.988 64/87 = 0.736 85/87 = 0.977 85/87 = 0.966

5 Host nucleus 51/84 = 0.607 54/84 = 0.651 70/84 = 0.833 82/84 = 0.976 82/84 = 0.988

6 Secreted 9/20 = 0.450 13/20 = 0.650 15/20 = 0.750 20/20 = 1.000 20/20 = 1.000

Overall Locative Accuracy (OLA) 152/252 = 0.603 203/252 = 0.807 197/252 = 0.782 244/252 = 0.968 245/252 = 0.972

Overall Actual Accuracy (OAA) – – 155/207 = 0.748 184/207 = 0.889 194/207 = 0.937

Accuracy – – – 0.935 0.961

Precision – – – 0.939 0.965

Recall – – – 0.973 0.976

F1 – – – 0.950 0.968

HL – – – 0.026 0.016

‘‘–’’ means the corresponding references do not provide the results on the respective metrics. Host ER: Host endoplasmic reticulum.
doi:10.1371/journal.pone.0089545.t001

Table 2. Comparing the proposed predictor with state-of-the-art multi-label predictors based on leave-one-out cross validation
(LOOCV) using the plant dataset.

Label Subcellular Location LOOCV Locative Accuracy (LA)

Plant-mPLoc [34] iLoc-Plant [36] mGOASVM [39] HybridGO-Loc

1 Cell membrane 24/56 = 0.429 39/56 = 0.696 53/56 = 0.946 51/56 = 0.911

2 Cell wall 8/32 = 0.250 19/32 = 0.594 27/32 = 0.844 28/32 = 0.875

3 Chloroplast 248/286 = 0.867 252/286 = 0.881 272/286 = 0.951 278/286 = 0.972

4 Cytoplasm 72/182 = 0.396 114/182 = 0.626 174/182 = 0.956 168/182 = 0.923

5 Endoplasmic reticulum 17/42 = 0.405 21/42 = 0.500 38/42 = 0.905 38/42 = 0.905

6 Extracellular 3/22 = 0.136 2/22 = 0.091 22/22 = 1.000 21/22 = 0.955

7 Golgi apparatus 6/21 = 0.286 16/21 = 0.762 19/21 = 0.905 19/21 = 0.905

8 Mitochondrion 114/150 = 0.760 112/150 = 0.747 150/150 = 1.000 149/150 = 0.993

9 Nucleus 136/152 = 0.895 140/152 = 0.921 151/152 = 0.993 150/152 = 0.987

10 Peroxisome 14/21 = 0.667 6/21 = 0.286 21/21 = 1.000 21/21 = 1.000

11 Plastid 4/39 = 0.103 7/39 = 0.179 39/39 = 1.000 38/39 = 0.974

12 Vacuole 26/52 = 0.500 28/52 = 0.538 49/52 = 0.942 48/52 = 0.923

Overall Locative Accuracy (OLA) 672/1055 = 0.637 756/1055 = 0.717 1015/1055 = 0.962 1009/1055 = 0.956

Overall Actual Accuracy (OAA) – 666/978 = 0.681 855/978 = 0.874 915/978 = 0.936

Accuracy – – 0.926 0.959

Precision – – 0.933 0.972

Recall – – 0.968 0.968

F1 – – 0.942 0.966

HL – – 0.013 0.007

‘‘–’’ means the corresponding references do not provide the results on the respective metrics.
doi:10.1371/journal.pone.0089545.t002
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Lin’s measure [51], Jiang’s measure [74], and relevance similarity

measure [52]. We excluded Resnik’s measure because it ignores

the distance between the terms and their common ancestors in the

GO hierarchy. In addition to these measures, many online tools

are also available for computing the semantic similarity at the GO-

term level and gene-product level [44,82–84]. However, these

measures are discrete measures whereas the measures that we used

are continuous. Research has shown that continuous measures are

better than discrete measures in many applications [48].

