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Abstract Cascade irradiation of metals gives rise to swel-
ling as a result of the creation of voids and the evolution of
the void ensemble. Under suitable circumstances, the origi-
nally disordered void distribution transforms into to a void
lattice. As demonstrated previously, the understanding of
the evolution and the unique features of the void ensem-
ble requires a difference in the anisotropy of the diffusion
(DAD) of vacancies and self-interstitial atoms (SIAs), which
is achieved by one-dimensional diffusion of the SIAs. On
the other hand, void swelling has been successfully mod-
eled in terms of three-dimensional diffusion of both vacan-
cies and SIAs. In the present paper it is shown that these
seemingly contradicting interpretations and all related ob-
servations can be quantitatively reconciled by a small DAD
created by only ∼1% of SIAs diffusing one-dimensionally.
It is also demonstrated that at the initial stage of void-lattice
formation, ordering occurs mainly on close-packed crystal
planes, which is in contrast to the naïve expectation that one-
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dimensional diffusion of SIAs should result in a void order-
ing along close-packed directions. Finally it is found that,
in the case of a small DAD, voids annihilate via stochastic
shrinkage much faster than by coalescence. This falsifies the
argument in the literature that one-dimensional diffusion of
SIAs would necessarily lead to the coalescence of voids and
destabilization of the void lattice.

PACS 61.80.Az · 61.80.Hg · 61.72.Cc

A difference between the anisotropies of diffusion of va-
cancies and self-interstitials (henceforth called Diffusional
Anisotropy Difference or, briefly, DAD) gives rise to a bias
that plays an important role in the irradiation-induced evo-
lution of microstructures in metals. Based on Gösele’s work
[1] on reaction kinetics, the DAD effect was first introduced
by Woo and Gösele [2] to explain irradiation growth. Later
irradiation creep and void-lattice formation were interpreted
in terms of DAD by Woo [3] and Woo and Frank [4], re-
spectively, before DAD has been promoted to an important
concept in the treatment of irradiation damage in non-cubic
metals by Woo [5, 6].

The role played by DAD in the irradiation-induced trans-
formation of a void ensemble from a randomly distributed
collection to a highly ordered void lattice was summarized
by Woo and Frank [7]: “. . . the one-dimensional migration
of the (interstitial) crowdions. . . is in marked contrast to
the three-dimensional diffusion of the dumbbell interstitials
and the vacancies. This diffusional anisotropy difference be-
tween the crowdions and vacancies provides the source of
ordering via a Darwinian selection among randomly distrib-
uted voids.” Hence, the strength of DAD is important to the
behavior of a void ensemble under irradiation, and at the
same time, the evolution of the void ensemble reflects the
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nature and properties of the point defects introduced by ir-
radiation.

In recent Monte Carlo simulations (MCS) of the behav-
ior of void ensembles under irradiation [8–10], it is as-
sumed that all or nearly all self-interstitials migrate one-
dimensionally along close-packed crystallographic direc-
tions over distances which are much larger than the aver-
age separation of interstitial sinks. This category of self-
interstitial atoms will be referred to as 1-D SIAs. By con-
trast, self-interstitials that change their directions of motion
much more frequently behave as 3-D diffusers. Examples
of perfect 3-D SIAs are the dumb-bell configurations in cu-
bic metals, which may change their direction of motion after
every elemental diffusion step.

In fcc metals, except Au, the dumb-bell configuration is
a self-interstitial ground state, whereas the crowdion config-
uration is an excited metastable state [11]. It is important to
realize that although the crowdion population increases at
the expense of the dumb-bell population as temperature in-
creases, there is simultaneously a decrease in the 1-D char-
acter of the diffusion of the SIAs because the frequency of
thermal conversions between the two interstitial configura-
tions also increases quickly as temperature increases. This
leads to a much shortened mean free path of crowdion dif-
fusion in a given direction.

Using many-body potentials, Foster et al. [12] found that
the self-interstitial ground states of bcc metals Ta, Cr, and
W also took the crowdion configuration. Recent density-
functional calculations of Derlet et al. [13] confirmed these
findings for most bcc metals. Similar to fcc metals, tem-
perature increase leads to a decrease of the fraction of 1-D
SIAs. Due to an increase in the frequency of thermal reori-
entations to other close-packed directions as temperature in-
creases, the crowdion mean free path in a given direction is
also much shortened.

The strength of the DAD bias increases with the propor-
tion of 1-D SIAs in the SIA population. Most void-swelling
models that have stood the test of decades of experiments
are implicitly based on 3-D SIA kinetics without the DAD
bias. Void-lattice formation, on the other hand, requires the
operation of the DAD bias associated with the 1-D SIA ki-
netics, as has been demonstrated convincingly by Woo and
Frank [7]. Since the action of a large DAD bias may pro-
duce a very different void-swelling behavior [7], the appar-
ent conflict has to be resolved. The fact is, as we will show in
subsequent discussions, that unless the 1-D character of the
SIAs is substantially reduced, so that the “1-D” features of
the void ensemble are sufficiently mellowed, its “3-D” char-
acter cannot be stable. In this regard, Semenov and Woo [14]
found that a sufficiently strong driving force for void-lattice
formation can be provided by just a small fraction of 1-D
SIAs. The subject of this paper is to determine quantitatively
the fraction of 1-D SIAs that is sufficiently small to provide

the near-3-D kinetics required for void swelling but, on the
other hand, sufficiently large to produce the DAD effect re-
quired for void-lattice formation. Without loss of generality,
we restrict ourselves to cubic metals.

1 Background issues

1.1 Void-growth saturation due to 1-D SIAs

When all self-interstitials are 1-D SIAs, the interstitial flux
to a void is proportional to the void surface, whereas the
flux of the 3-dimensionally diffusing vacancies to a void
is proportional to the void radius [4]. Hence, the influx of
SIAs into the voids increases faster than the vacancy influx
when a critical void size is exceeded. With increasing void
size the net vacancy influx decreases monotonically to zero,
with the void radius finally saturating at a stationary value
determined by the absorption cross section of dislocations
for 1-D SIAs [4, 14, 15]. Further void growth gives rise to
an increase of the interstitial absorption rate at the voids at
the expense of the interstitial absorption at dislocations. In
this way, the net influx of vacancies into voids is reduced to
zero, and void growth comes to a halt.

