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Various obstructions exist that can impede maximum vehicle flow through signalized in-
tersections. Examples include buses or freight vehicles dwelling at loading areas near the
intersection, stalled vehicles, pre-signals that temporarily block car traffic to provide bus
priority, on-street parking maneuvers and permanent road fixtures. If the effects of these
obstructions are not recognized or accounted for, vehicle discharge capacities at these criti-
cal locations can be overestimated, leading to ineffective traffic management strategies. This
paper examines the capacity of an isolated signalized intersection when a nearby roadway
obstruction is present in either the upstream or downstream direction. To quantify the loss
of capacity caused by an obstruction, the paper applies the variational theory of kinematic
waves in a moving-time coordinate system, which simplifies the traditional variational theory
by reducing the number of local path costs that must be considered. The result is a simple
recipe that requires few calculations and can be used to gain insights into signal operations
when obstructions are present. Capacity formulae for general cases are also developed from
the recipe. The results, recipe and formulae can be used to guide policies on the location of
obstructions that can be controlled, like bus stops, pre-signals or permanent road fixtures and
to develop strategies to mitigate the effects of obstructions that can be identified in real-time.
As an example, a simple adaptive signal control scheme is created using this methodology
to more efficiently allocate green time between competing directions when an obstruction is
present.

Keywords: Signalized Intersection Capacity; Obstructions; Variational Theory;
Moving-Time Coordinate System

1. Introduction

Signalized intersections are often the most restrictive bottlenecks on urban streets. Thus,
urban traffic management tends to focus on signalized intersection operations. For exam-
ple, signals are coordinated to reduce the number of times vehicles need to stop (Roess
et al. 2004; Girianna and Benekohal 2002), and green time is allocated dynamically
to reduce vehicle delays (Miller 1963; Robertson and Bretherton 1974; Shelby 2004).
Signalized intersections are also the focus of transit priority strategies (Christofa and
Skabardonis 2011; Guler and Cassidy 2012), and play a vital role in how streets are
organized across a network (Gayah and Daganzo 2012).
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Other obstructions also exist that can impede traffic flow. Examples of these obstruc-
tions include: pre-signals for prioritizing bus movements (Wu and Hounsell 1998; Xuan
et al. 2012; Guler and Menendez 2014); buses dwelling at curbside stops (Kim and Rilett
2005; Gu et al. 2014); freight delivery trucks (Yannis et al. 2006); on-street parking (Box
2004); bus bulbs (Fitzpatrick et al. 2002); and, the elimination of a travel lane. The
presence of these additional obstructions near signalized intersections can exacerbate the
existing signal bottleneck. If the impacts of these obstructions are not accounted for, ve-
hicle discharge capacities at signalized intersections might be overestimated. This could
result in the design and application of inadequate traffic management strategies.

Unfortunately, current understanding of intersection capacity fails to sufficiently ac-
count for the impact of these obstructions on signalized intersections. Previous analytical
work has identified the locations where on-street parking maneuvers can negatively influ-
ence intersection operations and quantified the delays associated with these maneuvers
(Cao et al. 2013; Ye and Chen 2011). However, these results cannot be used to esti-
mate reductions in capacity that may occur. The Highway Capacity Manual (TRB 2010,
henceforth HCM) furnishes formulae for estimating saturation flows at signalized inter-
sections due to nearby on street parking maneuvers and dwelling buses. However, the
HCM formulae assume that the impacts of these obstructions are independent of both
their location and duration, which has been shown to be incorrect by Gu et al. (2013,
2014). The latter cited works model the impact of buses dwelling at near-side and far-
side stops using kinematic wave theory, but they fail to furnish a general method for
estimating the capacity reduction caused by obstructions of any type.

To our knowledge, an in-depth examination of the impacts of obstruction on intersec-
tion capacity currently does not exist. In light of this, the present work applies the well-
known variational theory of kinematic waves (Daganzo 2005a,b; Daganzo and Menendez
2005) to determine the capacity of an isolated signalized intersection when an obstruc-
tion is present. Variational theory is ideal because it does not require enumeration of all
traffic states that might arise. Previous studies have used this method to examine the
capacity of a roadway with multiple traffic signals (Daganzo and Geroliminis 2008), bus
lanes (Chiabaut et al. 2012), and merges (Leclercq et al. 2011), among other features.
Additionally, Geroliminis and Boyaci (2012) examined the impacts of random bottlenecks
created by dwelling buses on signalized arterials. However, analytical formulae were not
furished due to the stochastic nature of the problem considered.

In this work, we apply variational theory in a moving-time coordinate system (Newell
1993), which simplifies analysis by reducing the number of local path costs that need to
be considered to obtain a solution. The result is a simple recipe to calculate capacity
which requires a few calculations. Using this recipe, we develop the general formulae for
estimating vehicle discharge capacities at signals with obstructions located immediately
upstream or downstream. The capacities provided here are a function of the intersection
geometry, signal settings and obstruction features, and is independent of the demand
conditions. This metric is well-suited to study overall operations at over-saturated signals,
whereas other metrics are better suited to study undersaturated signals (e.g., delays due
to obstructions at under-saturated signals are considered in Gu et al. (2014)).

The proposed methodology can be applied by both practitioners and researchers to
easily and comprehensively identify and quantify any negative impacts obstructions may
cause. In doing so, more effective traffic management strategies can be designed for and
implemented at signalized intersections. The application of this methodology can also
provide insights that might help to guide policies on how best to locate obstructions
that can be controlled and design adaptive signal control schemes to reduce the negative
impacts of obstructions.

The remainder of this paper is organized as follows. Section 2 describes the scenario
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and notation used in this analysis. Section 3 provides some background information on
variational theory and discusses how it can be applied in a moving-time coordinate sys-
tem. Section 4 derives the simple capacity recipe found by applying variational theory in
a moving-time coordinate system to determine the capacity loss incurred by an obstruc-
tion. The recipe and the resulting capacity formulae are then used to gain insights about
obstruction location and control, which is followed by a parametric analysis in Section
5. Finally, Section 6 provides some concluding remarks.

