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Abstract—In this paper, efficient LDPC block-code decoders/simulators which run on graphics processing units (GPUs) are proposed.
We also implement the decoder for the LDPC convolutional code (LDPCCC). The LDPCCC is derived from a pre-designed quasi-
cyclic LDPC block code with good error performance. Compared to the decoder based on the randomly constructed LDPCCC code,
the complexity of the proposed LDPCCC decoder is reduced due to the periodicity of the derived LDPCCC and the properties of the
quasi-cyclic structure. In our proposed decoder architecture, Γ (Γ is a multiple of a warp) codewords are decoded together and hence
the messages of Γ codewords are also processed together. Since all the Γ codewords share the same Tanner graph, messages of
the Γ distinct codewords corresponding to the same edge can be grouped into one package and stored linearly. By optimizing the
data structures of the messages used in the decoding process, both the read and write processes can be performed in a highly
parallel manner by the GPUs. In addition, a thread hierarchy minimizing the divergence of the threads is deployed, and it can maximize
the efficiency of the parallel execution. With the use of a large number of cores in the GPU to perform the simple computations
simultaneously, our GPU-based LDPC decoder can obtain hundreds of times speedup compared with a serial CPU-based simulator
and over 40 times speedup compared with an 8-thread CPU-based simulator.

Index Terms—LDPC, LDPC convolutional code, CUDA, graphics processing unit (GPU), OpenMP, parallel computing, LDPC decoder,
LDPCCC decoder

✦

1 INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes were in-
vented by Robert Gallager [1] but had been ignored

for years until Mackay rediscovered them [2]. They
have attracted much attention recently because they can
achieve excellent error correcting performance based on
the belief propagation (BP) decoding algorithm.

However, the BP decoding algorithm requires inten-
sive computations. For applications like optical commu-
nication [3], [4] which requires BERs down to 10−15,
using CPU-based programs to simulate the LDPC de-
coder is impractical. Fortunately, the decoding algorithm
possesses a high data-parallelism feature, i.e., the data
used in the decoding process are manipulated in a
very similar manner and can be processed separately
from one another. Thus, practical decoders with low-
latency and high-throughput can be implemented with
dedicated hardware such as field programmable gate
arrays (FPGAs) or application specific integrated circuits
(ASICs) [5], [6], [7], [8], [9], [10], [11], [12]. However,
high performance FPGAs and ASICs are very expen-
sive and are non-affordable by most researchers. Such
hardware solutions also cost a long time to develop.
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In addition, the hardware control and interconnection
frame are always associated with a specific LDPC code.
If one parameter of an LDPC code/decoder changes, the
corresponding hardware design has to be changed ac-
cordingly, rendering the hardware-based solutions non-
flexible and non-scalable.

Recently, graphics processing units (GPUs) used to
process graphics only have been applied to support
general purpose computations [13]. In fact, GPUs are
highly parallel structures with many processing units.
They support floating point arithmetics and can hence
conduct computations with the same precision as CPUs.
GPUs are particularly efficient in carrying out the same
operations to a large amount of (different) data. Com-
pared with modern CPUs, GPUs can also provide much
higher data-parallelism and bandwidth. Consequently,
GPUs can provide a cheap, flexible and efficient solution
of simulating an LDPC decoder. Potentially, the simula-
tion time can be reduced from months to weeks or days
when GPUs, instead of CPUs, are used. In addition, the
GPU programming codes can be re-used without much
modification should more advanced GPUs be produced
by manufacturers.

In [14], [15], a compressed parity-check matrix has
been proposed to store the indices of the passing mes-
sages in a cyclic or quasi-cyclic LDPC code. Further,
the matrix is stored in the constant cache memory on
the GPU for fast access. The messages are stored in a
compressed manner such that the global memory can
be accessed in a coalesced way frequently. However,
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the coalesced memory access occurs only during the
data-read process and is not always guaranteed due to
a lack of data alignment. In [13], [16], [17], the sum-
product LDPC decoder and the min-sum decoder have
been implemented with GPUs. Moreover, by combining
sixteen fixed-point 8-bit data to form one 128-bit data,
the LDPC decoder in [13] decodes sixteen codewords si-
multaneously and achieves a high throughput. Although
the method in [13] allows coalesced memory access in
either the read or write process, coalesced memory access
in both the read and write processes is yet to be achieved.