GO-Frequency Features versus SS Features
Note that we do not replace the GO frequency vectors. Instead,

we augment the GO frequency feature with a more sophisticated

feature, i.e. the GO SS vectors, which are to be combined with the

GO frequency vectors. A GO frequency vector is found by

counting the number of occurrences of every GO term in a set of

distinct GO terms obtained from the training dataset, whereas an

SS vector is constructed by computing the semantic similarity

between a test protein with each of the training proteins at the

gene-product level. That is, each element in an SS vector

represents the semantic similarity of two GO-term groups. This

can be easily seen from their definitions in Eq. 2 and Eq. 4–9,

respectively.

The GO frequency vectors and the GO SS vectors are different

in two fundamental ways.

N A). GO frequency vectors are more primitive in the sense that

their elements are based on individual GO terms without

considering the inter-term relationship, i.e., the elements in a

GO frequency vectors are independent of each other.

N B). GO SS vectors are more sophisticated in the following two

N B1) Inter-term relationship. SS vectors are based on inter-

term relationships. They are defined on a space in which

each basis corresponds to one training protein and the

coordinate along that basis is defined by the semantic

s i m i l a r i t y b e t w e e n a t e s t i n g p r o t e i n a n d t h e

corresponding training protein.

N B2) Inter-group relationship. The pairwise relationships

between a test protein and the training proteins are

hierarchically structured. This is because each basis of

the SS space depends on a group of GO terms of the

corresponding training protein, and the terms are

arranged in a hierarchical structure (parent- child

relationship). Because the GO terms in different groups

are not mutually exclusive, the bases in the SS space are

not independent of each other.

Bias Analysis
Except for the new plant dataset, we adopted LOOCV to

examine the performance of all predictors in this work, which is

considered to be the most rigorous and bias-free [80]. Neverthe-

less, determining the set of distinct GO terms W from a dataset is

by no means without bias, which may favor the LOOCV

performance. This is because the set of distinct GO terms W

derived from a given dataset may not be representative for other

datasets; in other words, the generalization capabilities of the

predictors may be weakened when new GO terms outside W are

found in the test proteins.

However, we have the following strategies to minimize the bias.

First, the two benchmark datasets used in this paper were

constructed based on the whole Swiss-Prot database (although in

different years), which, to some extent, incorporated all the

Table 3. Comparing HybridGO-Loc with state-of-the-art multi-label plant predictors based on independent tests using the new
plant dataset.

Label Subcellular Location Independent Test Locative Accuracy

Plant-mPLoc [34] iLoc-Plant [36] mGOASVM [39] HybridGO-Loc

1 Cell membrane 8/16 = 0.500 1/16 = 0.063 7/16 = 0.438 16/16 = 1.000

2 Cell wall 0/1 = 0 0/1 = 0 0/1 = 0% 1/1 = 1.000

3 Chloroplast 27/54 = 0.500 45/54 = 0.833 39/54 = 0.722 30/54 = 0.556

4 Cytoplasm 5/38 = 0.132 15/38 = 0.395 19/38 = 0.500 31/38 = 0.816

5 Endoplasmic reticulum 1/9 = 0.111 1/9 = 0.111 3/9 = 0.333 4/9 = 0.444

6 Extracellular 0/3 = 0 0/3 = 0 1/3 = 0.333 0/3 = 0

7 Golgi apparatus 3/7 = 0.429 1/7 = 0.143 3/7 = 0.429 7/7 = 1.000

8 Mitochondrion 6/16 = 0.375 3/16 = 0.188 11/16 = 0.688 16/16 = 1.000

9 Nucleus 31/46 = 0.674 43/46 = 0.935 33/46 = 0.717 44/46 = 0.957

10 Peroxisome 4/6 = 0.667 0/6 = 0 3/6 = 0.500 4/6 = 0.667

11 Plastid 0/1 = 0 0/1 = 0 0/1 = 0 0/1 = 0

12 Vacuole 2/7 = 0.286 4/7 = 0.571 4/7 = 0.571 7/7 = 1.000

Overall Locative Accuracy (OLA) 87/204 = 0.427 113/204 = 0.554 123/204 = 0.603 160/204 = 0.784

