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In this paper, we study the controllability of networks with different numbers of communities

and various strengths of community structure. By means of simulations, we show that the

degree descending pinning scheme performs best among several considered pinning schemes

under a small number of pinned nodes, while the degree ascending pinning scheme is becoming

more powerful by increasing the number of pinned nodes. It is found that increasing the number

of communities or reducing the strength of community structure is beneficial for the

enhancement of the controllability. Moreover, it is revealed that the pinning scheme with evenly

distributed pinned nodes among communities outperforms other kinds of considered pinning

schemes. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816009]

Synchronization of large ensembles of interacting units is

a typical phenomenon in many biological and social net-

works. Meanwhile, the problem of synchronization is

generally considered as a paradigmatic example of phase

transitions that may occur when a large number of dy-

namical systems are coupled. Therefore, it is important

to understand the related regulatory mechanisms in

physics and applied science. The study of pinning control

on networks will help to interpret the nature of the

underlying mechanisms and give an insight into network

dynamics. In this paper, we focus on an analysis of how

to control networks with community structure efficiently.

Considering random, degree descending and degree

ascending pinning schemes, a comparison study of con-

trollability is reported. Effects of the numbers of com-

munities, strength of community structure, type of

pinning schemes, and distributions of pinned nodes on

controllability will be investigated thoroughly.

I. INTRODUCTION

Synchronization phenomena are widely existing in bio-

logical and social networks.1–3 In physiology, the heart cells

beat synchronously and the beating rhythm is generated by

pacemaker cells situated at the sinoatrial node.4 In social net-

works, key individuals termed as opinion leaders often drive

the opinion dynamics.5 It is therefore of great importance to

understand the fundamental nature of regulatory mecha-

nisms. Pinning control is an effective method to provide an

insight into the regulation of networks of coupled dynamical

systems. By inputting control signals to only a portion of the

network nodes, the states of several specific complex net-

works can be controlled to a desired state.

In recent years, controllability of networks of coupled

oscillators has been extensively studied.6–10 Through a mas-

ter stability function (MSF) approach, pinning controllability

was defined and quantified to evaluate the controllability of

complex networks.7 The effects of network’s structural prop-

erties on controllability were studied and it was found that

high heterogeneity in degree distribution reduces controll-

ability.8 In Ref. 9, it was revealed that minimizing the distan-

ces between the driver nodes and other uncontrolled nodes

can lead to a better control performance. From the viewpoint

of control theory, several analytical tools were developed

and applied to identify an optimum set of driver nodes. It

was also unveiled that dense and homogeneous networks can

be controlled only using a few driver nodes.10 Further studies

on pinning control of networks have been reported in Refs.

11–18.

Community structure in networks is of great importance

for theoretical studies and various applications. Usually, the

connections inside communities are dense, while the connec-

tions between communities are sparse. For instance, groups

within the worldwide web might correspond to sets of web

pages on related topics;19 groups within social networks might

correspond to social units or communities.20 Several studies

showed that a pronounced community structure influences the

network dynamics such as packet delivery, local synchroniza-

tion, and global synchronization.21–25 However, until now, the

effect of community structure on networks’ controllability has

been only partly investigated in the literature, despite its im-

portance for theoretical and practical studies.

Motivated by the above discussion, by means of MSF,

we will analyze effects of control schemes, control gains,
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number of pinned nodes, and distributions of driver nodes on

controllability. The remainder of this paper is organized as

follows. In Sec. II, a community network model is intro-

duced. Then, based on the MSF approach, the network con-

trollability is analyzed in Sec. III. In Sec. IV, our main

results are given. The conclusions are drawn in Sec. V.

II. PRELIMINARIES

In order to obtain a specific complex network with com-

munity structure, we quote a growth model to create a net-

work with a tunable parameter denoting the strength of

community structure.21 Starting with a given number of

communities, we add new vertices to each community and

adjust the fraction of within-community connections to cre-

ate networks with various strengths of community structure.

The main steps are listed as follows:

Step I: The network starts from C communities.

Assume that each community has the same number of verti-

ces m0. The initial m0 � C vertices link to each other and

therefore the network is fully connected.