2. Scenario and Notation

Considered here is an isolated signalized intersection with fixed cycle length, C, and green
ratio, g.1 The signal alternates between fixed green periods of length gC and red periods of
length (1−g)C. Traffic on the homogeneous road segments upstream and downstream of
the signalized intersection is assumed to follow the kinematic wave theory of traffic flows
(Lighthill and Whitham 1955; Richards 1956) with a triangular fundamental diagram;
see top of Figure 1a, where Qm denotes the capacity, vf the free-flow speed, −w (w > 0)
the backward wave speed, and kj the jam density. Furthermore, vehicles are assumed to
be conserved at the intersection; i.e., vehicles do not turn into or out of the segment.

To simplify the capacity analysis, we adopt a moving-time coordinate system as de-
scribed in Newell (1993). Using these moving-time coordinates, the time coordinate at
any location is measured relative to the passing of a reference vehicle traveling throughout
the segment at the free-flow speed vf . In this representation, the fundamental diagram is
modified and can be completely characterized by just two parameters: capacity, Qm, and
backward wave speed, −w′

= −(1/vf + 1/w)−1. This modified fundamental diagram is
illustrated in the top of Figure 1b. Note that the “cost” functions shown in the bottom
of Figures 1a and 1b are used when applying variational theory and will be described in
the next section.

An obstruction may occur in the roadway segment either upstream or downstream of
the intersection. The distance between the obstruction and the intersection is defined as
d; see Figure 2. At this location, the obstruction creates a bottleneck on the roadway
with a capacity of QB < Qm. The capacity reduction at this location lasts the entire
time that the obstruction is present, denoted S. In this analysis, we assume that only
one obstruction occurs at a time and that obstructions occur infrequently enough that
they do not interact; i.e., that each obstruction can be examined independently.

3. Determining capacity in a moving-time coordinate system

Variational theory is used to determine the impact of obstructions on the capacity of
nearby signalized intersection. Section 3.1 provides some background on the variational
theory method. Note that the description here is not comprehensive, but provided to give
sufficient background on the techniques used in this paper. A complete description and
derivation of variational theory can be found in Daganzo (2005a,b); Daganzo and Menen-
dez (2005); Daganzo and Geroliminis (2008). Section 3.2 describes how variational theory
can be modified and applied in a moving-time coordinate system, and the advantages of
doing so.

1By isolated, we mean that signals upstream and downstream are sufficiently far away as to not interact with

the intersection of interest. Although simple, this scneario can serve as a building block for more complicated
situations in the future. Futhermore, recent studies have focused on a similar scenario to quantify queue lengths
and delays due to obstructions (Gu et al. 2013, 2014).
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(a) (b)

Figure 1.: Triangular fundamental diagram and associated cost function in a: (a) tradi-
tional coordinate system; and, (b) moving-time coordinate system.

Figure 2.: Illustration of upstream and downstream obstructions

3.1. Background on variational theory

Variational theory allows the solution of the kinematic wave model to be reformulated as
a shortest path problem. Doing so facilitates the direct calculation of a roadway’s capacity
without the need to determine the evolution of all traffic states. In the variational theory
formulation, a “cost” function, r(u), is defined which provides the local cost (in units
of vehicle flow) of traveling along a path on the time-space plane with local speed u.2

For a homogeneous roadway segment that obeys kinematic wave theory with a given
fundamental diagram, Q(k), r(u) = supk {Q(k)− ku}.

This cost function represents the maximum rate that vehicles on the road can overtake
a moving observer traveling at constant speed u in the absence of any bottlenecks. The
presence of a bottleneck that restricts vehicle movement along the roadway provides a
‘shortcut’ on the time-space plane with a lower path cost. Examples of these shortcuts
include the red period of a traffic signal that completely eliminates flow, or an obstruction

2Note that this cost function actually provides a cost rate. However, we use the term cost function to be consistent

with the literature.
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Figure 3.: Time-space diagram depicting subset of paths used to connect two points.

along the roadway that impedes traffic. The cost of traveling along such a shortcut at a
given location (with speed u = 0) is given by the capacity of the bottleneck it represents.

Paths are only considered “valid” if they are continuous, piece-wise differentiable
curves on the time-space plane that have local speeds contained within the range

u ∈ [dQ(kj)
dk , dQ(0)

dk ] (Daganzo 2005a,b). The restriction of continuous paths ensure that
observers do not disappear and reappear on the time-space plane, while the path speed
is restricted to the speed of kinematic waves that might arise in an LWR solution. The
total cost of traveling along a valid path Zi with a local speed of z(t) at any time t is:

∆Zi =

∫ t1

t0

r(z(t))dt, (1)

where t0 and t1 are the times the path begins and ends, respectively, and r(z(t)) includes
the effect of any shortcuts present. The value ∆Zi represents an upper bound on the
number of vehicles that can overtake a moving observer that travels along the path Zi.
This upper bound can be achieved only when there is no downstream restriction that
limits the overtaking vehicular flow.

Consider now any two points on the time-space plane, O and E, that can be connected
by at least one valid path; see Figure 3. Define the coordinates of these points on the
time-space plane as O(tO, xO) and E(tE , xE), respectively, where tO < tE , and let P be
the set of all valid paths that connect these two points. The path with the least cost that
connects O and E provides a tight upper bound on the maximum number of vehicles
that can overtake any observer traveling between these two points. It follows that the
maximum rate that vehicles can overtake such an observer, i.e., the capacity for vehicular
flow between those two points, is:

qc(O,E) = inf
p∈P

∆Zp

(tE − tO)
, (2)
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which turns out to be a shortest path problem. The capacity of the segment at location
x, qc(x), is defined as the maximum rate at which vehicles are able to pass an observer
with xO = xE = x over a period of time; i.e., qc(x) = qc(O,E) for xO = xE = x.

When the fundamental diagram is triangular, the shortest path problem can be simpli-
fied even further. In this case, the cost function r(u) is linear; see Figure 1a. Furthermore,
Daganzo (2005b) shows that the shortest path is piece-wise linear and made up only of
segments with local speeds u = −w and u = vf , as well as u = 0 along any fixed
shortcuts that might exist. Other examples of using a triangular fundamental diagram
when applying the variational theory can also be found in the literature (Daganzo and
Geroliminis 2008; Leclercq and Geroliminis 2013).