When the 1-D SIA component is negligibly small, the
evolution of a void ensemble is exclusively governed by
the conventional dislocation bias [16]. In this case, the void
ensemble remains random, and void growth does not satu-
rate. The interesting case occurs when the 1-D SIA compo-
nent is small but non-negligible, and the void sink strength
k2
c is much larger than the dislocation density ρ, e.g.,

ρ/k2
c ∼ 10−2. As pointed out in [14], void growth tends

to saturate under such circumstances, and a random void
distribution may become unstable. Indeed, in this case, a
small 1-D SIA fraction of only 10−2 is still sufficiently large
to induce a phase transition to form a void lattice. If self-
interstitials are predominantly of the 1-D SIA type, the void
growth behavior will be dictated by DAD bias, and swelling
will saturate irrespective of the spatial distribution of the
void ensemble [4].

In the latter case, the ratio of the saturation radius of
voids in a lattice to that in a random ensemble is related
to the void lattice parameter by tanh−1(L/2λ) [14], where
L is the nearest-neighbor distance in the void lattice, and λ

is the mean free path of the 1-D SIAs between consecutive
changes of their directions of motion. It is experimentally
established that the sizes of voids in a lattice and in a ran-
dom assembly at a given temperature are comparable, i.e.,
λ ∼ L [17–20]. This is in line with MCS results of Heinisch
and Singh [8], who found that, for void-growth characteris-
tics coming close to those observed experimentally, λ should
be less than 2L.

In contrast, the more recent MCS calculations of Heinisch
and Singh [9] found that to produce a void lattice, the mean
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free path of the 1-D SIAs has to be at least about four times
nearest-neighbor distance of the void-lattice, and the sim-
ulated void lattice formed is still far less well defined than
the experimental ones even in this case. This result corre-
sponds to a value of tanh(L/2λ) ∼= 1/8, which implies that
random voids have to be much smaller in this case. This is
a condition caused by the dominance of the 1-D migrating
self-interstitials assumed, because with a smaller concen-
tration of “1-D” SIAs, their mean free path λ can be much
larger than the average distance between voids without se-
riously affecting the behavior of the random void ensemble,
as suggested in [14].

1.2 Displacive instability due to 1-D SIAs

The displacive stability of a void lattice in the case of 1-D
SIA diffusion is another important issue, which has been
investigated and confirmed by Woo and Frank [21]. How-
ever, Evans [10] found that a void asymmetrically located
between nearest-neighbor voids in a close-packed direction
receives unequal 1-D SIA fluxes through its opposite faces
and thus is driven towards the closer of the two nearest
neighbors. Accordingly, any incomplete void-lattice patches
formed by chance would be destabilized as a result of co-
alescence, before a highly symmetrical, stable void lattice
can develop.

This argument may seem plausible but has two major
flaws. Firstly, at high-symmetry sites, where the coalescent
forces are balanced [22], the probability of void nucleation
is exponentially higher and may exceed by orders of mag-
nitude the void nucleation probability in any other regions
[14], including Evans’ “relatively empty space” [23]. Sec-
ondly, by assuming that all or nearly all self-interstitials
migrate one-dimensionally along close-packed crystallo-
graphic directions, Evans may have considerably underes-
timated the effect of void shrinkage arising from the sto-
chastic nature of the point-defect fluxes to the voids. As a
result, the lifetimes of all voids in Evan’s calculation, irre-
spective of where they have been nucleated, could be much
over-estimated, so that most voids last too long for coales-
cence to be important. It is indeed the proportion of 1-D
SIAs, and hence the strength of DAD, which controls the
relative strength of the two effects and thus the evolution of a
void ensemble. Semenov and Woo showed that the probabil-
ity of survival of a void against stochastic shrinkage depends
exponentially on the net vacancy influx [14, 25]. Obviously,
this is in turn controlled by the proportion of 1-D to 3-D
SIAs. Hence, the DAD strength drastically affects both the
lifetime and the number density of the voids. For instance, a
decrease of the 1-D SIA portion leads to a reduction of the
void lifetime due to stochastic shrinkage, so that a void may
disappear before it has a chance to coalesce with an aligned
nearest neighbor void. In such a case, coalescence cannot
significantly influence void-lattice formation.

In the subsequent detailed analysis of this paper it will
be shown that, contrary to intuition, void nucleation is the
least probable in this “relatively empty space” that is “un-
shaded” against point-defect fluxes and that stochastic void
shrinkage caused by fluctuations of the point-defect fluxes
due to the randomness of diffusion jumps and cascade initi-
ation may compete very effectively against void coalescence
[24–26]. Related issues will also be explored for various
phases of evolution of the void-ensemble. In this investiga-
tion, vacancy emission from voids will be neglected, since in
most metals, e.g., molybdenum [27], this process is not im-
portant at the temperatures at which void-lattice formation
takes place [26].

2 Void number density and size distribution of a
random ensemble

To clarify the foregoing issues, we first consider the effect of
the strength of the DAD bias on the saturation void size and
void-number density of a random void ensemble. The num-
ber density and size distribution of a void ensemble under
irradiation is directly related to void nucleation, which es-
sentially constitutes void growth from small void embryos.
Since the evolution of small embryos can be significantly
affected by the stochastic fluctuations, their effects cannot
be neglected. Semenov and Woo [28, 29] derived a Fokker–
Planck-type equation that describes the time evolution of a
void ensemble via its size-distribution function f (n, t) with
the account of the stochastic effects due to the random nature
of both the migratory jumps of point defects and cascade ini-
tiation:

∂f (n, t)

∂t
= − ∂

∂n

{
V (n) − ∂

∂n
D(n)

}
f (n, t)

+ j0δ(n − n0), (1)

where the size of a void is defined by the number n of va-
cancies in the void. V (n) is the mean-field-theory-type void
growth rate, and D(n) is the diffusivity that governs the “dif-
fusive spread” of the void-size distribution due to stochas-
tic fluctuations. D(n) is related to the average point-defect
fluxes and cascade properties and, in the absence of vacancy
emission, has the following analytic form [28, 29]:

D(n) = 3n1/3

2a2
(DvCv + DiCi) + 3GNd

4ak

[
1 + (1 − εi)