Step II: At each time step, a new vertex with m ðm < m0Þ
edges is added into each community. According to the prefer-

ential attachment mechanism, connections to t ðt < mÞ differ-

ent vertices are created in the community s ðs 2 f1; 2;…;CgÞ.
Step III: For each one of the other (m – t) between-

community connections of the newly added vertex, we

choose one community from the remainder (C – 1) commun-

ities randomly. Then, using the preferential attachment

mechanism, a new edge is created between this added vertex

and one vertex in the chosen community.

It should be noted that, based on the above strategy, the

degree distribution of the global network, as well as the

degree distribution of each community, follows a power-law

distribution.21

For a given partition of nodes of a network into com-

munities, the strength of the community structure is quanti-

fied as follows:26–29

Q ¼
XC

s¼1

ls

L
� ds

2L

� �2
" #

; (1)

where C is the number of communities, L is the number of

edges in the network, ls denotes the number of edges

between vertices in community s, and ds stands for the sum

of degrees of vertices in community s. A network with prom-

inent communities would have a large value of Q and fewer

between-community connections.

In addition to the parameter Q, the within-community

connection strength r is used to represent the ratio of the

within-community connections and the total connections of

the newly added vertex. From step I to step III, r is formu-

lated as follows:

r ¼ t

m
: (2)

A small value of r implies a network with a weak

strength of community structure. Here, a generated network

is characterized by r by adjusting the parameter t when m
and C are fixed.

III. OVERVIEW OF PINNING CONTROLLABILITY

To analyze the controllability of a specific network, the

following model is considered:

_xi ¼ f ðxiÞ þ r
XN

j¼1

aij½HðxjÞ � HðxiÞ�; i ¼ 1; 2;…;N; (3)

where f ðxiÞ is the dynamics at each node; r is the overall

coupling strength; H(x) is the coupling function and gives

the coupling term of two connected nodes. In this paper, the

network is supposed to be undirected and unweighted. The

coupling matrix A ¼ ðaijÞ 2 RN�N relates to the topology of

the network. If there is a connection between nodes i and

j ðj 6¼ iÞ, then aij ¼ aji ¼ 1. Otherwise, aij ¼ aji ¼ 0 ðj 6¼ iÞ,
and aii ¼ 0, i¼ 1, 2,…, N.

We consider an isolated node s(t) given a priori and it

satisfies _s ¼ f ðsÞ. In order to drive the states of Eq. (3) to the

desired reference evolution s(t), the following equation is

obtained:

_xi ¼ f ðxiÞ þ r
XN

j¼1

aij½HðxjÞ � HðxiÞ�

þ rdikiðHðsÞ � HðxiÞÞ; i ¼ 1; 2;…;N; (4)

where ki is the control gain. Suppose that all ki are equal,

e.g., ki ¼ k; i ¼ 1; 2;…;N. Let p denote the ratio between

the pinned nodes and all nodes of a network ð0 � p � 1Þ.
Then the set of pinned nodes is I ¼ fi1; i2;…; ing, where

n ¼ bp� Nc.
Equation (4) can be rewritten as

_xi¼ f ðxiÞ�r
XN

j¼1

LijHðxjÞþrdikiðHðsÞ�HðxiÞÞ; i¼1;2;…;N;

(5)

where the elements Lij of the Laplacian matrix L are as fol-

lows: Lij ¼ �aij if j 6¼ i and Lii ¼
PN

j¼1;j 6¼i aij; i ¼ 1; 2;…;N.

Thus, the matrix has
PN

j¼1 Lij ¼ 0; i ¼ 1; 2;…;N. If i 2 I,
then di ¼ 1, otherwise di ¼ 0.

Following the method proposed in Ref. 7, we can

convert Eq. (5) to an extended network composed of (N þ 1)-

dynamical systems yi, where yi ¼ xi for i¼ 1, 2,…, N and

yNþ1 ¼ s. Then, it can be written as

_yi ¼ f ðyiÞ � r
XNþ1

j¼1

MijHðyjÞ; i ¼ 1; 2;…;N þ 1; (6)

where M ¼ fMijg is an (N þ 1) dimensional square matrix

defined by
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M ¼

L11þ d1k1 L12 … L1N �d1k1

L21 L22þ d2k2 … L2N �d2k2

� � . .
.