Furthermore, the LDPC convolutional codes (LDPC-
CCs), first proposed in [18], have been shown to achieve
a better error performance than the LDPC block code
counterpart of similar decoding complexity. There are
many features of LDPCCC that make it suitable for real
applications. First, the LDPCCC inherits the structure
of the convolutional code, which allows continuous en-
coding and decoding of variable-length codes. Thus the
transmission of codewords with varying code length
is possible. Second, the LDPCCC adopts a pipelined
decoding architecture — in the iterative decoding proce-
dure, each iteration is processed by a separate processor
and the procedure can be performed in parallel. So
a high-throughput decoder architecture is possible. In
[19], [20], the concepts and realization of highly paral-
lelized decoder architectures have been presented and
discussed. To the author’s best knowledge, there is not
any GPU-based implementation of the LDPCCC decoder
yet. The reason may lie in the complexity structure of the
LDPCCC compared to the LDPC block code, particularly
the random time-varying LDPCCC.

As will be discussed in this paper, an LDPCCC derived
from a well designed QC-LDPC code possesses not
only the good BER performance, but also the regular
structure that results in many advantages in practical
implementations. Due to the structure inherited from
the QC-LDPC code, the LDPCCC decoder enables an
efficient and compact memory storage of the messages
with a simple address controller.

In this paper, we develop flexible and highly parallel
GPU-based decoders for the LDPC codes. We improve
the efficiency by making (i) the threads of a warp follow
the same execution path (except when deciding whether
a bit is a “0” or a “1”) and (ii) the memory accessed by a
warp be of a certain size and be aligned. The results
show that the decoders based on the GPUs achieve
remarkable speed-up improvement — more than 100
times faster than the serial CPU-based decoder.

We also develop a GPU-based decoder for the LDPC
convolutional codes. We propose a decoder architecture
for LDPCCC derived from QC-LDPC block-code. By
taking advantage of the homogeneous operations of the
pipeline processors, we compress the index information
of different processors into one lookup table. Combined
with an efficient thread layout, the decoder is opti-
mized in terms of thread execution and memory access.
Simulation results show that compared with the serial

CPU-based decoder, the GPU-based one can achieve as
many as 200 times speed-up. The GPU-based decoder,
moreover, outperforms a quad-core CPU-based decoder
by almost 40 times in terms of simulation time.

2 REVIEW OF LDPC CODES AND LDPC
CONVOLUTIONAL CODES

2.1 Structure of LDPC Codes and QC-LDPC Codes

A binary (N,K) LDPC code is a linear block code
specified by a sparse M × N parity-check matrix H,
where M = N − K . The code rate of such an LDPC
code is R ≥ K/N = 1−M/N . The equality holds when
H is full rank.

The H matrix contains mostly 0′s and relatively a
small number of 1′s. Such a sparsity structure is the
key characteristic that guarantees good performance of
LDPC codes. A regular LDPC code is a linear block code
with H containing a constant number wc of 1’s in each
column and a constant number wr of 1’s in each row.
Moreover, wr and wc satisfy the equation wr = wc ×

N
M

.
Otherwise the code is defined as an irregular LDPC code.

A bipartite graph called Tanner graph [21] can be used
to represent the codes and to visualize the message-
passing algorithm. In the Appendix, Figure ?? is the
underlying Tanner graph of the H in (??). The N upper
nodes are called the message nodes or the variable nodes
and the M nodes in the lower part of Fig. ?? are called
the check nodes. An edge in the Tanner graph represents
the adjacency of the variable node i and the check node
j. It corresponds to a nonzero (i, j)-th entry in the H

matrix.
QC-LDPC codes form a subclass of LDPC codes with

the parity-check matrix consisting of circulant permu-
tation matrices [22], [23]. The parity-check matrix of a
regular (J, L) QC-LDPC code is represented by

H =











Pa1,1 Pa1,2 · · · Pa1,L

Pa2,1 Pa2,2 · · · Pa2,L

... · · · · · ·
...

PaJ,1 PaJ,2 · · · PaJ,L











, (1)

where J denotes the number of block rows, L is the
number of block columns, P is the identity matrix of
size p × p, and Paj,l (1 ≤ j ≤ J ; 1 ≤ l ≤ L) is a
circulant matrix formed by shifting the columns of P

cyclically to the right aj,l times with aj,l’s being non-
negative integers less than p. The code rate R of H is
lower bounded by R ≥ 1−J/L. If one or more of the sub-
matrix(matrices) is/are substituted by the zero matrix
rendering non-uniform distributions of the check-node
degrees or variable-node degrees, the QC-LDPC code
becomes an irregular code.

2.2 Belief Propagation Decoding Algorithm for
LPDC Codes

LDPC codes are most commonly decoded using the
belief propagation (BP) algorithm [24], [25]. Referring to
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the Tanner graph shown in Fig. ??, the variable nodes
and the check nodes exchange soft messages iteratively
based on the connections and according to a two-phase
schedule.