3.2. Application to moving-time

In this paper we apply the variational theory methodology in a moving-time coordinate
system as defined in Newell (1993) to facilitate an analytical solution for the capacity
of a signalized intersection when an obstruction is present. As will be shown, doing so
reduces the number of local path costs and simplifies the analysis.

Denote the modified triangular fundamental diagram shown in Figure 1b for such a
coordinate system as Q′(k′), where k′ represents the density measured in these moving-
time coordinates. The cost of paths traveling at speed u′ in the moving-time coordinate
system, r′(u′), is:

r′(u′) = sup
k′
{Q′(k′)− k′u′}. (3)

Here the set of valid local speeds increases when compared to the traditional coordi-
nate system: it ranges from u′ = −w′ to u′ = ∞. However, the cost function becomes
much simplier in this case. From (3) we find that r′(∞) = 0 and r′(u′) = Qm, ∀ u′ <∞;
see Figure 1b. This makes physical sense. Recall that these costs represent the maxi-
mum rates that traffic can overtake a moving observer traveling at speed u′ and consider
Figure 4. The lighter lines in the figure represent vehicle trajectories traveling at the
maximum flow, Qm. The vehicle trajectories all have a slope of∞, which is analogous to
the free flow speed, vf in a traditional time-space diagram without moving-time coordi-
nates. The darker black lines represent observer trajectories traveling at different speeds.
Note that the observers pass vehicles at the same rate over time in the moving-time
coordinate system, except when traveling at the free-flow speed (parallel to the vehicle
trajectories). This verifies that the path costs predicted from (3) are consistent with the
physical observations in the moving-time plane.

Clearly, application of variational theory in the moving-time coordinate system simpli-
fies the shortest path problem because now any movement in the positive time direction
is associated with the same local cost, Qm, except for movements along fixed obstruc-
tions (e.g., red phases at traffic signals and other bottlenecks). The cost of moving along
these obstructions remains unchanged and is equal to QB. This approach facilitates the
derivation of simple analytical formulae to solve the shortest path problem.

Once the shortest path problem has been solved, the capacity in the moving-time
coordinate system can then be determined by substituting the parameters in (1) and (2)
with their moving-time counterparts. This will be equal to the capacity in the traditional
coordinate system since the two representations are physically equivalent.
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Figure 4.: Time-space diagram showing maximum passing rates in a moving-time coor-
dinate system.

4. Capacity at Signalized Intersections

We now apply variational theory in the moving-time coordinate system to determine
the capacity of a signalized intersection with a nearby obstruction. Section 4.1 uses
this method to calculate the capacity in the simple case in which no obstruction is
present. Though the outcome is trivial, the analysis provides a nice illustration of the
methodology, and identifies time-space regions where obstructions might be damaging.
Section 4.2 develops a simple recipe to determine the capacity of the intersection when
an obstruction is present.

4.1. Without obstructions

Figure 5a presents the time-space diagram for a signalized intersection with no obstruc-
tion in the moving-time coordinate system. The capacity of the signal can be determined
by calculating qc at the signal location.3 Since the signal is cyclical, it follows that we
only need to determine the least cost path during a single cycle (e.g., between points
A and E) and then repeat this pattern over subsequent cycles. Clearly, the least cost
path should include the signal’s red period, as this duration of (1 − g)C has no cost
associated with it. (Recall that a red period provides a shortcut where the cost is given
by its capacity, 0.) It then remains to find the shortest path between points A and D. As
discussed in Section 3.2, the cost of traveling between these two points depends only on
the time distance separating these points (gC), as all valid paths would have the same
local cost per unit time, Qm. Therefore, any of the infinitely many valid paths between
A and D would have the same total cost of QmgC, and the shortest path between A and
E would have the same cost.

Figure 5a illustrates the two valid shortest paths between points A and E that travel
the furthest distance away from the signal during the green period: paths A−B−D−E
and A−C−D−E. These two paths define a boundary within which all other valid shortest
paths between points A and E must exist. Let us refer to the tessellation of these two
specific paths over all cycles as “signal paths”, and denote their costs ∆ZS = nQmgC,
where n is the number of cycles considered in the analysis period. Furthermore, let us refer

3Note that we will drop the use of ′ to denote parameters measured in the moving-time coordinate system for
notational simplicity, since the remainder of the paper uses a moving-time coordinate system.
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(a)

(b)

Figure 5.: Time-space diagram showing: (a) signal paths and critical region when no
obstruction is present; and, (b) modified signal path when an obstruction is present.

to the region on the time-space plane enclosed by the signal paths (shaded in Figure 5a)
as the “critical region”. Note that this critical region extends a maximum distance of
w′gC away from the signal. As will be shown next, the presence of an obstruction within
the critical region always provides a lower cost path between A and E, and reduces the
capacity of the intersection.

4.2. With obstructions

Obstructions create shortcuts on the time-space plane with a reduced cost equal to the
capacity of the obstruction, QB, that could potentially be used to provide a shorter path
over one or multiple signal cycles4. Only two types of these valid paths exist that can
make use of the nearby obstruction shortcut, as will be described next. Both of these
paths must be considered and the path which provides the lowest total cost determines
the actual impact of the obstruction on the capacity of the intersection. In the following
analysis, we denote ta and te = ta + S as the start and the end time of the obstruction,
respectively. For illustration, the origin of the time axis is set at the start of an arbitrary
green period.

4We assume here that this reduced capacity QB incorporates any capacity lost due to vehicles merging at the
location of the obstruction.
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4.2.1. Modified signal path

The first path is a modification of the signal path, termed the ‘modified signal path’. If
an obstruction provides a shortcut within the critical region, then a lower cost path will
always exist that makes use of the shortcut for the entirety of the time it exists within
that region. This is easy to see with an example. Consider the time-space diagram shown
in Figure 5b with an upstream obstruction denoted by the thick gray horizontal line. Let
us examine the impact of this obstruction during the first cycle; i.e., the impact on the
cost of the path connecting points A and E. If this obstruction was not present, the path
A − X − X ′ − D would have the same cost as any of the other valid paths connecting
points A and D within the shaded region. (And, of course, the least cost path connecting
points D and E would be zero.) However, when the obstruction is present the cost of
path A−X −X ′ −D reduces to Qm(gC − tXX′) +QBtXX′ = QmgC − (Qm −QB)tXX′

due to the impact of the shortcut, where tXX′ denotes the time period from X to X ′.
The same logic holds if the obstruction shortcut bisects one of the critical regions (as
illustrated during the second cycle), or if the obstruction ends or is fully contained within
the critical region (not shown).