2]n2/3

≡ dsn1/3 + dcn2/3. (2)

Here Dj and Cj are respectively the diffusion coefficient
and the concentration of the j -type point defects, (j = i

for the 3-D SIAs, j = v for vacancies), G is the effective
generation rate of point defects, Nd is the average number
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of point defects generated in a single cascade, k2 is the to-
tal sink strength for three-dimensionally diffusing point de-
fects, a = (3�/4π)1/3, and � is the atomic volume, which
in the following is taken to be 1.34 × 10−29 m−3 corre-
sponding to molybdenum. The superscripts s and c denote
the two different origins of stochasticity considered here,
namely, the random migratory jumps and random cascade
initiations, respectively. Finally, (1 − εi) is the fraction of
mobile 3-D SIAs. For convenience, we assume in the present
paper that all other self-interstitials are 1-D SIAs, i.e., there
are no immobile SIA clusters, or, in the terminology of
Woo and Singh [30], the production bias is switched off.
Under these circumstances, εi is a measure of the strength
of DAD.

Since the total void-number density must be finite and
small vacancy clusters consisting of two or three vacancies
are mobile, i.e., voids below a minimum size nmin are con-
sidered to have exited the void ensemble, the kinetic equa-
tion (1) has to satisfy the following boundary conditions:

f (n = nmin, t) = 0, f (n → ∞, t) → 0. (3)

Three-dimensional vacancy clusters which are still small
(n ∼ nmin + 1) but immobile (microvoids) are homoge-
neously produced either directly in the collision cascades
[31–33] or via the consecutive agglomeration of single va-
cancies. This is taken into account by the source term j0

in (1), where the δ-function represents the assumption that
initially all microvoids are of the same size n0(= nmin + 1).

The conditions when DAD bias is a major driving force
for void growth are investigated in [14]. Following that ref-
erence, the mean-field void growth rate V (n) governed by
the 1-D SIAs can be written in terms of the mean-field void
saturation size ns as

V (n) = 3n1/3Gεi

a2k2

(
1 − n1/3

n
1/3
s

)
≡ νn1/3

(
1 − n1/3

n
1/3
s

)
. (4)

A void larger than ns absorbs more interstitials than va-
cancies. The stationary void-size distribution f (n) from the
solution of (1) satisfying n ≥ n0 and the boundary condi-
tions (3) is given by [14]

f (n) = j0(n0 − nmin)

D(n)
exp

[∫ n

n∗
V (n′)
D(n′)

dn′
]

= j0(n0 − nmin)

νn
1/3
s

χ(n/ns)

ns

, (5)

where

χ(x) = exp{[I1(x) − I2(x) − I1(n
∗/ns) + I2(n

∗/ns)]/γc}
(γsx1/3 + γcx2/3)

,

nmin ≤ n∗ ≤ n0, (6)

I1(x) = 3

2

(
γs

γc

)2[(
γc

γs

x1/3 − 1

)2

+ 2 ln

(
γc

γs

x1/3 + 1

)]
,

(7)

I2(x) =
(

γs

γc

)3(
γc

γs

x1/3 − 1

)3

+ 3γs

2γc

x2/3

− 3

(
γs

γc

)3

ln

(
γc

γs

x1/3 + 1

)
. (8)

The parameters γs and γc are related to ds and dc in (2)
according to

γs = ds

νns

∼= 1

εins

, (9)

γc = dc

νn
2/3
s

= akNd

4εin
2/3
s

[
1 + (1 − εi)

2]. (10)

From (5) one can readily calculate the void number density
Nc, the void sink strength k2

c , and the swelling S of the sta-
tionary state as a function of εi and ns :

4πNcrs

�k2
= j0

εi

∫ ∞

n0/ns

χ(x) dx, (11)

k2
c

k2
= j0

εi

∫ ∞

n0/ns

x1/3χ(x)dx ≤ 1, (12)

3S

k2r2
s

= j0

εi

∫ ∞

n0/ns

xχ(x) dx. (13)

In (11) to (13), rs = an
1/3
s , the difference n0 − nmin is taken

to be unity, and, if one may neglect the formation of mi-
crovoids by the agglomeration of single vacancies, the spa-
tially homogeneous rate of microvoid generation j0 is sim-
ply given by qG/Nd , where q is the formation probability of
small immobile three-dimensional vacancy clusters in colli-
sion cascades. Thus, through the dependence of V (n) on εi

in (4), one can already see that the number density and size-
distribution of the void ensemble depend on the strength of
DAD.

The right-hand side of (12) can be expressed as a func-
tion of the total void-number density Nc, using the ratio of
expressions (11) and (12). This function is shown in Fig. 1a
for various values of ns (or the corresponding radius rs) and
the fractions εi of 1-D SIAs. According to experimental ob-
servations in molybdenum [17, 34], niobium [19], and nickel
[35], the voids dominate the point-defect sinks during the
process of void-lattice formation. Therefore, in Fig. 1a the
actual void concentrations for various parameter sets can be
read off from the intersections of the corresponding curves
with the horizontal line k2

c /k2 = 1.
When the proportion of 1-D SIAs varies between its ex-

tremes, qualitative change of the saturation void size oc-
curs. As already mentioned in Sect. 1.1, for a SIA popu-
lation that is predominantly 1-D SIAs, the saturation void
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Fig. 1 (a) k2
c /k2 (from (12)) as a function of the total void number

density Nc for various values of εi and rs (or ns ). (b) The same as (a)
for various values of the total void swelling S

size is determined by the absorption cross section of dis-
locations for the 1-D SIAs [14, 15]. On the other hand, it
was also shown that if the fraction of 1-D SIAs is small,
the mean-field void growth would not saturate until the
sink strength of voids becomes much larger than that of
dislocations [14]. Before that stage is reached, the DAD
effect is negligible, and the void growth is governed by
the conventional dislocation bias, and the 1-D SIAs do not

Fig. 2 Using the results of Figs. 1a and 1b, the total void number den-
sity Nc is plotted as a function of rs for various values of εi . The cor-
responding swelling for some data points is also shown

have significant effects on the evolution of the void ensem-
ble. According to [14], as the void sink strength increases
and exceeds the dislocation sink strength, void growth pro-
gressively slows down and eventually stops. The saturation
void size depends on the accumulated swelling S as a re-
sult.