Given a binary (N, K) LDPC code with a parity-check
matrix H, we define C as the set of binary codewords
c that satisfy the equation cHT = 0. At the transmitter
side, a binary codeword c = (c0, c1, . . . , cN−1) is mapped
into the sequence x = (x0, x1, . . . , xN−1) according to
xn = 1 − 2cn. We assume that x is then transmitted
over an additive white Gaussian noise (AWGN) channel
and the received signal vector is then given by y =
(y0, y1, . . . , yN−1) = x + g, where g = (g0, g1, . . . , gN−1)
consists of independent Gaussian random variables with
zero mean and variance σ2 = N0/2.

Let µn be the initial log-likelihood ratio (LLR) that the
variable node n is a “0” to that it is a “1”, i.e.,

µn = ln

(

Pr(cn = 0|yn)

Pr(cn = 1|yn)

)

. (2)

Initially, µn is calculated by µn = (4/N0) · yn = 2yn

σ2 [26].
Define N (m) as the set of variable nodes that participate
in check node m and M(n) as the set of check nodes

connected to variable node n. At iteration l, let β
(l)
mn be

the LLR messages passed from variable node n to check

node m; α
(l)
mn be the LLR messages passed from check

node m to variable node n; and β
(l)
n be the a posteriori

LLR of variable node n. Then the standard BP algorithm
can be described in Algorithm ?? in the Appendix [2],
[27].

Note that the decoding algorithm consists of 4 main
procedures: initialization, horizontal step, vertical step
and making hard decisions. For each of these procedures,
multiple threads can be used in executing the computa-
tions in parallel and all the threads will follow the same
instructions with no divergence occurring, except when
making hard decisions.

2.3 Structure of LDPC Convolutional Codes

A (time-varying) semi-infinite LDPC convolutional code
can be represented by its parity check matrix in (3).
where ms is referred to as the syndrome former memory
of the parity-check matrix. Besides, the sub-matrices
Hi(t), i = 0, 1, ...,ms, are binary (c−b)×c matrices given
by

Hi(t) =















h
(1,1)
i (t) · · · h

(1,c)
i (t)

...
. . .

...
...

. . .
...

h
(c−b,1)
i (t) · · · h

(c−b,c)
i (t)















.

If Hi(t) are full rank for all time instant t, the matrix H

in (3) defines a rate R = b/c convolutional code ignoring
the irregularity at the beginning.

Definition 1. A LDPC convolutional code is called a regular
(ms, J,K)-LDPC convolutional code if the parity-check ma-
trix H[0,∞] has exactly K ones in each row and J ones in

each column starting from the (ms · (c− b) + 1)-th row and
(ms · c+ 1)-th column.

Definition 2. An (ms, J,K)-LDPC convolutional code is
periodic with period T if Hi(t), i ∈ Z

+ is periodic, i.e.,
Hi(t) = Hi(t+ T ), ∀i, t.

A code sequence v[0,∞] = [v0,v1, ...,v∞] is “valid” if
it satisfies the equation

v[0,∞]H
T
[0,∞] = 000 (3)

where vi = (v
(1)
i , v

(2)
i , ..., v

(c)
i ) and HT

[0,∞] is the
syndrome-former (transposed parity-check) matrix of
H[0,∞].

2.4 Deriving LDPC Convolutional codes from QC-
LDPC block codes

There are several methods to construct LDPC convolu-
tional codes from LDPC block codes. One method is to
derive time-varying LDPCCC by unwrapping randomly
constructed LDPC block codes [18] and another is by
unwrapping the QC-LDPC codes [28], [29]. We consider
a construction method by unwrapping a class of QC-
LDPC block code. Details of the method are shown in
the Appendix.

Example 1. Consider a QC-LDPC code with 4 block rows and
24 block columns, i.e., J = 4 and L = 24. It is first divided
into 4 × 4 equally sized sub-blocks1, i.e., Λ = 4. Then the
parity-check matrix of LDPCCC is derived. The construction
process is shown in Fig. 1.

2.5 Decoding Algorithm for LDPCCC

In H[0,∞], two different variable nodes connected to the
same check node cannot be distant from each other more
than ms time units. This allows a decoding window
that operates on a fixed number of nodes at one time.
Since any two variable nodes that are at least ms + 1
units apart can be decoded independently, parallel im-
plementation is feasible. The LDPCCC can therefore be
decoded with pipelined BP decoding algorithm [18].
Specifically, for a maximum iteration number of I , I
independent processors will be employed working on
different variable nodes corresponding to different time.
In each processor, the variable nodes and the check
nodes exchange soft messages iteratively based on the
connections and according to a two-phase schedule.

Fig. 2 shows a decoder on the Tanner graph. It is based
on the LDPCCC structure shown in Example 1. The code
has a rate of R = 5/6 and a syndrome former memory of
ms = 3. We refer the c incoming variable nodes (bits) as
a frame. Note that every c bits form a frame and every
ms +1 frames are involved in the same constraints. The
I processors can operate concurrently. At every iteration,
every processor first updates the (c − b) neighboring

1. Here we use sub-block to denote the (pJ/Λ)× (pL/Λ) matrix as
to distinguish it with the sub-matrix within it, i.e., the p× p matrix.
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H[0,∞] =































H0(0)
H1(1) H0(1)

...
...

