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Abstract: The discrete Hartley transfom(DHT) is a real-valued tratufom closely related to the discrete Fourier transform (OFT) of a 
real-valued sequence. It directly maps a rea[-valued sequence to a real-valuedspectrum while preserving some usefulproperties of the Dkcrete 
Fourier Transfom. In such case, the Discrete Hartley transform can act as an altemative form to the Fourier Tradorm for avoiding complex 
arithmetic, hence it becomes a valuable tool in digital signalprocessing. In this paper, a simple algorithm is proposed to realize one-dimensional 
DHT with sequence lengths equal to 2“‘. This algorithm achieves the same multiplicative complaity as Malvar’s algorithm which requires the 
minimum number of multiplications reported in the literature. However, the present approachgives the advantage of requiring a smallernumber 
of additions compared with the number that required in Malvar’s algorithm. 

INTRODUCTION 

The disc : Hartley transform (DHT) has received 
growing interest since it was introduced by Bracewell[l] in 1983. 
One of the main attractions of DHT is that it only involves real 
computations in contrast to complex computations in the discrete 
Fourier transform (DFT). Since then, most ofworks that had been 
done on the problem of computing the discrete Hartley 
transform[2-9] were based upon the idea of existing fast DlT 
algorithms. For instance, the so-called “split-radix“ method was 
originally applied for computing 2m-point DFT[10] and was 
subsequently applied to the computation of DHT[4,8]. Typically, 
among these proposed algorithms, Malvar[S,6]’s algorithm can 
achieve the minimum number of multiplications during the 
realization of DHT whilst the split-radix approach[4] can achieve 
the minimum number of additions. 

In this paper, we propose a new algorithm to realize the 
DHT with the minimum number of multiplications. The algorithm 
also achieves the minimum number of additions compared with 
those algorithms[5,6,9] achieving the same minimum number of 
multiplications reported in literatures. 

ALGORITHM DERIVATION 

Recall that an N-length Discrete Hartley Transform[ 11 for 
a sequence {x(i):i =0,1 ... N-I} is defined as 

&ik N-1 

i=O 
X(k) = 2 x(i) cas(,) 

for k=O,1 ... N-1 (1) 

If N is even, we have 

Anik M-1 

i=O 
X(2k) = {x(i)+x(%+i)} cas (F) 

for k = 0,l ... N/2-1(2) 

and 
M-1 

i=O 
X(2k+l) = {x(i)-x(%+i)} cas 

for k=O,1 ... N/2-1(3) 

By defining the two sequences Y(k) and Z(k): 
M-1 

1=0 
Y(k) = y(i) cos(-) 

for k=0,1 ... N/4-l(4) 
M-1 

1=0 
Z(k) = .E y(i) sin (F) 

for k = 0,l ... N/4-1 (5)  

for i = 0,l ... N/2-l(6) 
where y(i) =x(i) - x(W2+i) 

We have 

X(2k+1) = Y(k) + Z(k) 
and X(N-2k-1) = Y(k)-Z(k) 

for k = 0,l ... N/4-l(7) 
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To realize {Y(k):k=O,l..N/4-1}, we can define the 
following 

Y(k) + Y(k-1) = 

G(k) = .z g(i) cos - 
I = o  

for k=0,1 ... N/4-1 (8) 

where g(0) = 2y(0) 
g(i) = 2 { y(i) - y(%-i) } COS(W~N) 

and Y(-1) is defined as Y(0). 

for i = 1,2 ... N/4-1 (9) 

Similarly, by defining Z(-1) = -Z(O), we can define the 
following to take care of the sequence {Z(k):k= 0,l ... N/4-1}, 

Z(k) - Z(k-1) = 

for k = 0,l ... N/4-1 (10) 

where f(0) = 0 
f(i) = 2 { y(i) + y(%-i)} sin(&i/N) 

fori = 1,2 ... N/4-1 (11) 

Note that G(k) and F(k), defined by eqns. 8 and 10, are 
respectively the symmetric cosine structure(SCS) and the 
alternative form of the symmetric cosine structure(SCS6) defined 
by Chan and Siu[9]. Hence, an N-length DHT can be decomposed 
into an N/2-length DHT, an N/4-length SCS and an N/4-length 
SCS6 with a cost of N/2-2 multiplications and 5N/2-4 additions. In 
particular (See Appendix), we have 

On the other hand, it is well-known that a 4-length DHT 
can be realized with 8 additions only and an 8-length DHT can be 
realized with 2 multiplications and 22 additions[4]. Therefore, the 
mathematical complexity of the new algorithm is given by the 
following equations: 

