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A13 STRACT 
This paper presents a new adaptive objective func- 

tion based on the regularized iterative block reduction 
technique for low-bit rate transform coded images. 
Also, a better initial estimate for the regularization 
approach is presented. Two types of prior knowledge 
are used: the first type bounds the maximum tolera- 
ble error (roughness), and the second type restricts the 
high-frequency content (smoothness) of the restorated 
images. Computer sirnulations showed that  the new 
adaptive objective function with the proposed initial 
estimate performed better on both subjective and 
objective measures than did a previously proposed 
objective function. 

1. INTRODUCTION 

Using block-based transform coding (e.g. JPEG[l])  
at  low bit rates for image compression will result in 
“blocking effect.” The  blocking effect will lead to  the 
perception of visible discontinuities between adjacent 
blocks. I t  is generally considered to  be the most 
disturbing artifact in the reconstructed images. 

Various approaches [a,  3 ,  41 to  solving the block- 
ing effect have been proposed in the past, but some 
of them suffer from hig,h computational complexity or 
may have additional da ta  overhead. Recently, Yang, 
Galatsanos and Katsaggelos proposed the use of reg- 
ularization technique to  tackle the blocking effect [5], 
which has created a new research direct,ion. The  new 
objective function presented in this paper is based on 
this recent proposal. 

2. OVERVIEW OF THE CONSTRAINED 
LEAST SQUARE (CLS) METHOD 

Image restoration [fj] aims a t  recovering the best 
estimate from the degraded image. The  degradation 
can be mathematically modeled as 

y == Bf + 12, (1) 
where vectors y and f (lexicographically ordered with 
size N 2  x 1) are the degraded and the original images, 
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respectively. The matrix B is the linear distortion 
operator, and vector n denotes additive Gaussian noise 
that is uncorrelated with the original image. 

Regularization [7, 81 is an effective approach for 
converting the ill-posed problem to a well-posed one. I t  
is simply by incorporating prior knowledge about the 
original image to  constrain the possible sets of solu- 
tions. The  regularized solution is found by minimizing 
the following objective function 

J = QllSfl12 + IIY - Bf112, (2) 
where S is the regularizing operator, which is generally 
a high-pass filter used to  reduce the amount of noise 
(usually in the form of high-freqilt,iicy) in the restorated 
image. 1 1  0 1 1  represents the Euclidean norm. Let e: and 
6 ;  be the bounds for Ily-BflJ2 and liSf112, respectively, 
Le., I J Y - R ~ J ~ ~  5 E : ,  and llSf112 5 6 ; .  The former is the 
bound for the amount of error that  can be tolerated, 
while the latter imposes a smoothness upperbound on 
the whole image. The  ratio a ( = 3 ) is the regulariza- 
tion parameter that  controls the degree of smoothness 
of the result. 

Hence, the principle of regularization is t o  find the 
best estimate that  can compromise these two 
constraints. A solution to  the problem can be obtained 
by minimizing the objective function (2). 

Iterative method, which has a number of advantages 
[9] over the direct inverse method, is commonly used 
to  get the final solution. 

3. FORMULATING THE OBJECTIVE 
FUNCTION 

In our case, the point spread function (PSF) B 
represents a process that, consists of the block UCT 
(BDCT) compression, quantization and decompression 
operations, and, y is the reconstructed blocky image 
that we have. 

The  objective function proposed in [5] is 

Je ,  = ~ll/sf/12 + llf - YI?. (3) 

For spatially varying images, this objective function 
provides a suboptimal solution only. Obviously, in an 
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image, the region with low spatial activity (smooth 
region) and the region with high spat,ial activity (non- 
smooth region) should not, be subjected to the same 
restoration conditions. This is based on the psychophys- 
ical considerations that  

0 Generally speaking, restored images with sharp 
edges will be perceived by human to have a better 
quality, and that  

e Noise presence in non-smooth region is less dis- 
t,urhing t,o human than that  in smooth region. 