. . .

Hms
(ms) Hms−1(ms) · · · H0(ms)

Hms
(ms + 1) Hms−1(ms + 1) · · · H0(ms + 1)

. . .
. . .

Hms
(t) Hms−1(t) · · · H0(t)

. . .
. . .

. . .































, (3)

Fig. 1: Illustration of constructing a LPDCCC from a QC-LDPC block code.

Fig. 2: Continuous decoding of LDPC convolutional code with I processors. Each circle denotes a group of c variable
nodes and each square denotes a group of (c− b) check nodes. Each edge represents the connection between the c
variable node and the (c− b) check nodes.

check nodes of the c variable nodes that just come into
this processor. Then every processor will update the c
variables which are leaving this processor.

The computations of the check-node updating and
variable-node updating are based on the standard
BP algorithm Suppose v[0,∞] = [v0,v1, . . . ,v∞], where

vt = (v
(1)
t , v

(2)
t , . . . , v

(c)
t ) is the tth transmitted code-

word. Then the codeword v[0,∞] is mapped into the
sequence x[0,∞] = [x0,x1, . . . ,x∞] according to xt =

(x
(1)
t , x

(2)
t , . . . , x

(c)
t ) and x

(j)
t = 1 − 2v

(j)
t (j = 1, 2, . . . , c).

Assuming an AWGN channel, the received signal
y[0,∞] = [y0,y1, . . . ,y∞] is further given by yt =

(y
(1)
t , y

(2)
t , . . . , y

(c)
t ) where y

(j)
t = x

(j)
t + g

(j)
t and g

(j)
t is

an AWGN with zero mean and variance σ2 = N0/2.

Using the same notation as in Sect. 2.2, the pipelined
BP decoding algorithm applying to LDPCCC is illus-
trated in Algorithm ?? in the Appendix. Same as the
LDPC decoding algorithm, the LDPCCC decoding al-
gorithm consists of 4 main procedures: initialization,
horizontal step, vertical step and making hard decisions.
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Moreover, for each of these procedures, multiple threads
can be used in executing the computations in parallel
and all the threads will follow the same instructions
with no divergence occurring, except when making hard
decisions.

3 IMPLEMENTATION OF DECODERS FOR
LDPC CODES AND LDPCCCS

3.1 GPU-based LDPC Decoder

(Please refer to the Appendix for a brief description of
graphics processing unit and CUDA programming.) We
implement our decoders using the standard BP decoding
algorithm. According to the CUDA programming model,
the granularity of a thread execution and a coalesced
memory access is a warp. Full efficiency is realized
when all threads in a warp take the same execution
path and the coalesced memory access requirement is
satisfied. Thus, we propose to decode Γ codewords
simultaneously, where Γ is an integer multiple of a
warp (i.e., multiple of 32). For each decoding cycle, Γ
codewords will be input, decoded, and ouput together
and in parallel.

Recall that an LDPC code can be represented by
its parity-check matrix or a Tanner graph. A non-zero
element in the parity-check matrix corresponds to an
edge in the Tanner graph.

In the LDPC decoder, messages are bound to the edges
in the Tanner graph (or the 1’s in the parity-check matrix
H). So we store the messages according to the positions
of 1’s. Besides, the channel messages corresponding to
the variable nodes are required. To reuse the notation, we
denote the data structure storing the messages between
the variable nodes and the check nodes as H while the
the data structure storing the channel messages as V.
The difficulty of the CUDA memory arrangement lies
on the fact that for practical LDPC codes with good
performance, the positions of the 1’s are scattered in the
parity-check matrix.

First, in the BP decoding procedure, although there
are two kinds of messages, namely, the variable-to-check
messages and the check-to-variable messages, at every
step of the iteration, only one kind of message is needed
to be stored, i.e., after the check-node updating step,
only the check-to-variable messages α’s are stored in the
H and after the variable-node updating step, only the
variable-to-check messages β’s are stored in the H. Sec-
ond, in our new decoder architecture, Γ (Γ is a multiple
of a warp) codewords are decoded together and hence
the messages of Γ codewords are also processed together.
We number the distinct codewords as 0, 1, ...,Γ− 1 and
we use the same notations for the messages as before,
i.e., βmn(γ) is the message from variable node n to check
node m corresponding to the γ-th codeword and αmn(γ)
is the message from check node m to variable node
n corresponding to the γ-th codeword. Since all the Γ
codewords messages share the same Tanner graph, mes-
sages of the Γ distinct codewords corresponding to the

same edge can be grouped into one package and stored
linearly. Let pmn denote the package corresponding to
the edge connecting variable node n and check node m.
Then in package pmn, βmn(0), βmn(1), ..., βmn(Γ − 1) or
αmn(0), αmn(1), ..., αmn(Γ − 1) are stored contiguously.
This is shown in Figure ?? in the Appendix. Different
packages pmn’s are aligned linearly according to their
corresponding positions in the parity-check matrix —
row-by-row, and left to right for each row. That implies
the messages associated to one check node are stored
contiguously.