In Fig. 1b, k2
c /k2 is plotted as a function of the void num-

ber density for various values of S according to (12). Sim-
ilarly to Fig. 1a, the corresponding void concentration Nc

and saturation void size ns are determined from the intersec-
tions of the corresponding curves with the k2

c /k2 = 1 line.
According to this figure, the increase in swelling is more
due to the increase of Nc, i.e., nucleation of new voids, than
the increase of ns , i.e., growth of existing ones. This trend
is independent of the values of εi and only reflects that the
growth of smaller voids is favored over the larger ones due
to the quadratic increase of 1-D SIA absorption with void
size.

We summarize the results in Figs. 1a and 1b in Fig. 2,
where we plot the void-number density Nc as a function
of the mean-field saturation radius rs , for the two values of
εi (0.5 and 0.01). The corresponding values of saturation
swelling for the data points are also shown. It is clear from
Fig. 2 that the characteristics of the void ensemble are very
sensitive to the strength of DAD as measured by the value of
εi . For a strong DAD (εi = 0.5), a super-high void-number
density of ∼1026 m−3 is required to satisfy saturation sizes
even as small as rs = 1.5 to 2.0 nm. Even with such small
voids, the saturated swelling (S ∼= Ncns) would be on the
order of 100%, much too large in comparison with experi-
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mental void-swelling in this temperature range, which sel-
dom exceeds a few percent [17, 19, 20, 27, 34, 36]. For a
weak DAD corresponding to εi ∼ 10−2, on the other hand,
Fig. 2 shows that void number densities of 1022–1023 m−3

(∼10−6 atomic unit) are easily obtained with saturation void
radii of ∼2 nm, producing swellings on the order of only a
few tenths of 1%. This is typical of experimental observa-
tions at temperatures for which vacancy emission is negligi-
ble [17, 20, 27, 37].

The ultra-high total void-number density for strong DAD
is understandable when the probability of void survival is
taken into account. This probability can be described in
terms of the characteristic times τD ≈ n2/D(n) and τV ≈
n/V (n) via the ratio τD/τV , where τD and τV are respec-
tively the characteristic times of stochastic void shrinkage
and void growth due to net vacancy influx (see (5)). The
value of τD/τV is directly proportional to εi , a measure
of the DAD strength. A high value of τD/τV indicates a
high probability of void survival. For a value of εi = 0.5,
the net mean-field vacancy flux to the smaller voids is so
high that τV is much shorter than τD , producing a driving
force for the growth of microvoids, which far exceeds the
stochastic forces that drive their shrinkage. It is the result-
ing high void nucleation rate that produces the high void-
number density.

It should be noted that the value of q = 10−2 used in
these calculations means that in 100 cascade events only one
immobile three-dimensional vacancy cluster is created on
the average. This assumption already corresponds to the low
end of the range of results obtained in molecular-dynamics
simulations of collision cascades [31, 38, 39]. It is clear from
Fig. 1a that the unrealistically high values of swelling would
still be unavoidable even if a q-value further reduced by an
order of magnitude is used instead.

In Fig. 3, the void-size distributions for strong and weak
DAD are also shown. For the case of strong DAD (εi = 0.5),
the distributions have very narrow peaks near tiny satura-
tion sizes. Note that these peaks are much sharper than what
appears because the distribution functions for this case are
scaled down by a factor of 50. Such distributions repre-
sent a uniform void size and thus are not consistent with
the much broader void size distributions observed in exper-
iments [17, 19, 37]. These very sharp peaks in the void size
distributions as well as the high void number densities are
due to the dominance of mean-field void growth over the
broadening effect of the stochastic fluctuations. In terms of
the characteristic times, the time τV a void needs to grow to
its saturation size is significantly shorter than the time τD to
shrink away by stochastic fluctuations.

Within the same framework, it is found that, for a weak
DAD (εi ∼ 10−2), the influence of the stochastic fluctua-
tions is enhanced exponentially with increasing τV . As a
result, only a much smaller number of microvoids manage

Fig. 3 Void size distribution functions for various values of εi and S.
For εi = 0.5, the distribution functions are scaled down by a factor 50,
i.e., χ(n/ns)/50 is presented

to survive (i.e., the total void number density is drastically
reduced), and the void size distributions become distinctly
broader, resembling those observed experimentally.

In view of the fact that most void-swelling models that
have stood the test of decades of experiments are implicitly
based on 3-D SIA kinetics without the DAD bias, the find-
ings in this section is hardly surprising, namely, that only
a sufficiently weak DAD can be consistent with the evolu-
tionary characteristics of a random void ensemble. This is a
very important point to realize in view of the recent renewed
interest on the low-dimension migration of self-interstitials
and their clusters.

Since both the growth and coalescence of voids are re-
lated to the influx of 1-D SIAs, when DAD is reduced, the
stochastic fluctuations do not only affect the void size evo-
lution but also their alignment and coalescence. The nucle-
ation of voids in the early stages of void-lattice formation
and their subsequent evolution in regard to coalescence will
be considered in the following sections, where, unless stated
otherwise, a weak DAD, viz., εi = 10−2, is assumed.

3 Void alignment

From (1) the evolution equation of the void-number density
Nc(t) can be written as:

dNc(t)

dt
= j0 −

[
∂

∂n
D(n)f (n, t)

]
n=nmin

. (14)
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Stationary condition (dNc/dt → 0) is attained when the nu-
cleation of new voids is balanced by the destruction of ex-
isting ones due to stochastic shrinkage. As it can be seen
in Fig. 2, the number density of a random void ensemble
increases with the saturation void size ns . This reflects the
general rule that the larger the voids are, the smaller is the
effect of stochastic fluctuations on their evolution. Indeed,
the ratio of characteristic times τV /τD , as expressed by the
parameters γc and γs , decreases with increasing saturation
size ns . According to (6), this means that the probability of
void loss by stochastic shrinkage decreases exponentially as
the size of void increases. Thus, even after the density of
randomly distributed voids has reached saturation, success-
ful nucleation of voids is still likely to take place in regions
where conditions facilitate their growth to sizes larger than
those of the randomly situated voids. The total volume of
such regions may be relatively small, but since the density
of voids in these regions increases exponentially with satu-
ration size, it may be sufficiently large so that the swelling in
these regions dominates that of the entire void ensemble. In-
deed, if qs is the total volume fraction of regions where void
growth saturates at a size ns , then the generation rate of mi-
crovoids in these regions is equal to j0qs . Figure 4 shows the
calculated qs as a function of the saturation void radius for
different values of void swelling. One can see that qs may be
very small, even well below 1%. Since the calculations for
Fig. 4 follow the procedure described in Sect. 2, which does
not take into account that voids may actually have different
saturation sizes, the results presented in Fig. 4 are, strictly
speaking, applicable only when the void ensemble is dom-
inated by the voids with certain saturation size and in the
other cases should only be considered as an estimation. In
the following, the issue of competition between the subsys-
tems of voids characterized by different saturation sizes is
studied in more detail.