Denote the path that travels along obstruction shortcuts only within the critical region
but otherwise follows the nearest signal path as the “modified signal path”. An example
is illustrated over two cycles in Figure 5b as path A−X−X ′−D−E−Z−Z ′−H−J . Let
us also define the total cost of a modified signal path as ∆ZS′ ; note that ∆ZS′ ≤ ∆ZS

by definition. The values of ∆ZS and ∆ZS′ could depend upon the length of the analysis
period of interest, but their difference, denoted ∆NS′ = ∆ZS −∆ZS′ , is independent of
the chosen analysis period as long as that period include all the cycles that are affected
by the obstruction. In light of the above, for any given obstruction the ∆NS′ is given by
the following formula:

∆NS′ = (Qm −QB)C



0 d ≥ w′gC,

max(g −max( d
w′C ,

{
ta
C

}
), 0)+

max( min(
{
te
C

}
, g)− d

w′C , 0)+

(
⌊
te
C

⌋
−
⌈
ta
C

⌉
) ∗ (g − d

w′C ) d < w′gC (upstream)

max
(
g − d

w′C −
{
ta
C

}
, 0
)

+

min
({

te
C

}
− g + d

w′C , 0
)

+

(
⌊
te
C

⌋
−
⌈
ta
C

⌉
+ 1)(g − d

w′C ) d < w′gC (downstream)

(4)

where dxe and bxc denote the smallest integer greater than x and the largest integer
smaller than x, respectively, and {x} = x − bxc denotes the fractional part of x. ∆NS′

represents the reduction in total cost (i.e., vehicle throughput) due to the presence of the
obstruction in the critical region. Qualitatively, it is equal to the product of the amount of
time the obstruction spends in the critical region and the reduction of vehicular movement
due to it, Qm −QB.

4.2.2. Obstruction path

The modified signal path considers only the influence of the obstruction when it is within
the critical region; i.e., only uses the obstruction as a shortcut when it is within the crit-
ical region. However, the obstruction shortcut may also be used along its entire length
to provide a shorter path. This leads to the second path that must be considered, which
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uses almost the entire shortcut length. Consider the following path that we call an “ob-
struction path”: 1) start from the beginning of a green period; 2) travel to the location of
the obstruction at maximum speed w′ (∞) for an upstream (downstream) obstruction;
3) travel horizontally along the obstruction location until the obstruction is completed
(using the entire length of the obstruction as a shortcut); 4) travel back to the signal
location at maximum speed ∞ (w′) for an upstream (downstream) obstruction; and, 5)
end at the beginning of the next green period. An example, A−Y −Y ′−I−J , is depicted
in Figure 6a for the same obstruction shown in Figure 5b.

In many cases, interactions between the signal and the obstruction may provide addi-
tional shortcuts that reduce the cost of this obstruction path. We now discuss two rules
to modify the obstruction path at its start and end, respectively, to reduce its cost.
Rule 1 (obstruction start): This rule applies if the start of an obstruction lies within

the shaded region shown in Figure 6b defined as: ta ∈ [(n − 1)C + gC + d
w′ , nC + d

w′ ]
for some integer n for an upstream obstruction; and, ta ∈ [(n − 1)C + gC, nC] for a
downstream obstruction. For upstream obstructions, if ta falls within this range, then a
shorter path exists that stays at the signal location until time nC, then travels to the
obstruction at speed w′ and continues along the obstruction. Similarly, for downstream
obstructions a shorter path exists that stays at the signal location until time nC, then
travels to the obstruction at speed ∞ and continues along the obstruction.

To see why this is true, consider the upstream obstruction shown in Figure 6b. Let us
calculate the total costs between points O and E using the original obstruction path and
the modified path using Rule 1 for comparison. Note that after point E both the original
and modified paths would be identical. The original obstruction path O−A−C−E has
a total cost of Qm(tOA + tAB + tBC) + QB(tCD + tDE). The modified path defined by
Rule 1, O −B −D −E, has a total cost of Qm(tOA + tAB) +QmtDE . Since tDE ≤ tBC ,
the modified path provides a lower total cost than the original path. Additionally, path
O −B −D −E would have the least cost of all paths connecting points O and E, since
any path must be at least between the beginning and end of the green period (with total
cost (tOA + tAB)QM ) and from the signal location to the obstruction location (with total
cost Qm

d
w′ . A similar comparison can be made to show that this rule also applies for

downstream obstructions (not shown).
Rule 2 (obstruction end): This rule applies if the end of the obstruction lies within

the shaded areas shown in Figure 6c defined as: te ∈ [(n−1)C+gC, nC] for some integer
n for an upstream obstruction; and, te ∈ [(n−1)C+ gC+ d

w′ , nC+ d
w′ ] for a downstream

obstruction. For upstream obstructions, a shorter path exists that leaves the obstruction
location at (n− 1)C + gC, travels to the signal location at speed ∞, and remains there
until the end of the present red period. Similarly, for downstream obstructions, a shorter
path exists that leaves the obstruction location at (n − 1)C + gC − d

w′ , travels to the
signal location at w′, and stays at the signal until the end of the present red period.

The logic behind the rule is the same as before. Consider the costs of the obstruction
path and modified path applying Rule 2 that connect points X and Z shown in Figure 6c.
The obstruction path, X−Y −Z, has total cost QBtXY while the modified path X−W−Z
has total cost 0. As expected, no shorter path can exist that connects these points. A
similar comparison can also be performed for downstream obstructions to verify that the
rule applies in this case as well.