Remark. To be consistent with the use of memory locations in
computer programming, all the indices of the data structures
in this paper starts from 0.

The advantage of this arrangement is obvious. Since
Γ is a multiple of 32, the memory segment for every
package is naturally aligned when the data type belongs
to one of the required data types (i.e., with word size
of 1-, 2-, 4-, or 8-byte). In addition, the structure of the
parity-check matrix H is shared by the Γ codewords.
As these Γ data elements are processed together, they
can be accessed by Γ contiguous threads and hence the
global memory is always accessed in a coalesced way. We
also ensure that the threads within a warp always follow
the same execution path with no divergence occurring
(except when making hard decisions on the received
bits). Then both the memory access and the thread
execution are optimal and efficient.

We also need to store the details of the parity-check
matrix. Two lookup tables denoted by LUTc and LUTv

will be kept. LUTc is used in the check-node updating
process and LUTv is used in the variable-node updating
process. The two tables store the indices of the data
accessed in the two updating processes and both are
two-dimensional. The first dimension is to distinguish
different check nodes, i.e., LUTc[m] is associated with
the m-th check node or the m-th row. Each LUTc[m]
records the indices of the messages related to the m-th
check node. The two lookup tables are shared by all Γ
codewords. An example is illustrated in the Appendix.
The LUTc and LUTv lookup tables are stored in the
constant or texture memory in the CUDA device so as
to be cached to reduce the access time.

A separate thread is assigned to process each check
node or each variable node in the updating kernel.
Hence, Γ threads can be assigned to process the data
of Γ codewords simultaneously. So, a two dimensional
thread hierarchy is launched. The first dimension is for
identifying the different codewords while the second
dimension is for processing different check nodes or
variable nodes. The thread layout is illustrated in Fig. 3.
For each thread block, we allocate Γ threads in the threa-
dIdx.x dimension2, and BLy threads in the threadIdx.y
dimension. Each thread-block contains BLy ×Γ threads,
which should be within the thread-block size limit (1024

2. In CUDA, threads are linear in the threadIdx.x dimension.
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Fig. 3: Two dimensional thread layout of the check-
node/variable-node updating kernel.

for the current device). The total number of thread-
blocks is determined by the number of check nodes M
or the number of variable nodes N . We denote BLy in
the check-node updating kernel as BLy,cnu and the one
in the variable-node updating kernel as BLy,vnu. Then
the numbers of thread blocks are given by ⌈M/BLy,cnu⌉
and ⌈N/BLy,vnu⌉, respectively. In Fig. 3, the threads
marked by the vertical rectangular are processing the
same codeword. (See the Appendix on the selection of
the size of the thread-block.)

3.2 GPU-based LDPCCC Decoder

The decoding algorithm and the pipelined LDPCCC
decoder architecture have been introduced in Section 2.5.
The LDPCCCs studied in our work are derived from QC-
LDPC codes as described in Section 2.4. So our LDPCCC
decoder is confined to the LDPCCCs with the parity-
check matrix H[0,∞] of this kind of structure.

3.2.1 Data Structure

The LDPC convolutional codes are decoded continu-
ously. We will thus refer to an LDPCC code sequence
v[0,∞] = [v0,v1, . . . ,v∞] as a code stream and vi, i =
0, 1, . . . ,∞ as a code frame or variable frame. A code stream
is constrained with the parity-check matrix H[0,∞] by

v[0,∞]H
T
[0,∞] = 000.

The parity-check matrix of the LDPCCC is shown in
Figure 4. It is seen that the check nodes are grouped into
layers. Each variable-node frame is connected to ms + 1
(4 here) check layers in the parity-check matrix. Let c

Fig. 4: The periodic structure of the parity-check matrix
of the LDPCCCs.

denote the size of vi, i = 0, 1, ...,∞ and c− b denote the
size of each check layer. Thus the code rate is b/c.

We will use the same notations as in Section 2.4. The
LDPCCC is derived from a (J, L) QC-LDPC base code
HQC which has J ×L sub-matrices and the size of each
sub-matrix is p × p. HQC is first divided into Λ × Λ
sub-blocks3 (Λ = 4 in Figure 4) and each sub-block
contains several sub-matrices. We have c = L/Λ× p and
c− b = J/Λ× p. Referring to Section 2.4, we denote the
unwrapped parity-check matrix of the QC-LDPC code
as

Hbase =

[

HL
QC

HU
QC

]

.