3.1 Initial void alignment

The stationary state of a random void distribution, as defined
by dNc/dt → 0 in (14), is dynamically stable only condi-
tionally. In other words, a random void distribution may be-
come unstable, and disorder/order transition of the system
may take place due to the resulting bifurcation. Semenov
and Woo derived the instability condition and showed that it
can only be fulfilled when the DAD is neither overwhelm-
ingly large nor negligibly small [14]. In the following, we
consider the evolution of the void ensemble after its random
distribution becomes unstable.

According to [14], the saturation radius rs(x) of a void at
location x can be written as

rs(x) ∼= 2π
∑

c r2
c

∑
α tanh(Lα(xc)/2λ)

Mφ(x)k2
c

, (15)

Fig. 4 Volume fraction qs as a function of the void saturation size rs
for various values of total void swelling S

where

φ(x) =
∑

α tanh(Lα(x)/2λ)

2M
, (16)

Lα(xc) is the separation of the cth void with radius rc from
its nearest neighbor along the close-packed direction α (1 ≤
α ≤ 2M),M is the number of close-packed directions of the
crystal, and the sums run over all existing voids and both the
left and right sides of all close-packed directions.

In an ensemble of random voids, the mean distance
L1 between two voids along a close-packed direction is
equal to 2�/πr2

s Nc, which can be written in terms of the
swelling S ∼= 4πr3

s Nc/3� as L1/λ = (2/π1/3)(4/3S)2/3 ×
(�/Nc)

1/3/λ. For void swelling of less than 1% [17, 20,
27, 34, 37], the values of tanh(L1/2λ) and hence φ are
close to unity, even if the mean free path λ of 1-D SIAs
is much larger than the average distance between voids
(λ(Nc/�)1/3 ∼ 10). Voids in the ensemble are likely to re-
ceive the full flux of suitably oriented 1-D SIAs produced
within its interstitial supply cylinders (ISCs) [4]. They do
not share these 1-D SIAs with the other nearest neigh-
bor voids. Figure 5 illustrates the supply cylinder concept
for non-overlapping cylinders. As a result, (15) can be ex-
pressed as rs = 〈r2

c 〉/〈rc〉 for a truly random distribution of
voids, where 〈rc〉 is the average radius of these voids, and
〈r2

c 〉 is the average square radius.
Voids with overlapping ISCs (Fig. 6), on the other hand,

can grow to sizes larger than the randomly situated ones
because the interstitial influx per void is reduced by the
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Fig. 5 Illustration of interstitial supply cylinders of a void. 1-D SIA
created between two voids separated in its traveling direction by the
distance l will combine with one of the voids with a probability
(2λ/l) tanh(l/2λ). Thus, most of the 1-D SIAs annihilated at a void
come from a cylindrical region of length λ extending from the void
surface along the close-packed directions. There are eight supply cylin-
ders for each void in a bcc lattice and twelve in an fcc lattice

Fig. 6 When the separation of two voids along a close-packed direc-
tion is sufficiently small (l ∼ λ), their ISCs overlap or an ISC of the
one void even protrudes into the other void. Thus, a reduction of the on
supplies to both voids occurs (tanh(l/2λ) < 1). As a result, the net va-
cancy fluxes to both voids increase, which leads to an enhanced growth
of these voids

sharing between neighboring voids of the 1-D SIAs gen-
erated in the overlapping ISCs. Indeed, compared to cases
where there is no effective ISC overlap, tanh(Lα/2λ) < 1
in at least one of the close-packed directions, and thus
φ < 1. Therefore, after the density of randomly distrib-
uted voids has reached saturation (dNc/dt → 0), void nu-
cleation (along the close-packed directions) is still possi-

ble. Nevertheless, this does not mean that these voids will
automatically arrange themselves strictly in rows, as erro-
neously assumed by Evans [23]. After the nucleation of an
aligned void in a given close-packed direction, the next void
may form in a different, yet equivalent, close-packed direc-
tion. Moreover, while for the random distribution of small
voids, the average distance L1 between two voids along the
close-packed directions is much larger than the average dis-
tance L3 = (3�/4πNc)

1/3 in three dimensions, for a close-
packed plane defined by two nonparallel close-packed direc-
tions, the corresponding distance L2 on the plane is

L2 =
(

�

2πNcrs

)1/2 ∼=
(

�

πNc

)1/3( 1

6S

)1/6

. (17)

Hence, the ratio L2/L3 decreases with increasing swelling S.
When S is larger than 0.5%, L2/L3 is less than 2. Thus, for
randomly distributed voids, L1 is in general much larger
than L2 and L3.

Keeping the preceding discussion in mind, a “thought-
experiment” illustrated in the series of void nucleation
events in Fig. 7a–g can be used to speculate how the ini-
tiation of void alignment may occur. Let us consider two
nonparallel close-packed directions (dashed lines) running
through two neighboring voids (solid circles) on a close-
packed plane. Referring to Fig. 7a, the intersections (open
circles) of these directions mark potential nucleation sites
for voids having two overlapping ISCs. Note that the aver-
age distance between a potential void and a nearest neigh-
bor along any out-of-plane close-packed direction is equal
to L1/2, which is much larger than L2, so that ISC overlap
in those directions is unlikely.