M(4-DHT) = 0 

A(4-DHT) = 8 

M(8-DHT) = 2 

A(8-DHT) = 22 

M(N-DHT) = M(%-DHT) + M(%-SCS) + 
M(%-SCS6) + N/2-2 

A(N-DHT) = A(Wz-DHT) + A(W4-SCS) + 
A(% -SCS$) + 5N/2 - 4 

where N = 2m, m > 3 (14) 

Table 1 shows the computational complexity of the 
realization of DHT of different lengths using the present approach 
and other  efficient techniques[4-6,9]. The computational 
complexity of other techniques is quoted directly from table 1 of 
reference(41 and table 1 of reference[6] respectively. The 
split-radix algorithm[4] always gives the minimum number of 
additions, whereas Malvar[5,6]'s and Chan and Siu[9]'s algorithms 
always give the minimum number of multiplications for all lengths 
shown. The present approach requires the same minimum number 
of multiplications for all lengths, however, it requires a smaller 
number of additions than that required by those two approaches. 
Figures 1 and 2 also illustrate clearly the comparison of the present 
approach with other major approaches for the realization of the 
Discrete Hartley Transform. 

M(N-SCS) = M(N-SCS$) = 

A(N-SCS) = A(N-SCS;) = 

M(% -SCS) + M(% -SCS') + N/2 - 1 

A(W2 -SCS) + A("&SCS* ) + 3N/2 - 3 
f o r N > 4  

M(4-SCS) = M(4-SCS;) = I 

A(4-SCS) = A(4-SCS8) = 7 

(12) 
where M(N-Y) and A(N-Y) are the numbers of multiplications and 
additions respectively for a length-N structure denoted by Y and 
SCS' is another alternative form of the symmetric cosine structure, 
which is defined the same as SCS8 in eqn 10 except that the input 
data f(0) is not necessary to be zero, whose mathematical 
complexity is given by 

M(N-SCS') = M(% -SCS) + M(% -SCS*) + N/2 - 1 

A(N-SCS*) = A(% - s c s )  + A(% - scs*)  + 3 ~ / 2  - 1 
f o r N > 4  

M(4-SCS') = 1 

A(CSCS*) = 9 

(13) 

Table 1. Coiiiputational complexity of the realizntioll of UIIY for 
different leiigtlis using the present approach and other 
eflicierit tecliiiiques [4,6,9]. 

N bl  A hl A hl A hl A hl A hl A 

8 2  
16 I0 
32 34 
64 98 
128 258 
256 642 
512 153R 
11124 3586 
21148 8194 

22 
72 
198 

12m 
2800 

14316 
31722 

sim 

6x32 

2 
Il l  
34 
98 
258 
642 
1538 
3586 
8194 

29 
83 
ti7 
I35 
1269 
2931 
f a  I 
14831 
32749 

4 
20 
68 
196 
516 
I284 
31176 
7172 
163M 

26 
74 
I94 
482 
11.54 
2690 
6146 
13826 
30722 

2 
14 10 I2 

42 
142 450 124 

3311 
942 2498 828 

1994 
~294 12~02 4668 

10698 

22 
64 

I 6 6  
416 
998 
2336 
5350 
12064 
26854 

2 
I0 
34 
98 
258 
642 
1538 
3586 
8194 

26 
74 
206 
522 
1278 
3018 
6974 

35390 
i s m  

The basic idea of the proposed algorithm implies a 
recursive decomposition technique. By using the recursion, a 
2m-length DHT (m > 3) is eventually decomposed into an 8-length 
DHT and a number of 4-length SCS, SCS' and SCS& Hence, the 
realization modules of 4-length SCS etc. are actually basic 
elements of the implementation of the algorithm. Consider that 
the 4-length SCS and the 4-length SCS6 are only variants of the 
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4-length SCS', all of them can be realized with a typical 4-length 
SCS' module without extra cost. This property is practical and 
desirable especially when the algorithm is used for the hardware 
realization of the DHT. In such case, only simple 4-length SCS* 
hardware modules are required, which makes the proposed 
algorithm very suitable for VLSI implementation. 