The H[0,∞] of the derived LDPCCC is a repetition of
Hbase. Denoting the number of edges in Hbase by E, we
have E = J × L× p.

In designing the LDPCCC decoder, the first thing to
consider is the amount of memory required to store
the messages. Like the LDPC decoder, we store the
messages according to the edges in the parity-check
matrix. Let I denote the number of iterations in the
LDPCCC decoding. Then I processors are required in
the pipelined decoder. Although the parity-check matrix
of the LDPCCC is semi-infinite, the decoder only needs
to allocate memory for I processors. Hence the total size
of the memory required for storing the messages passing
between the variable nodes and check nodes is I × E
units. And the total size of the memory required for
storing these channel messages is I × c.

Next, we will describe the hierarchical data structure
for the LDPCCC decoder memory space. To reuse the
notation, we use H to denote the memory space for the

3. Note that a “sub-block” is different from a “sub-matrix”.
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messages on the edges and V to denote the memory
space for the channel messages. The H is a multi-
dimensional array with two hierarchies. First, we divide
the entire memory space into I groups corresponding
to the I processors and we use the first hierarchy of
H as the data structure for each group. That is H[i],
i = 0, 1, ..., I − 1 denote the data structure for the I
processors, respectively. Second, recall that the parity-
check matrix in Figure 4 is derived from Hbase which is
divided into 16 non-zero sub-blocks and each sub-block
has a size of (pJ/Λ)×(pL/Λ). Thus in each group, H[i] is
also divided into 16 sub-blocks, denoted by the second
hierarchy of H, namely, H[i][j], where j = 0, 1, ..., 15. Ev-
ery H[i][j] stores the messages associated with one sub-
block. On the other hand, the memory for the channel
messages is simpler: V[i], i = 0, 1, ..., I ·(ms+1)−1 will be
allocated. Finally, to optimize the thread execution and
memory access, Γ LDPC convolutional code streams are
decoded simultaneously, where Γ is a multiple of a warp.
Thus every Γ data are combined into one package and
take up one memory unit.

An LDPCCC decoder uses the BP algorithm to update
the check nodes and variable nodes. The BP decoding
procedures are based on the parity-check matrix H[0,∞].
With the data structure to store the messages, the de-
coder also needs the structure information of H[0,∞]

for understanding the connections between the check
nodes and the variable nodes. This information can be
used to calculate the index of the data being accessed
during the updating. Due to the periodic property of the
constructed LDPCCC, the structure of Hbase is shared by
all the processors. We label the 16 sub-blocks in Hbase

with the numbers 0, 1, . . . , 15.

In addition, in the decoder, the I check-node layers or
I variable-node frames being updated simultaneously in
the I processors are separated by an interval of ms + 1.
Since H[0,∞] also has a period of T = ms+1, at any time
slot, the I processors require the same structure informa-
tion in updating the check nodes or the variable nodes,
as seen in Figure 4. The lookup tables used in check-
node updating and variable-node updating are denoted
as LUTc and LUTv, respectively. The two lookup tables
will then store the labels of the sub-blocks in Hbase that
are involved in the updating process. Besides, another
lookup table LUTsub will be used to store the “shift
numbers4” of the sub-matrices in each sub-block.

Example 2. The LUTc and LUTv for the LDPCCC in
Figure 4 are

LUTc =









1 2 3 0
6 7 4 5
11 8 9 10
12 13 14 15









(4)

4. For a QC-LDPC base matrix, the information is the “shift number”
of each p×p sub-matrix (−1 represents the all-zero matrix, 0 represents
the identity matrix, l represents cyclically right-shifting the identity
matrix l times).

(a) Updating at time slot 1. (b) Updating at time slot 4.

Fig. 5: Illustration of the procedures of a LPDCCC de-
coder. The horizontal line denotes the updating of the
row. The vertical line denotes the updating of a column.

and

LUTv =









0 4 8 12
5 9 13 1
10 14 2 6
15 3 7 11









. (5)

3.2.2 Decoding Procedures

Based on the discussion in Section 2.5, the detailed
decoding procedures are shown in the Appendix.

3.2.3 Parallel Thread Hierarchy

As described in Sect. 3.2.1, the memory associated with
each entry in the H matrix is a message package con-
taining Γ messages from Γ code streams. So there is
a straightforward mapping between the thread hierar-
chy and the data structure. In the check-node-updating
kernel (or variable-updating-kernel), a two dimensional
thread hierarchy of size I · (c − b) × Γ (or I · c × Γ) is
launched, where (c − b) (or c) is mapped to the total
number of check nodes (or variable nodes) being up-
dated in I processors. The size of one of the dimensions
(i.e., Γ) is mapped to the number of code streams. Like
in LDPC decoder, Γ will be configured as the threadIdx.x
dimension and (c − b) (or c) will be the threadIdx.y
dimension in the CUDA thread hierarchy. The Γ threads
in the threadIdx.x dimension is contiguous and will access
the Γ data in each message package for coalesced access.