For random void distributions, the only locations which
may serve as sites for further nucleation are locations at
which voids can have one or two overlapping ISCs. The lat-
ter ones are more favorable because there voids are able to
grow to larger sizes and are thus more resistant to stochas-
tic shrinkage (see also Sect. 3.2). As a consequence, early
void ordering in the initial stages of void lattice formation
is more likely to occur on closed-packed planes rather than
along close-packed directions, which is in agreement with
observations [23]. Obviously, the intuitive picture that one-
dimensional SIA transport must result in linear initial align-
ment of randomly arranged voids is uncorroborated.

Figure 7 shows two out of many potential ways how,
starting from a random void distribution, planar void order-
ing may evolve. Note that preexistence of final void lattice
sites is not assumed. According to this series of figures, lo-
cations where voids may nucleate with more than two over-
lapping ISCs already emerge after the first round of aligned-
void nucleation on the close-packed planes (Fig. 7a). While
planar ordering proceeds, potential nucleation sites for voids
with an increasing number of overlapping ISCs consecu-
tively come into existence, and, as a result of planar ordering
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Fig. 7 Illustration of planar
void ordering due to the
nucleation of voids in a
close-packed plane at the
intersections of corresponding
close-packed directions (dashed
lines). From (a) to (d), new
voids (open symbols) with a
greater number of overlapping
ISCs nucleate, while already
existing voids (closed symbols)
with a smaller number of
overlapping ISCs shrink away.
Figures (e) to (g) demonstrate
that locations where voids
survive are not fixed; rather they
depend on where nucleation is
possible, i.e., on the locations of
aligned nearest neighbor voids.
As required by the condition of
swelling saturation, the number
of voids remains the same
through all the figures

a b

c d

e f

g
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on all close-packed planes, regular void-lattice sites eventu-
ally appear. Finally, subsequent nucleation of voids on these
sites leads to the completion of the void lattice.

3.2 Shrinkage of voids in non-lattice positions

For a well-defined void lattice to form, nucleation and
growth of new voids at the void-lattice positions is only nec-
essary but not sufficient. The annihilation of voids, randomly
positioned or left partially aligned during the intermediate
stages of ordering, is equally important (Fig. 7). To describe
this process we consider the Fokker–Planck equation

∂p(n, t)

∂t
= − ∂

∂n

{
V (n) − ∂

∂n
D(n)

}
p(n, t) (18)

which governs the size evolution of an individual void
[28, 29]. The void-size probability distribution p(n, t) sat-
isfies the initial condition p(n, t = 0) = δ(n − n0) and the
boundary conditions (3). Equation (18) follows from the ki-
netic equation (1) by dropping the source term j0.

It may be readily shown that the stationary solution (5)
can also be written as

f (n) = j0τ(n), (19)

where

τ(n) =
∫ ∞

0
p(n, t) dt. (20)

Thus, the stationary distribution function (5) is linearly re-
lated to the lifetime of a void with a size between n and
(n + dn), the proportionality constant being j0, the pro-
duction rate of microvoids. The integration of τ(n) over all
possible void sizes n yields the average lifetime τs . Conse-
quently, the rs can be considered as a function of τs , accord-
ing to (5) to (10) and (19).

Physically, stochastic void shrinkage can be understood
from the example of diffusion processes. In one dimension,
if a random walker is not allowed to go to infinity, it will al-
ways revisit the starting point after some time. In the present
case where void growth saturates, the size of every void in
the ensemble fluctuates about a statistical mean but sooner
or later returns to where it has started, i.e., to the size of
a mobile vacancy/vacancy cluster, and ceases to exist as a
void, or annihilates from the void ensemble. The average
time spent by the void between nucleation and annihilation
is the mean lifetime of the voids. Indeed, from (18) it can
be easily shown that the probability for a void to eventu-
ally shrink away is exactly equal to one. Absent stochastic
fluctuations, the shrinkage probability vanishes, and the void
life-time becomes infinite.

In Fig. 8, rs(τs) is presented as a function of Gτs for
different values of total sink strength k2 or swelling S. In

Fig. 8 Saturation void radius rs as a function of the mean lifetime
dosage Gτs of a void for various values of the total sink strength k2

and the total void swelling S

the former case, the total sink strength can be due to voids
of different saturation sizes, while in the latter case, all
voids of the ensemble are assumed to have the same satu-
ration radius rs(τs). If we assume that the mean free path
λ is significantly larger than the average distance between
voids as in the MC simulations, then, for the overlapping
ISCs, tanh(Lα/2λ)  1 and φ ∼= (2M − m)/2M , where
m is the number of overlapping cylinders. Then in Fig. 8
the dashed horizontal lines labeled with different values of
φ correspond to the saturation sizes of voids, which have
m = 2M(1 − φ) overlapping ISCs. For a bcc metal, M = 4.

According to Fig. 8, the lifetime Kτs of a random void
(φ = 1) and voids with one overlapping ISC (φ = 7/8) are
significantly shorter than the lifetime of voids with two over-
lapping ISCs (φ = 6/8), which still does not exceed just
a few NRT dpa. Here K is the nominal NRT rate of dis-
placements per atom (dpa) (G/K ∼= 0.3 [33, 39]). Note that,
for an initially random void distribution, the positions on a
close-packed plane, where nucleating voids can have two
overlapping ISCs, occupy a volume fraction of qs ≈ 2S.
Taking into account that 0.1 < Gτs ≤ 1 dpa (Fig. 8), for
S = 1%, the number density of voids initially aligned in
close-packed planes is 2Sj0τs ≈ 2×1022 to 1023 m−3. Since
rs ∼= 3.33 nm, this means that more than half of the total
swelling is due to voids aligned on the close-packed planes.

From Fig. 8 the lifetime of a void increases exponentially
with its saturation size, and voids with several overlapping
ISCs may survive extraordinarily long. However, the actual
lifetime of a void is extremely sensitive to the specific local
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void arrangement. In Fig. 7b, void 1 with three overlapping
ISCs may seem to stay much longer than the neighboring
void 2 with only two overlapping ISCs. In reality, the disap-
pearance of void 2 will eliminate one of the ISCs of void 1,
so that its annihilation will follow quickly after void 2 dis-
appears. Thus, to a large extent, the lifetime of a local void
arrangement is determined by the lifetimes of those voids in
the arrangement, which have the smallest number of over-
lapping ISCs.