The applicability of the two rules depend entirely on the location of the obstruction,
its start time and duration, and the signal timing settings at the intersection. Each
may act on any real-world obstruction considered based on these parameters. Note that
it is also possible for both rules to be applied simultaneously, as well. We denote the
final obstruction path after applying the two rules the “modified obstruction path” and
its total cost as ∆Zo′ . The difference between ∆ZS and ∆Zo′ , denoted ∆No′ , can be
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(a)

(b)

(c)

Figure 6.: Time-space diagram showing: (a) obstruction path; (b) modified obstruction
path due to Rule 1; and, (c) modified obstruction path due to Rule 2.

expressed as:
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∆No′ =



QmC
(
g
(⌈

te
C

⌉
−
⌊
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C −

d
w′C

⌋)
−min
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C −
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w′C

}
, g
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d
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g −

{
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C

}
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C
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C −

d
w′C

}
> g
)
∗ C

(
1−

{
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C −

d
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})
) upstream obstruction
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(
g
(⌈

te
C + d

w′C

⌉
−
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C
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−min
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C

}
, g
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−

QmC
(

d
w′C + max

(
g −

{
te
C + d

w′C

}
, 0
))
−

QB ∗max(0,min
(⌊

te
C + d

w′C

⌋
C + gC − d

w′ , te
)
− ta−

I
({

ta
C

}
> g
)
∗ C

(
1−

{
ta
C

})
) downstream obstruction

(5)
where I(•) is an indicator function which takes the value 1 if the argument is true and
0 otherwise. This term represents the reduction in cost (i.e., vehicle throughput) due to
the entirety of the obstruction’s presence. Note that when the rules are applied, it might
be possible that no portion of the obstruction path exists along the shortcut provided by
the obstruction. This would occur when the obstruction is entirely contained in the union
of the shaded regions shown in Figures 6b and 6c. In this case, the modified obstruction
path can be entirely ignored because its cost will always be greater than that of the
modified signal path.

4.2.3. Capacity calculation

The capacity of the signal when an obstruction is present can be determined using only
the modified signal and modified obstruction paths.5 This capacity, qc, equals:

qc =
∆Zs −max{∆Ns′ ,∆No′}

nC
(6)

where n is the number of cycles considered in the analysis period; n should be no less than
the number of cycles affected by the obstruction, i.e.,

⌈
te
C

⌉
−
⌈
ta
C −

d
w′C

⌉
for an upstream

obstruction and
⌈
te
C + d

w′C

⌉
−
⌈
ta
C

⌉
for a downstream one.

The binding path also unveils the mechanism that limits capacity the most. If the
modified obstruction path has the lower cost, the obstruction is the most restrictive
bottleneck and queues will form at the obstruction location while it is present (excluding
the portions that are trimmed by Rules 1 and 2). If the modified signal path has the lower
cost, the signal is the bottleneck and the obstruction merely starves vehicle discharge
flows during portions of the signal green periods.

5. Insights and Analysis

Section 5.1 applies the simple recipe from the previous section to develop insights on
the placement and timing of obstructions that can be controlled. Section 5.2 presents
numerical results of these models to examine how various properties of the obstruction
impact capacity. Finally, Section 5.3 shows how this recipe can be used to develop a

5The reader can confirm that the obstruction cannot be used to create any shorter paths than these two.
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simple adaptive signal control strategy to reduce the impact of some obstructions and
demonstrates the potential capacity saving provided.

5.1. Insights on timing and location of obstructions

The first insight pertains to the choice of the obstruction’s location between either up-
stream and downstream of the signal. Debates regarding this choice have long existed;
e.g., researchers have argued where best to locate a bus stop relative to its nearby in-
tersection (Terry and Thomas 1971; Fitzpatrick et al. 1997). Though a comprehensive
comparison is yet to be conducted, the conclusion drawn from this methodology is simple
if the only concern is the impact on the vehicle discharge capacity at the intersection:
if d is given and ta is uniformly distributed over time, an upstream obstruction yields
the same expected capacity as a downstream one. This can be easily proved using our
methodology presented above. Next, we will further scrutinize the effects of d and ta for
two special types of obstructions: short-lasting obstructions and permanent obstructions.

Let us first consider a short-lasting obstruction with S < (1−g)C to determine insights
on its location and potential control measures. Examples of obstructions of this type may
include a pre-signal upstream of the main signal that temporarily stops car movement
to allow buses to change lanes, a bus dwelling at a stop with a low passenger demand or
vehicles egressing from driveways near the intersection. In this case, the modified signal
path would always provide the least cost as the traffic signal is always more restrictive;
i.e., ∆Zs′ < ∆Zo′ . Remember that obstructions only reduce the cost of the signal path
if they occur within the critical region (see again Figures 5a and 5b), and this region
only extends a maximum distance w′gC away from the intersection. Therefore, short
obstructions will never impact capacity if they are located at d > w′gC. If proximity
to the intersection is also desired, the optimal obstruction location to avoid capacity
reduction is d∗ = w′gC.

If further proximity to the intersection is desired, then capacity reductions may occur.
However, these reductions in capacity can be avoided if the obstruction can somehow
be controlled to never occur within the critical region. Knowing the boundaries of this
region, policies could be implemented to move the obstruction start time to periods
when the obstruction will not affect capacity. (For upstream obstructions this start time
is nC+gC, while for downstream obstructions it is nC+gC− d

w′ , for some integer n.) For
example, driveway egress could be controlled with additional signals on the driveways and
parking maneuvers could be prohibited dynamically during these periods. Additionally,
pre-signals could be controlled to never activate during these critical times or buses could
be held upstream and only allowed to arrive to stops near the intersection outside of the
critical region as in Gu et al. (2013). Of course, these latter strategies would impose
some delays onto buses in exchange for increased car capacity. If obstructions cannot be
controlled in this manner, then the methodology could be used to determine the closest
location of the obstruction such that some maximum capacity reduction threshold is
never exceeded.

Now, let us apply the methodology to identify the optimal location of a permanent
obstruction with S = ∞. Examples of obstructions of this type include the elimination
of a travel lane or installation of a bus bulb that impedes car traffic. If d > w

′
gC,

the modified signal and modified obstruction paths never intersect and can be treated
independently. The cost of each path during any cycle is ∆Zs′ = QmgC and ∆Zo′ = QBC,
both of which are independent of d. In this case, the interaction of the obstruction with
the signal does not affect capacity, and the maximum throughput is governed by the more
restrictive of the two bottlenecks. On the other hand, if d < w

′
gC, the modified signal and

modified obstruction paths intersect once per cycle, at the end of every green period; see

13
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Figure 7.: Modified signal path and obstruction path if the obstruction is permanent.