3.3 CPU-based LDPC and LDPCCC Decoders

We implement both the serial CPU-based LDPC decoder
and LDPCCC decoder using the C language. As CPUs
with multiple cores are very common nowadays, we
further implement a multi-thread CPU-based LDPCCC
decoder using OpenMP. OpenMP [30] is a portable, scal-
able programming interface for shared-memory parallel
computers. It can be used to explicitly direct multi-
threaded, shared memory parallelism. A straightforward
application of the OpenMP is to parallize the intensive
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CPU GPU

Platform Intel Xeon Nvidia GTX460

Number of
cores

4 7 × 48 = 336

Clock rate 2.26 GHz 0.81 GHz

Memory 8 GB DDR3 RAM 768 MB global
memory and 48 KB

shared memory

Maximum
number of

threads

8 —

Maximum
thread-block

size

— 1024 threads

Programming
language

C/OpenMP CUDA C

TABLE 1: Simulation environments.

Code J × L p c× (c− b) Number of
Edges

A 4× 24 422 2532 × 422 40512

B 4× 24 632 3792 × 632 60672

C 4× 24 768 4608 × 768 73728

D 4× 24 1024 6144 × 1024 98304

TABLE 2: Parity-check matrices of the QC-LDPC codes
used in the LDPC decoder. They are also used to derive
the LDPCCCs A’ to D’.

loop-based code with the #pragma omp parallel for direc-
tive. Then the executing threads will be automatically
allocated to different cores on a multi-core CPU.

The horizontal step and the vertical step in Algo-
rithm ?? involve intensive computing. On a single-core
CPU, the updating of the different nodes are processed
with a serial for loop. Since the updating of different
nodes can be performed independent of one another,
it is ideal to parallelize the for loop with the #pragma
omp parallel for directive in the OpenMP execution on a
multicore CPU. Hence, in our implementation, we issue
multiple threads to both the updating of the check nodes
(??) and the updating of the variable nodes (??) in the
multi-thread CPU-based LDPCCC decoder.

4 RESULTS AND DISCUSSION

4.1 The Experimental Environment

The CPU being used is an Intel Xeon containing 4 cores.
Moreover, it can handle up to 8 threads at a time.
The serial CPU-based decoders are developed using C
and the multi-threaded CPU-based LDPCCC decoder is
developed using OpenMP. Note that for the serial CPU-
based decoders, only one of the 4 cores in the CPU will
be utilized. The GPU used in this paper is a GTX460
containing 336 cores and the GPU-based decoders are

Code CGPU TGPU

(s)
tGPU

(ms)
CCPU TCPU

(s)
tCPU

(ms)
Speedup
( tCPU

tGPU
)

A 2832 6 2.12 4058 1270 313 148

B 12768 37 2.9 11664 5350 458 158

C 21664 74 3.4 20046 10950 546 161

D 82624 371 4.5 70843 51580 728 162

TABLE 3: Decoding time for the GPU-based LDPC de-
coder and the serial CPU-based decoder at Eb/N0=3.2
dB. 30 iterations are used. C represents the total number
of decoded codewords; T denotes the total simulation
time and t is the average simulation time per codeword.

developed using CUDA C. Furthermore, in our simula-
tions, 32 codewords are decoded simultaneously in the
GPU decoders, i.e., Γ = 32. Details of the CPU and GPU
used in our simulations are presented in Table 1.

Table 2 shows the characteristics of the QC-LDPC
codes under test. For Code A to code D, J = 4 and
L = 24 thus giving the same code rate of (24 − 4)/24 =
5/6. These codes are further used to derived regular
LDPCCCs. In order to avoid confusion, we denote the
derived LDPCCCs as Code A’ to Code D’. It can be
readily shown that the (3, 4, 24)-LDPCCCs A’ to D’ have
the same code rate of 5/6.

Remark. Note that although QC-LDPC codes are adopted in
the simulation, the new GPU-based LDPC decoder is able to
decode other LDPC codes like randomly-constructed regular
or irregular codes.

4.2 The Decoding Time Comparison

In order to optimize the speed and to minimize the
data transfer between the CPU (host) and the GPU
(device), we generate and process the data, including the
codeword and the AWGN noise, directly on the GPU.
After hard decisions have been made on the received
bits, the number of error bits are counted at the GPU
using a “reduce program”. Subsequently, the number is
transferred to the CPU. Since the data transfer occurs
only at the end of the iterative decoding process, the
transfer time (overhead) is very small (less than 2%)
compared with time spent in the whole decoding pro-
cess.