In other words, a spatial arrangement of voids survives
the longest time if every void in the arrangement has the
maximum number of overlapping ISCs with its nearest
aligned neighbors. Obviously, such an arrangement has a
form of lattice. Therefore, lattice voids have predominantly
the longest lifetime and are the surviving species in a Dar-
winian selection in which the rules of survival are laid down
by the DAD effect, as described by Woo and Frank [4, 7].
According to Fig. 8, the lifetimes of the lattice voids can
practically be infinitely long. Because of the exponential de-
pendence of the lifetimes on the microstructure and mater-
ial characteristics via the parameter γc , the irradiation dose
required for void lattice formation may vary considerably,
ranging from 2 [27] to 400 NRT dpa [35].

Due to the continuous generation of microvoids in colli-
sion cascades, the shrinkage of existing voids on non-lattice
sites during the void-lattice formation process does not mean
that voids do not nucleate at these positions at all. Indeed,
a subsystem of non-lattice voids may coexist with the void
lattice at all times. However, if the parameter γc for voids
outside the lattice positions is larger than the critical value
γ cr
c ≈ 0.2, the size distribution function f (n) of these voids

has a maximum at n0 [14]. The evolution of these voids is
dominated by stochastic fluctuations, and, as a result, during
their short life, the size of these voids remains close to their
embryonic size, n0 ≈ 4 to 5, which is well below the satu-
ration size. Accordingly, microvoids generated outside lat-
tice positions remain predominantly submicroscopic and do
not affect the observable characteristics of the void ensem-
ble. As it was previously pointed out [14], since the mean-
field saturation size is a stable stationary point (V (ns) = 0)

in the evolution of the void ensemble, when the mean-field
void size is no longer the most probable, a non-equilibrium
phase transition in the void ensemble occurs. This transition
is induced entirely by the stochastic noise in the point-defect
fluxes [40].

Voids occupying positions between two lattice voids are
able to reach larger saturation sizes than randomly arranged
voids, because they have two overlapping ISCs. According
to (15), their saturation size rs is given by

rs ≈ M − 2

2M

〈
tanh(Lα/2λ)

〉
rcl, (21)

where rcl is the average size of lattice voids, and
〈tanh(Lα/2λ)〉 is the average of tanh(Lα/λ) over all close-
packed directions and all voids in the lattice.

In so-called hyperlattices, which are observed at elevated
temperatures where vacancy emission from voids plays an
important role in the growth of voids, the void-lattice pa-
rameters are indicative of the mean free path λ. For exam-
ple, in Nb at 1010◦C the void-lattice parameter is 146 nm
[18], and in Mo at 1120◦C it is ∼100 nm [34]. At the
lower temperatures, where vacancy emission is negligible,
the void-lattice parameters are considerably smaller, e.g., 20
to 30 nm in Mo and Nb [17, 18, 20]. It is safe to assume
that at lower temperatures, λ is at least not smaller. This im-
plies that at these lower temperatures the ratio 2λ/L ∼ 10,
corresponding to a value of tanh(L/2λ) ∼ 0.1 and rs ≈
Mrcl/10(M − 2). Since the largest lattice voids found at
lower temperature have radius rcl = 5 to 10 nm [18, 20,
35, 36, 41], the saturation size of non-lattice voids must be
rs < 1.5 nm (n1/3

s ∼ 10). With this value of rs and the ex-
pression k2

c
∼= 3S/r2

cl for the sink strength of lattice voids,
(10) yields

γc
∼= a

√
3SNd

2εircln
2/3
s

≈ 2.5 × 10−3

εi

> γ cr
c (22)

for S = 1% and Nd = 100. From this one may conclude that
the upper limit of the fraction εi of 1-D SIAs is about 1%,
which is in agreement with both findings of Sect. 2 and [14].
It is important to realize that the voids form a lattice only in
this weak-DAD case. For a strong DAD (εi = 0.5), the ran-
dom void distribution would be a stable stationary state. No
disorder-order transition would take place. The void ensem-
ble would evolve to a collection of small non-aligned voids
(rs = 1.47 nm) producing a swelling of S ∼= 50% with a sink
strength of 7 × 1017 m−2 (Figs. 1a and 2).

4 Void coalescence

Void coalescence is the result of the drift of unequally
spaced voids along close-packed directions caused by the
differential fluxes of 1-D SIAs received from opposite faces
of the voids. Evans [10, 23] has argued that void coalescence
may constitute a serious deterrent to void lattice formation
from an ensemble of random voids due to 1-D SIA diffusion.
In the MC simulation [10], the velocity υα of the “centre of
gravity” of a void along a close-packed direction α can be
calculated using the results of [14]:

υα = 3εi0Gλ

8M

[
tanh(Lαl/2λ) − tanh(Lαr/2λ)

]
. (23)

Here εi0 is the fraction of crowdions produced directly in
collision cascades, and Lαl and Lαr are the separations of
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the void along the close-packed direction α from its nearest
neighbors on the left and right side, respectively. Note that
in the case of crowdions the values of εi and εi0 are pro-
portional but not necessarily equal to each other. It is found
in [14] that for εi ∼ 10−2, εi0 should not exceed about 10%.

According to (23), the drift velocity of the void reaches
its highest value for Lαl/2λ � 1 and Lαr/2λ  1. This is
the case if the left-side neighbor void is far away and thus
the void (like void 2 in Fig. 7b) receives the full 1-D SIAs
flux produced in its left ISC, whereas the 1-D SIAs flux pro-
duced in its right ISC have to be shared with the close-by
neighboring void on its right side. The minimum time t

(1)
cls

required for a void to drift over a distance equal to its radius
rs is given by

Gt
(1)
cls = 8M

3εi0

rs

λ
. (24)

If a void is located between two other voids such that Lαl ∼
Lαr and Lαr/2λ  1 (like void 3 in Fig. 7b), the corre-
sponding time t

(2)
cls may readily be found from (23) as

Gt
(2)
cls = 8M

3εi0
ln

(
1 + rs

�L0

)
, (25)

where �L0 is the initial deviation of the void from the center
of the line connecting its nearest neighbor voids.