Figure 7. The costs of the two paths during any cycle are ∆Zs′ = QBgC + (Qm−QB) d
w′

and ∆Zo′ = QBC. Notice that ∆Zs′ increases with d but ∆Zo′ is independent of d.
Thus, when d is small, the capacity of the intersection can be increased by moving the
obstruction away from the intersection until the modified signal path has the same cost as
the modified obstruction path; i.e., location d∗ = QB

Qm−QB
(1− g)Cw′. For d > d∗, moving

the obstruction further away does not increase capacity because at these locations the
obstruction serves as the more restrictive bottleneck.

5.2. Numerical Analysis

We now use the previous methodology to quantify the impacts of obstructions on the
capacity of signalized intersections. Dimensional analysis reveals that only five dimen-
sionless parameters are needed to completely characterize a given obstruction: QB

Qm
, ta

C ,
S
C , d

w′C
and g. The first describes the restrictiveness of the obstruction relative to the

roadway segment. The second and third describe the start time and length of the ob-
struction, respectively. The fourth describes the location of the obstruction, and the fifth
is just the fraction of green time available in the direction of interest. The capacity loss
due to the obstruction can also be expressed dimensionlessly as the equivalent number
of cycles worth of vehicle discharge lost due to the obstruction’s presence. This term is

equal to max{∆Ns′ ,∆No′}
QmgC .

Figure 8 presents the expected dimensionless capacity reduction for upstream obstruc-
tions located various distances away from the signal and lasting for various durations.
For these calculations, we assume that the obstruction start time is uniformly distributed
over the length of a cycle.

The capacity reductions can be quite significant: up to 6 cycles worth of vehicle
throughput lost due to the obstruction for the parameters shown in Figure 8. As ex-
pected, longer lasting obstructions and obstructions closer to the signal provide a larger
reduction in capacity. Figure 8 shows that the range of locations that cause a capacity
reduction is a function of both QB

Qm
and g. As the obstruction gets more restrictive (lower

QB

Qm
), the range of locations at which it can affect signal capacity increases significantly,

and as the signal becomes more restrictive (lower g), the range of locations decreases.
The expected capacity reduction is also non-linear with respect to the distance of the
obstruction from the signal, d. When d is small, increasing d can significantly reduce
the capacity loss incurred by the obstruction (especially when S/C is large). However,
this benefit almost vanishes when d is large. This highlights that significant capacity
benefits can be achieved by moving nearby obstructions just a short distance away from
signalized intersections.

These results are robust even when the actual, dimensionless duration of the obstruc-
tion is random and drawn from a distribution with mean S

C . Numerical simulations
confirm that the expected capacity reductions presented in Figure 8 do not change sig-
nificantly even if the variation in duration is as much as 50% of the mean value S

C .
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Figure 8.: Numerical results for capacity reduction over a 10-cycle period.

5.3. An adaptive signal control strategy to improve capacity

The analyses presented in Section 5.1 and 5.2 demonstrate that the location and timing
of an obstruction can significantly impact the capacity of a signalized intersection, and
that these impacts can be reduced or eliminated if harmful obstructions can be moved
in space and time. Unfortunately, this may not always be possible or feasible for certain
types of obstructions. Instead, it might be more practical to adjust the signal timing
dynamically when an obstruction is present to mitigate some of its negative impacts. We
propose here a simple strategy to demonstrate how the recipe presented in this paper
can inform this dynamic signal control and illustrate the potential benefits.

Assume now that the obstruction can be detected when it starts to impede traffic. An
example of this might be a GPS-enabled bus dwelling at a curbside stop. Also assume
that the obstruction lasts at most one cycle (S ≤ C). Equations (4) and (5) can be used
to verify that for many realistic situations the obstruction’s impact will be fully described
by the modified signal path under very mild but realistic assumptions.6

As discussed in Section 4.2, capacity reductions will occur only if the obstruction
penetrates the critical region shown in Figure 5a. By changing the signal timing, the
negative effects of these capacity reductions can be mitigated. Many different strategies
can be developed considering different objectives. We now develop one simple strategy

6Here we consider cases in which one lane of a multi-lane intersection approach is blocked by the obstruction
(i.e., QB/Q > 1/2) and g ≈ 0.5.
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for illustration purposes.
If the cross-street approach is undersaturated, then the adaptive signal control could

focus on minimizing the capacity lost on the approach of interest. To achieve this goal,
the entire green phase of the cycle after the obstruction begins can be delayed by some
amount δ to ensure that the the critical region is never penetrated by the obstruction; see
Figure 9. By moving the green period by this amount, the critical region moves forward
in time by the same amount. Delaying the green time in this way would eliminate the
capacity reduction caused during the cycle after the obstruction begins.

Figure 9.: Time-space diagrams showing the simple adaptive signal control scheme. When
the end of an obstruction may penetrate the critical region (unshaded dotted area), signal
timing is changed to move the critical region to minimize this penetration.

In most realistic cases, the value of S will never be known a priori; thus, the value of δ
required to minimize the obstruction’s impact could not be exactly determined. However,
if the maximum duration of the obstruction, Smax, was known, the same strategy could
be applied by delaying the green period to account for the longest-lasting obstruction
expected. Using the maximum duration accounts for the worst-case obstruction, and
ensures that the adaptive signal control scheme eliminates any capacity loss incurred
due to the obstruction during the second cycle. Of course, such a strategy might result
in unrealistically short red periods after the delayed green if a constant cycle length
is maintained. Realistically, a minimum red period might be required to serve vehicles
in the cross-street direction. Thus, the strategy can be further modified by including a
minimum time for the shortened red period, rmin. Using this logic, the amount of delay
to the green period for an upstream obstruction is:7

δ =


min [max (ta + Smax − d/w − C, 0) , (1− g)C − rmin] upstream

min [max (ta + Smax − C, 0) , (1− g)C − rmin] downstream

(7)

The primary drawback to accounting for a minimum red duration is that some ob-
structions might still impact capacity during the second cycle. Thus, a trade-off exists
between the flexibility of the signal timings (i.e., rmin) and the increase in capacity if a
constant cycle length is to be maintained8. For a given upstream obstruction, the capac-