Overall Actual Accuracy (OAA) 60/175 = 0.343 91/175 = 0.520 97/175 = 0.554 127/175 = 0.726

Accuracy 0.417 0.574 0.594 0.784

Precision 0.444 0.626 0.630 0.826

Recall 0.474 0.577 0.609 0.798

F1 0.444 0.592 0.611 0.803

HL 0.116 0.076 0.075 0.037

doi:10.1371/journal.pone.0089545.t003
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GO terms corresponding to the whole Swiss-Prot database, which

enables W to be representative for all of the distinct GO terms.

Second, these two benchmark datasets were collected according to

strict criteria. Details of the procedures can be found in the

supplementary materials. and the sequence similarity of both

datasets was cut off at 25%, which enables us to use a small set of

representative proteins to represent all of the proteins of the

corresponding species (i.e., virus or plant) in the whole database. In

other words, W will vary from species to species, yet still be

statistically representative for all of the useful GO terms for the

corresponding species. Third, using W for statistical performance

evaluation is equivalent or at least approximate to using all of the

distinct GO terms in the GOA database. This is because other GO

terms that do not correspond to the training proteins will not

participate in training the linear SVMs, nor will they play essential

roles in contributing to the final predictions. In other words, the

generalization capabilities of HybridGO-Loc will not be weakened

even if some new GO terms are found in the test proteins. A

mathematical proof of this statement can be found in the

supplementary materials available in the HybridGO-Loc server.

One may argue that the performance bias might arise when the

whole W was used to construct the hybrid GO vectors for both

training and testing during cross validation. This is because, in

each fold of the LOOCV, the training proteins and the singled-out

test protein will use the same W to construct the GO vectors,

meaning that the SVM training algorithm can see some

information of the test protein indirectly through the GO vector

space defined by W. It is possible that for a particular fold of

LOOCV, the GO terms of a test protein do not exist in any of the

training proteins. However, we have mathematically proved that

this bias will not exist during LOOCV (see the accompanying

supplementary materials for the proof). Furthermore, the results of

the independent tests (See Table 3) for which no such bias occurs

also strongly suggest that HybridGO-Loc outperforms other

predictors by a large margin.

Conclusions

This paper proposes a new multi-label predictor by hybridizing

GO frequency features and semantic similarity features to predict

the subcellular locations of multi-label proteins. Three different

semantic similarity measures have been investigated to be

combined with GO frequency features to formulate GO hybrid

feature vectors. The feature vectors are subsequently recognized

by multi-label multi-class support vectors machine (SVM) classi-

fiers equipped with an adaptive decision strategy that can produce

multiple class labels for a query protein. Compared to existing

multi-label subcellular-localization predictors, our proposed pre-

dictor has the following advantages: (1) it formulates the feature

vectors by hybridizing GO frequency of occurrences and GO

semantic similarity features which contains richer information

than only GO term frequencies; (2) it adopts a new strategy to

incorporate richer and more useful homologous information from

more distant homologs rather than using the top homologs only;

(3) it adopts an adaptive decision strategy for multi-label SVM

classifiers so that it can effectively deal with datasets containing

both single-label and multi-label proteins. Experimental results

demonstrate the superiority of the proposed hybrid features over

each individual features. It was also found that the proposed

predictor performs remarkably better than existing state-of-the-art

predictors. For readers’ convenience, HybridGO-Loc is available

online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

Figure 4. Distribution of the closeness between the new testing proteins and the training proteins. The closeness is defined as the BLAST
E-values of the training proteins using the test proteins as the query proteins in the BLAST searches. Number of Proteins: The number of testing
proteins whose E-values fall into the interval specified under the bar. Small E-values suggest that the corresponding new proteins are close homologs
of the training proteins.
doi:10.1371/journal.pone.0089545.g004
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