For λ/rs ≈ 100, M = 4 (bcc lattice), and εi0 ≈ 0.1, the
minimum dose required for an aligned void to move over
a distance equal to its own radius is Gt

(1)
cls ≈ 1 dpa, an or-

der of magnitude larger than its total lifetime Gτs , which is
smaller or about 0.1 dpa (see φ = 7/8 in Fig. 8). Voids with
two overlapping ISCs (φ = 6/8) survive longer time (0.1 <

Gτs ≤ 1 dpa). However, by (25) the irradiation dose needed
for such voids to cover the one radius distance (�L0 ∼ rs) is
almost two orders of magnitude larger (Gt

(2)
cls ≈ 74 dpa) than

their total life-time Gτs from the creation in a cascade to the
complete disappearance by shrinkage. Note also that, to co-
alesce with one of its neighboring voids, void 2 in Fig. 7b
needs to move out of the shade of another neighbor and lose
one of its two overlapping ISC. Thus, voids that do not oc-
cupy lattice positions disappear long before they may coa-
lesce with their aligned nearest neighbors. Lattice voids, on
the other hand, have been shown to be stable with respect to
coalescence despite their long-lifetime [21, 22].

As discussed earlier in this paper, the void lifetime in-
creases exponentially with the value of εi . For εi ∼ 1, as
assumed in the MCS by Evans [10], it is much longer than
the characteristic time for void coalescence. As a result, the
loss of voids in those simulations is dominated by coales-
cence, and void lattice formation becomes difficult. Thus,
in addition to not having taken into account void nucleation
properly, Evans’ conclusion that void-lattice formation can-
not be explained in terms of 1-D SIA diffusion also suffers

from having used a too large DAD (εi ∼ 1) in his simulation,
an assumption that does not corroborate other observations
on void ensembles and swelling, as discussed in [14] and
throughout the present paper.

5 Conclusions

The role of DAD in the evolution of a void ensemble under
cascade irradiation is complex. The behavior of the void en-
semble is very sensitive to the relative strengths of the point-
defect fluxes due to DAD compared to the stochastic fluctu-
ations. Contrary to void growth driven by dislocation-bias,
that driven by the DAD bias in the case of 1-D SIA diffusion
saturates at a final void size. This is because the influx of
1-D SIAs into the voids is proportional to the void surface,
whereas the vacancy influx is proportional to the void ra-
dius. Allowing for stochastic fluctuations of the point-defect
fluxes arriving at a void, the finite void saturation radius
implies that the void will be eventually annihilated by the
stochastic shrinkage. The dynamic balance between the cre-
ation of new voids and the stochastic shrinkage of exist-
ing ones is the mechanism by which the steady-state void-
number density is achieved.

The mean-field net vacancy flux received by a void that
has not yet reached its saturation size is directly proportional
to the DAD as measured by the fraction εi of 1-D SIAs. An
overestimation of εi is magnified and thus gives rise to an
exponential increase of the void lifetime because, with the
increase of the mean-field growth rate, the relative impor-
tance of stochastic shrinkage is drastically quenched. This
produces void-number densities and void swellings which
are orders of magnitude larger than those observed. Con-
versely, if void swelling is forced to match the experimen-
tal values, the assumption of a high proportion of 1-D SIAs
can only be satisfied for a random ensemble consisting of
tiny voids of uniform below-1nm size at an extremely high
number density, which is markedly different from what is
observed. On the other hand, if a smaller proportion of 1-D
SIAs is chosen (εi ∼ 10−2), i.e., the DAD is reduced, the
features of the corresponding void ensemble is in accor-
dance with the experimental findings (Sect. 3). Thus, only
a sufficiently weak DAD can be consistent with the evolu-
tionary characteristics of a random void ensemble.

In the case of 1-D SIA diffusion, the spatial distribution
of the void nucleation probability in an ensemble of ran-
domly distributed voids is highly inhomogeneous. Contrary
to intuition, locations surrounded by a few voids only are
“unshaded” against the influx of 1-D SIAs, so that in these
regions the void nucleation probability is low. Rather, voids
tend to be nucleated at locations where the void density is
higher, and thus the voids’ supply cylinders for 1-D SIAs
overlap, since in such regions the void lifetimes are higher
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by orders of magnitude. Although at low void swelling
(S ≤ 1%) the volume fraction of regions containing overlap-
ping ISCs is small, the number density of voids nucleated
there can be sufficiently high to make these regions domi-
nate the void ensemble. Because of this very pronounced in-
homogeneity of the void nucleation probability, models not
involving 1-D kinetics with these fundamental characteris-
tics cannot be expected to successfully describe the spatial
dependence of the microstructure evolution.

The stationary state of a random void distribution is dy-
namically stable if the DAD is either very strong or negli-
gibly weak. Otherwise a random void distribution may be-
come unstable under suitable conditions. When instability
sets in, the firstly nucleating new voids, on the one hand,
must be more stable against stochastic shrinkage than the
already existing random voids and thus must have more
overlapping ISCs but, on the other hand, cannot be ex-
pected to have, in general, more than two overlapping ISCs.
Since voids with two (nonparallel) overlapping ISCs nu-
cleate on close-packed planes determined by two different
close-packed directions, initial void ordering is more likely
to proceed on planes than along straight lines. During this
planar ordering along all close-packed planes, locations with
an increasing number of overlapping ISCs, and eventually
the regular sites of the forming void lattice, emerge progres-
sively. Since voids on lattice sites can have the maximum
number of overlapping ISCs and, consequently, the largest
saturation size, their lifetime is longer than those of any
other voids, namely practically infinitely long.

After the void lattice has been formed, despite the con-
tinuous production of microvoids in collision cascades, ad-
ditional nucleation of voids on non-void-lattice sites is sup-
pressed, since, in the case of a small proportion of 1-D
SIAs (e.g., εi ∼ 10−2), the lifetime of “interstitial” voids is
stochastic-fluctuation-controlled and thus short. These voids
spend most of their short life without exceeding their orig-
inal microvoid size, i.e., they never come close to the sat-
uration size and thus remain “invisible.” In addition, con-
trary to what is true for εi ∼ 1, for a small proportion of 1-D
SIAs (εi ∼ 10−2), the lifetime of voids on non-void-lattice
sites is short compared to the characteristic time of void co-
alescence. Hence, stochastic shrinkage prevents such voids
from coalescence and thus from destabilization of a partially
formed void lattice.
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