7A similar equation can be developed for a downstream obstruction, but this is omitted for brevity.
8Additional signal timing strategies could be developed using flexible cycle lengths. However, for simplicity, we
maintain this assumption here.
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ity recovered when using the adaptive signal control scheme (as compared to when the
obstruction limits capacity), measured in units of additional vehicle discharge, is:

∆Ng = (Q−QB)



mid (0, (1 + g)C + δ − ta − S, gC − d/w)−
mid (0, (1 + g)C − ta − S, gC − d/w)− upstream

mid (0, (1 + g)C + δ − d/w − ta − S, gC − d/w)−
mid (0, (1 + g)C − d/wta − S, gC − d/w)− upstream

(8)

Figure 10 presents numerical results that quantify the fraction of the capacity loss
that may be recovered using the adaptive signal control scheme described for various
obstruction locations and values of rmin. The following parameters were used to create
this figure: g/C = 0.5, S/C ∼ U(0.8, 1.0) and QB/Q = 0.5, and the obstruction start time
was uniformly distributed over the length of a cycle. Note that the capacity benefits can
be significant: up to 20% of the capacity of a single cycle. The expected benefits decrease
linearly with the obstruction’s distance from the intersection, and the fraction of a cycle
required as a minimum red period. As expected, when the minimum red time is equal to
the red time used when signal timings are fixed (in this case, when rmin/C = 1−g = 0.5),
no benefits can be provided as there is no signal flexibility.

Figure 10.: Fraction of capacity loss avoided using adaptive signal control scheme.

6. Concluding Remarks

We have applied the variational theory of kinematic waves in a moving-time coordinate
system to examine the impact of obstructions on the capacities of nearby signalized in-
tersections. A simple recipe to calculate the capacity of an intersection when a roadway
obstruction is present was developed. The recipe is general, requires very few calcula-
tions, and can be applied to obstructions of any type, duration and location, including
both upstream and downstream of the intersection. Thus, it provides a more complete
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picture of how intersection capacity might be affected by nearby obstructions. From the
recipe, we further develop capacity formulae for an arbitrary obstruction. These formu-
lae can be readily used by practitioners for estimating an intersection’s vehicle discharge
capacity when a nearby obstruction is present, and perhaps eventually even be incorpo-
rated into future versions of the Highway Capacity Manual software and methodology.
Furthermore, these formulae can be used to assess the impacts of randomly occurring
capacity disruptions, such as on-street parking maneuvers. Monte Carlo techniques can
be applied where stochastic parameters (e.g., start time of obstruction, location and du-
ration) can be randomly drawn from known or assumed distributions to estimate the
expected capacity loss at these locations.

The recipe and resulting capacity formulae can also be used to determine the optimal
locations for various obstructions to provide the highest signal capacity while simultane-
ously allowing the obstruction to be as close to the intersection as possible. The latter
is often desirable; e.g., transit agencies prefer to place bus stops near intersections to fa-
cilitate passenger transfers between bus lines and protected street crossings (Fitzpatrick
et al. 1996). For short obstructions, the variational theory methodology can be used to
devise strategies to place obstructions even closer to the intersection if their start times
can be controlled. If they cannot be controlled, signal timings may be adjusted dynami-
cally to reduce the impacts of these obstructions. These strategies can easily be extended
to obstructions with longer durations.

Our models are limited in that they assume the fundamental diagram is triangular, ig-
nore the impact of turning traffic and the interaction of multiple signals in series (as would
occur along a signalized arterial with closely spaced intersections). The former is assumed
to obtain simple cost functions in a moving-time coordinate system. However, numerous
studies have suggested that the triangular fundamental diagram is appropriate to de-
scribe traffic on links (e.g., see Newell 1993; Cassidy 1998). Additionally, turning traffic
at the intersection would have little impact on the solution for obstructions upstream
of the intersection if dedicated turn lanes are not present. For obstructions downstream,
vehicles turning off of the segment of interest might reduce the capacity loss incurred
during the green phase of the signal while vehicles turning onto the segment during the
red phase might increase the capacity loss. These effects are likely to be small and cancel
each other out, especially for the critical cases when the obstruction is near the intersec-
tion. Furthermore, the variational theory method can be easily extended to consider two
(or more) signalized intersections in series with an obstruction between them. However,
by considering an isolated location the impacts of obstructions at signalized intersections
can be analyzed in depth and the different interactions between obstruction location and
capacity can be fully understood. This approach of initially focusing on an isolated in-
tersection to fully comprehend the problem is often taken in the literature (Guler and
Cassidy 2012; Gu et al. 2013; Guler and Menendez 2014; Gu et al. 2014). Using this com-
prehensive understanding of the problem, current work is being performed to consider
intersections in series to provide insights on the impact of obstructions in more general
settings. Additionally, this method can be used to model left- and right-turning lanes
that might exist by treating these as a separate (independent) approach. Further work is
required to model how congestion on through lanes might impact the capacities of left-
and right-turning lanes, and vice versa.
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7. Appendix A: List of variables

Variable Meaning
C cycle length [time]
δ additional red time applied in adaptive signal strategy [time]

∆Ng recovered vehicle discharge when applying adaptive signal strategy [veh]
∆N ′O cost reduction on modified obstruction path over signal path [veh]
∆N ′S cost reduction on modified signal path over signal path [veh]
∆Z ′O cost of modified obstruction path [veh]
∆ZS cost of modified signal path [veh]
∆ZS cost of signal path [veh]
d distance of obstruction from intersection [dist]

d∗ critical distance over which capacity is not improved by moving
obstruction further away from signal [dist]

g green ratio
kj jam density [veh/dist]
n number of cycles considered in anaylsis period
Qb reduced capacity at obstruction [veh/time]
qc capacity of signal considering impacts of obstruction [veh/time]
Qm roadway capacity [veh/time]

r′(u′)
cost function used in variational theory, applied in moving-time
coordinate system

r(u) cost function used in variational theory
S obstruction duration [time]

Smax maximum duration of obstruction

ta
starting time of obstruction measured in moving-time coordinate system
[time]

te
ending time of obstruction measured in moving-time coordinate system
[time]

u speed of observer path [dist/time]
u′ speed of observer path in moving-time coordinate system [dist/time]
vf free flow speed [dist/time]
−w backward wave speed [dist/time]
−w′ backward wave speed in moving-time coordinate system [dist/time]

19



March 3, 2015 Transportmetrica B: Transport Dynamics Obstructions*Paper*-*v4

References

Box, P., 2004. Curb-parking problems: Overview. ASCE Journal of Transportation Engineering
Practitioners Forum 130(1), 1–5.