… �

LN1 LN2 … LNN þ dNkN �dNkN

0 0 … 0 0

0
BBBBBBB@

1
CCCCCCCA
:

Let flr
ig be the eigenvalues of the matrix M and assume

that they are sorted as lr
1 � lr

2 �… � lr
Nþ1. From graph

theory, we get lr
i � 0, and l1 is the only null eigenvalue of

the matrix M.30 Since the network is undirected, the symmet-

rical coupling matrix A ensures that the matrix M is diago-

nalizable. Therefore, the spectrum of M can be decomposed

into the spectrum of a symmetric matrix containing its first N
rows and first N columns, plus one zero eigenvalue.

Through the transformation from Eq. (5) to Eq. (6),

the problem of controllability is converted into the analysis

of synchronizability of the extended network M. Hence, the

function f, the coupling function H, and the coupling ma-

trix A influence the synchronizability of the network M.

The range of stability of the synchronous state is assumed

to be a bounded zone of the complex plane, and the

method of eigenvalue ratio can be used to assess synchro-

nizability of Eq. (6).31 Here, the matrix M has a real spec-

trum and it is found to affect the stability of the

synchronous manifold by applying the MSF approach to

analyze the stability of Eq. (6). Then, the smaller the

eigenvalue ratio R ¼ lr
Nþ1

lr
2

is, the better the synchronizability

is.7 Hence, we need to suppress R as small as possible to

enhance controllability.

IV. CONTROLLABILITY OF THE NETWORKS WITH
COMMUNITY STRUCTURE

In this section, we will analyze the impact of community

structure on controllability. The considered network with

community structure consisting of N¼ 200 nodes is gener-

ated by the procedure described in Sec. II. The community

structure varies from weak to strong by adjusting the within-

community connection strength r in Eq. (2). For the results

demonstrated in this section, we carry out 100 realizations.

Three kinds of pinning schemes are compared here:

(i) Scheme 1: the nodes are randomly pinned, i.e., each

node has a uniform probability to be chosen as a

driver node over the network.

FIG. 1. Eigen value ratio R as a function of the pinning ratio p for networks with different numbers of communities C¼ 1, 2, and 4. The within-community

connection strength is r¼ 0.8 and the control gain is k¼ 5. (a) Controllability analysis with scheme 1, (b) controllability analysis with scheme 2 and (c) con-

trollability analysis with scheme 3.
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(ii) Scheme 2: the nodes are pinned according to their de-

scending degrees, starting by the node with the high-

est degree.

(iii) Scheme 3: the pinned nodes are selected according to

their ascending degrees, starting by the node with the

smallest degree.

A. Analysis of controllability of networks with
different numbers of communities

A comparison study between different numbers of com-

munities is shown in Figs. 1(a)–1(c). By increasing the pin-

ning ratio p, one can always observe a better controllability,

FIG. 2. R as a function of the control gain k for networks with different within-community connection strengths r¼ 0.2, 0.6, and 0.8. The pinning ratio is cho-

sen as follows: p¼ 0.1 in (a), (c), (e) and p¼ 0.6 in (b), (d), (f), respectively. (a)–(b) Controllability analysis of networks with scheme 1, (c)–(d) with scheme

2, and (e)–(f) with scheme 3.

033114-4 Miao et al. Chaos 23, 033114 (2013)



especially when the number of pinning nodes is small. From

Figs. 1(a) and 1(b), when random pinning and degree de-

scending pinning schemes are used, it can be seen that net-

works with a larger number of communities will produce a

better control performance. From Fig. 1(c), it can be

observed that R with C¼ 1 is smaller than R with C¼ 2 and

4 when the pinning ratio p less than or equal to 0.4. For the

degree ascending pinning scheme, the pinned nodes with a

small degree are distributed evenly in the network with

C¼ 1, but in networks with C¼ 2 and C¼ 4, the small

degree nodes are pinned in ascending order and they are

from nearly the same communities instead of being distrib-

uted evenly in the network. In addition, from Figs. 1(a)–1(c),

with a growth of p, particularly when p � 0:5, the values of

R achieved by C¼ 1 and C¼ 2 gradually move closely to

those obtained on networks with C¼ 4.