In the following, we fix the number of decod-
ing iterations and the simulation terminates after 100
block/frame errors are received. By recording the total
number of blocks/frames decoded and the total time
taken5, we can compute the average time taken to de-
code one block/frame.

5. In the case of the GPU-based decoders, the total time taken
includes the GPU computation time, the time spent in transferring data
between the CPU and GPU, etc. However, as explained above, the GPU
computation time dominates the total time while the overhead is very
small.
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Code
Number of threads used

1 2 4 6 8

A’ 39 20 11 10 9

C’ 73 38 21 19 17

TABLE 4: Average LDPCCC decoding time (ms) per
code frame for the quad-core CPU-based decoder when
different numbers of threads are used.

4.2.1 LDPC decoders

The GPU-based decoder and the serial CPU-based de-
coder are tested with 30 iterations at a Eb/N0 of 3.2 dB.
Table 3 shows the number of transmitted codewords and
the simulation times for different codes.

We consider the average time for decoding one code-
word for the serial CPU-based decoder, i.e., tCPU. We
observe that tCPU increases from Code A to Code D
due to an increasing number of edges in the codeword.
Further, we consider the average time for decoding one
codeword for the GPU-based decoder, i.e., tGPU. Similar
to the serial CPU-based decoder, tGPU increases from
Code A to Code D.

Finally, we compare the simulation times of the serial
CPU-based decoder and the GPU-based decoders by
taking the ratio tCPU/tGPU. The results in Table 3 indicate
that the GPU-based decoder accomplishes speedup im-
provements from 148 times to 162 times compared with
the serial CPU-based decoder.

4.2.2 LDPCCC decoders

We decode the LDPC convolutional codes A’ to D’ at a
Eb/N0 of 3.1 dB with I = 20. First, we show the average
decoding times for Code A’ and Code C’ when different
numbers of threads are used in the CPU-based decoders.
The results are shown in Table 4. The serial CPU-based
decoder corresponds to the case with a single thread.
We observe that the decoding time is approximately
inversely proportional to the number of threads used
— up to 4 threads. However, the time does not improve
much when the number of threads increases to 6 or 8.
The reason is as follows. The CPU being used has 4
cores, which can execute up to 4 tasks in fully parallel.
Hence, compared with using a single thread, there is an
almost 4 times improvement when 4 threads are used. As
the number of threads increases beyond 4, however, the
tasks of the threads will be scheduled. But a maximum
of 4 threads can be executed on the 4 processors at the
same time. Consequently, further time improvement is
small when more than 4 threads are used.

Next, we compare the decoding times of the LDPCCC
decoders when GPU-based and CPU-based decoders are
used to decode Code A’ to Code D’. For the CPU-based
decoders, we consider the cases where a single thread
and 8 threads are used, respectively. Table 5 shows the
results. As explained above, limited by the number of
cores (4 only) in the CPU, the CPU-based decoder can

only improve the speed by about 4 times even when
the number of threads increases from 1 to 8. We also
observe that compared with the serial CPU-based de-
coder, the GPU-based LDPCCC decoder can achieve 170
to 200 times speedup improvement. Compared with the
8-thread CPU-based decoder, the GPU-based LDPCCC
decoder can also accomplish 39 to 46 times speedup
improvement.

5 CONCLUSION

In this paper, efficient decoders for LDPC codes and
LDPC convolutional codes based on the GPU parallel
architecture are implemented. By using efficient data
structure and thread layout, the thread divergence is
minimized and the memory can be accessed in a coa-
lesced way. All decoders are flexible and scalable. First,
they can decode different codes by changing the param-
eters. Hence, the programs need very little modification.
Second, they should be to run on the latest or even future
generations of GPUs which possess more hardware re-
sources. For example, if there are more cores/memory in
the GPU, we can readily decode more codes, say Γ = 64
codes as compared with Γ = 32 codes used in this paper,
at the same time. These are actually advantages of GPU
parallel architecture compared to other parallel solutions
including FPGA or VLSI. We will report our results in
the future when we have the opportunity to run our
proposed mechanism in other GPU families.

Compared with the traditional serial CPU-based de-
coders, results show that the proposed GPU-based de-
coders can achieve 100× to 200× speedup. The actual
time depends on the particular codes being simulated.
When compared with the 8-thread CPU-based decoder,
the GPU-based decoder can also accomplish 39 to 46
times speedup improvement. Thus the simulation time
can be reduced from months to weeks or days when
a GPU-based decoder is used. In summary, our results
show that the proposed GPU-based LDPC/LDPCCC
decoder has obvious advantages in the decoding time
compared with CPU-based decoders.
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