Cao, J., Vasileios, N., Menendez, M., 2013. On-street parking near intersections: Effects on traffic,
in: 13th Swiss Transport Research Conference.

Cassidy, M.J., 1998. Bivariate relations in nearly stationary highway traffic. Transportation
Research Part B 32(1), 49–59.

Chiabaut, N., Xie, X., Leclercq, L., 2012. Road capacity and travel times with bus lanes and
intermittent priority activation. Transportation Research Record 2315, 182–190.

Christofa, E., Skabardonis, A., 2011. Traffic signal optimization with application of transit signal
priority to an isolated intersection. Transportation Research Record 2259, 192–201.

Daganzo, C., 2005a. A variational formulation of kinematic waves: Basic theory and complex
boundary conditions. Transportation Research Part B 39(2), 187–196.

Daganzo, C., 2005b. A variational formulation of kinematic waves: Solution methods. Trans-
portation Research Par B 39(10), 934–950.

Daganzo, C., Geroliminis, N., 2008. An analytical approximation for the macroscopic fundamental
diagram of urban traffic. Transportation Research Part B 42, 771–781.

Daganzo, C., Menendez, M., 2005. A variational formulation of kinematic waves: Bottleneck
properties and examples, in: 16th International Symposium on Transportation and Traffic
Theory.

Dijkstra, E., 1959. A note on two problems in connexion with graphs. Numerische Mathematik
1, 269–271.

Fitzpatrick, K., Hall, K., Finley, M., Farnsworth, S., 2002. Alternative bus stop configuration:
An analysis of the effect of bus bulbs. Journal of Public Transportation 5(1), 19–37.

Fitzpatrick, K., Hall, K., Perkinson, D., Nowlin, L., 1997. Location and design of bus stops. ITE
Journal 67(5), 36–41.

Fitzpatrick, K., Hall, K., Perkinson, D., Nowlin, L., Koppa, R., 1996. Guidelines for the location
and design of bus stops. TCRP Report 19.

Gayah, V., Daganzo, C., 2012. Analytical capacity comparison of one-way and two-way signalized
street networks. Transportation Research Record 2301, 76–85.

Geroliminis, N., Boyaci, B., 2012. The effect of variability of urban systems characteristics in the
network capacity. Transportation Research Part B 46(10), 1607–1623.

Girianna, M., Benekohal, R., 2002. Dynamic signal coordination for networks with oversaturated
intersections. Transportation Research Record 1811, 122–130.

Gu, W., Cassidy, M., Gayah, V., Ouyang, Y., 2013. Mitigating negative impacts of near-side bus
stops on cars. Transportation Research Part B 47(1), 42–56.

Gu, W., Gayah, V.V.,Cassidy, M.J., Saade, N., 2014. On the impacts of bus stops near signalized
intersections: Models of car and bus delays. Transportation Research Part B, in press.

Guler, S.I., Cassidy, M., 2012. Strategies for sharing bottleneck capacity among buses and cars.
Transportation Research Part B 46(10), 1334–1345.

Guler, S.I., Menendez, M., 2014. Analytical formulation and empirical evaluation of pre-signals.
Transportation Research Part B 64, 41-53.

Kim, W., Rilett, L., 2005. Improved transit signal priority system for networks with nearside bus
stops. Transportation Research Record 1925, 205–214.

Leclercq, L., Laval, J., Chiabaut, N., 2011. Capacity drops at merges: An endogenous model.
Transportation Research Part B 45(9), 1302–1313.

Leclercq, L., Geroliminis, N., 2013. Estimating MFDs in simple networks with route choice, in:
Procedia-Social and Behavioral Sciences 80.

Lighthill, M., Whitham, G., 1955. On kinematic waves. I: Flow movement in long rivers. II: A
Theory of traffic flow on long crowded roads. Proceedings of the Royal Society 229, 281–345.

Miller, A., 1963. Computer control system for traffic networks, in: Proceedings of the 2nd Inter-
national Symposium on Theory of Traffic Flow.

Newell, G., 1993. A simplified theory of kinematic waves in highway traffic, parts I-III. Trans-
portation Research Part B 27(4), 281–313.

20



March 3, 2015 Transportmetrica B: Transport Dynamics Obstructions*Paper*-*v4

Richards, P., 1956. Shock waves on the highway. Operations research 4, 42–51.
Robertson, D., Bretherton, R., 1974. Optimal control of an intersection for any known sequences

of vehicle arrivals, in: Proceedings of the 2nd IFAC-IFIP-IFORS Symposium on Traffic Control
and Transport Systems.

Roess, R., Prassas, E., McShane, W., 2004. Traffic Engineering. Prentice. 4th edition.
Shelby, S., 2004. Single-intersection evaluation of real-time adaptive traffic signal control algo-

rithms. Transportation Research Record 1867, 183–192.
Terry, D., Thomas, G., 1971. Farside bus stops are better. Traffic Engineering 41(3), 21–29.
TRB, 2010. Highway Capacity Manual. Transportation Research Board.
Wu, J., Hounsell, N., 1998. Bus priority using pre-signals. Transportation Research Part A 32(8),

563–583.
Xuan, Y., Gayah, V., Cassidy, M., Daganzo, C., 2012. Using a pre-signal to increase bus- and car-

carrying capacity at intersections: Theory and experiment. Transportation Research Record
2315, 191–196.

Yannis, G., Golias, J., Antoniou, C., 2006. Effects of urban delivery restrictions on traffic move-
ments. Transportation Planning and Technology 29(4), 295–311.

Ye, X., Chen, J., 2011. Traffic delay caused by curb parking set in the influenced area of signalized
intersections, in: 11th International Conference of Chinese Transportation Professionals.

21