B. Analysis of controllability of networks with
different within-community connection strengths

A comparison study of varying within-community con-

nection strengths is shown in Figs. 2(a)–2(f). Here, we con-

sider networks with the community number C¼ 2. It is

worth mentioning that the results are similar to networks

with C¼ 4. We find that R first decreases for a very small

value of the control gain k and then increases as k increases.

The value of R achieves a minimum around a specific value

of the control gain k. This phenomenon indicates that an

appropriate selection of the control gain k can achieve the

best controllability. Consequently, one should avoid a too

large or a too small value of k, which may reduce the con-

trollability of a network. Note that for the pinning schemes

considered (random pinning scheme, degree descending pin-

ning scheme, and degree ascending pinning scheme), a net-

work with a large within-community connection strength r
has been found to weaken controllability. This can be

explained as follows. As r increases, the network demon-

strates a heterogeneous feature, i.e., the network has more

newly added within-community connections. Thus, the

pinned nodes can influence more easily the neighbors in the

same community than those in different communities. The

propagation of control information is hindered by the fewer

between-community connections. This finding is consistent

with the result that a homogeneous feature of networks bene-

fits the controllability of networks.

C. Analysis of controllability with different pinning
schemes

In this subsection, we further compare different pinning

schemes on networks with r¼ 0.2 and r¼ 0.8, respectively.

From Figs. 3(a) and 3(b), it can be seen that the degree de-

scending pinning scheme performs best when the number of

the pinned nodes is small. As p increases, R of the degree

ascending pinning scheme is smaller than those of the ran-

dom pinning and the degree descending pinning schemes.

This finding indicates that the degree descending pinning

scheme is most powerful in enhancing the controllability

when the pinning proportion p is small. With increasing of p,

it is better to convert to pin the nodes with a small degree.

Hence, the types of pinning schemes, the pinning proportion,

and the strength of community structure should be fully con-

sidered in studying controllability of networks with a certain

community structure.

D. Analysis of controllability with different
distributions of pinned nodes

For schemes 1 to 3, the pinned nodes are chosen accord-

ing to the degree information. From Figs. 4(a)–4(c), we find

that the schemes where the pinned nodes are evenly distrib-

uted in the communities ðp1 ¼ 0:5; p2 ¼ 0:5Þ are found to

perform best, no matter what kinds of pinned schemes are

considered. With an even distribution of pinned nodes, the

networks become more homogeneous which thus leads to a

better controllability. From Figs. 4(a) and 4(b), it can also be

seen that the value of R obtained by scheme 1 is close to that

by scheme 1 with ðp1 ¼ 0:5; p2 ¼ 0:5Þ with increasing pin-

ning ratio p. The same is true with scheme 2 and scheme 2

with ðp1 ¼ 0:5; p2 ¼ 0:5Þ. It is worth pointing out that

scheme 3 combined with ðp1 ¼ 0:5; p2 ¼ 0:5Þ performs

much better than other kinds of schemes, especially when

the number of pinned nodes is small.

FIG. 3. R as a function of the pinning ratio p with the community number C¼ 2 and the control gain k¼ 5. (a) r¼ 0.2 and (b) r¼ 0.8.

033114-5 Miao et al. Chaos 23, 033114 (2013)



V. CONCLUSIONS

Community structure is one of the most important topo-

logical features of complex networks. In this paper, by taking

into account the community number and the strength of com-

munity structure, we investigate effects of community struc-

ture on the controllability of complex networks. The pinned

nodes are chosen according to both their degree information

and the distributions over the network.

We find that a network with a large number of commun-

ities has better controllability when applying random pinning

and degree descending pinning schemes. By considering a

network with a fixed number of communities and different

strengths of community structure, we find that these net-

works with a weak community structure have a better con-

trollability than the ones with a strong community structure.

The degree descending pinning scheme performs best when

the number of pinned nodes is small. However, the degree

ascending pinning scheme outperforms the random pinning

and the degree descending pinning scheme when increasing

the pinning ratio. Moreover, the pinning schemes whose

pinned nodes are evenly distributed among the communities

outperform other kinds of distributions of pinned nodes.
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