Some multiplications are required for the generation of 
sine or cosine coefficients. In general, they can be precomputed 
and stored in a memory table as they are known values. The table 
lookup technique can then be applied to save computation effort 
during the realization. Note that this algorithm requires only a 
small table for storing values of {sin(&i/N):i= 1,2 ... N/4-1} and 
{cos(;?ni/N):i = 1,2 ... N/4-1}, the size of which is practical for most 
applications. 

our approach: 

Firstly, we compute the even sequence of the output, 
{X(2k):k=0,1..7}, via an 8-length D H T  on the sequence 
{x(i) +x(8 + i):i = 0,1..7} as shown in eqn 2. 

T o  compute the odd sequence, we have to  compute 
sequences {Y(k):k=0,1..3} and {Z(k}:k=0,1..3}. By using eqn9, 
we have 

where y(i) = x(i) - x(8 + i) for i = 0,1..7 

260 400 600 800 1000 1 
Length of DHT 

Fig.1 Comparison of additions per point among 
different approaches 

7 
radix-2 

6 

/ I 

/ radix4 I 

2 i  

I d  I 

Then, after we compute the 4-length SCS on {g(i):i=O,l..3} with 
eqn 8 to obtain {G(k):k =0,1..3}, we have 

(33) -Y(2) 

and, after computing the 4-length SCS6 on {€(i):i=0,1,.3} with eqn 
10 to obtain {F(k):k =0,1..3}, we have 

Then, we can determine the odd sequence of the final 
output by using eqn 7: 

X(1) = Y(O)+z(O) 

X(5) = Y(2)SZ(2) 
X(7) = Y(3)+Z(3) 

X(15) = Y(0)-z(0) 

X(11) = Y(2)-Z(2) 
X(9) = Y(3)-z(3) 

x(3) = Y(l )+z ( l )  and X(13) = Y(l)-z( l )  I 1 
Totally, 10 multiplications and 72 additions are required. 

0 260 400 600 860 1000 1200 
Length of DHT 

CONCLUSIONS 
Fig3 Comparison of multiplications per point among 

different approaches 

EXAMPLE 

Let us use a 16-length DHT on {x(i):i=O,l ... lS} to clarify 

A new algorithm is proposed in this paper to realize a 
2m-length Discrete Hartley Transform. This algorithm requires the 
same minimum number of multiplications as other algorithms 
reported in the literature[2-9] and requires a smaller number of 
additions compared with other algorithms[5,6,9]. It is significant to 
point out that the present algorithm is most suitable for VLSI 
realization. The resultant structure of the approach is stable and 
regular. 
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whereg'(0) = ~ ' ( 0 )  + xo 
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APPENDIX 

An N-length SCS* on sequence {x'(i):i=O,l ... N-1} is 
defined as follows: 

N-1 

1=0 

T(k) = ,E x'(i) cos($) + ( - l ) k h  

k=O,l..N-l (Al)  
where xO is a real number. This structure forms the basic module 
of the proposed algorithm. Actually, the N-length SCS and SCS6 
are only special cases of this basic structure. In particular, if xO is 
zero, eqn A1 becomes the definition of an N-length SCS and, when 
x'(0) is zero, it becomes the definition of an N-length SCS6. 

If N is even, we can split eqn A1 into two sequences. For 
the even sequence, we have 

g'(i) = x'(i) + x'(N-i) 
for i = 1,2..N/2-1 (A3) 

and, if we define T(-1) as T(l), we have 
%-I 

i = O  
T(2k+l)+T(2k-l) = F(k) = e'(i) cos(?) 

for k = 0,l ... N/2-1 (A4) 
where e'(0) = 2 { x'(0) - xo } 

e'(i) = 2 { x'(i) - x'(N-i) } COS(.~/N) 
for i = 1,2..N/2-1 (A5) 

Hence, an N-length SCS* can be realized through an 
N/2-length SCS and an N/2-length SCS' with a cost of N/2-1 
multiplications and 3N/2-1 additions. Eqn. 13 gives the 
mathematical complexity of this basic structure. 

In particular, if N = 4, it can be realized with 9 additions and 
1 multiplication as follows: 

temp0 = { x'(l)-x'(3) } COS(%) 

templ = x'(0) + xO 

temp2 = x'(0) - xO 

T(0) = templ + $(I) + x'(2) + x'(3) 

T(3) = temp2 - temp0 

T(1) = temp2 + (empO 

T(2) = templ - x'(2) 

The substitution of x'(0) =0 and xo = O  into eqns A1 to A5 
gives the mathematical complexity of an N-length SCS6 and SCS 
respectively. Eqn. 12 describes the mathematical complexity of 
both structures precisely. 
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Nh-1 

i = O  
T(2k) = 2 g'(i) cos 

€or k=0,1 ... N/2-1 (A2) 
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