T h a t  means, in smooth region, noise suppression is 
more essential. The  opposite of the above statement 
holds for non-smooth region. In order to have a gen- 
t,ral and spatially varying masking function, local mean 
(y( i .  j)) and local variance (~ ' ( ( i ,  j ) )  at different image 
coordination ( i , j )  is proposed t o  be used, for the rea- 
son that  it does not require prior knowledge of edge 
orientation or efforts for edge searching and classifica- 
tion. The local mean and local variance comput,ed in a 
neighbourhood centered at ( f ,  j )  are as follows : 

i+w 3 t H  

1 
O + , j )  = 

( 2 W +  1)(2H + 1) 
i+U' j + H  

( ? / ( m 7 n )  - y ( i . j ) ) ?  

(5) 

tn=i - T.1 n =I - 13 

where 1 < i.j < S.  

Here, ( 2 W i l )  x (2H+1) is the window size and the 

Based 011  t,he idea we have mentioned. we propose 

(6) 

window should be symmetrical about t,he point (i. j) .  

our modified adaptive version as 

J e ,  = Q2/1LSfl12 + IIWf - Y)l13, 

where R and L are both diagonal weighted matrices 
with size N' x hr2 Specifically, R is defined as 

and m = ( i  - 1 ) x N  + j. 
( 7 )  

which is actually a normalized local variance matrix 
and L is defined as 

L ( i ,  i )  = 1 - R(i, i )  where 1 5 i 5 N'. (8) 

hi non-smooth region, each weighted coefficient of 
R will be assigned a relatively larger value than those 
in smooth region. Hence, contrast recovery will have 
an  overwhelming effect over smoothing in non-smooth 

region. However, considerable amplification of high- 
frequency components may occur in non-smooth re- 
gion. But from the psychophysical point of view, noise 
visibility in this region is not apparently increased. 
'iVhile in smooth region, R will have smaller coefficients 
to prevent noise amplification. 

Besides, according to  eqn.(S), L coefficients would 
have smaller magnitude in non-smooth region than in 
smooth region, so that  excessive smoothing can be 
avoided and the sharpness of edges in the non-smooth 
region can be preserved. On the contrary, in smooth 
region, L coefficients should have larger values t o  
constrain t,he high-frequency content and hence mini- 
rniz,e t.he amount of noise. 

?/Iinimiz,ing the object,ive function (6) with re- 
spect to f gives 

where 
now be written as 

is the matrix transpose operator. Eqn.(9) can 

(R% + a 2 ~ t ~ t ~ ~ ) f  = R ~ R ~ .  (10) 
Eqn.( 10) is then evaluated with the iterative equation: 

f k + 1  = fk + &(RtRY - ( R t R +  Cy2StLtLS)fk), (11) 

where 3? ( the relaxation parsineter) is a scalar, which 
has to be chosen to  insure the convergence of the iter- 
ations. The range for & that  insures the convergence 
is given as 

2 
O < dz < /IRtR + a2StLtLSll' (12) 

The iterations fk will converge to  an unique estimate 
of the original image. 

4. NEW INITIAL ESTIMATE 

In common practice, the initial estimate (fo: fk 
\\-lien IC = 0)  can be chosen as a scaled version of the 
observed image y: 

fo = Ey, where 0 5 E 5 1. (13) 
However, with such initial estinmtes, the admissible 
output images' objective and subjective quality are 
restrict,ed. Bett.er initial estimate which already have 
minimized block discontinuit.ies should be used instead. 

Based on the smoothness assumption, each block 
should be smoothly connected to  its neighbouring 
blocks a t  the boundaries. Hence. we propose to  get 
a better initial estimate by minimizing the following 
block-wise objective function first: 

IIpfIiz = {lITm,n - Bm,n-1112 + 1 I ~ m . n  - ~ m , n + i / / ~  

+ llLm,n - Rtn-l,n1l2 + llRm,n - Ln+1,n1I2}, 

(14) 
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for 1 < m, n < only, with each block of p x p pixels. 
The  above objective function (eqn.(l4)) confines the 
smoothness of block boundaries. In this formulation, P 
is a difference operator of the block boundaries. T,,,, 
Bm,n , and Rm,, are the l-dimensional boundary 
vectors, while Bm,n-l, Tm,n+l, Rm-l,, and Lm+l,, are 
the 4 neighbouring block boundary vectors surrounding 
block i .  Figure 1 shows their relationship. 

By minimizing the objective function (14) with 
respect to  f ,  we have 

fk+1 = fk - y p f k ,  (15) 

and a better estimate can be obtained. Here y ( 5 1 ) is 
a scalar constant that  cointrols the amount of influence 
of the objective function on the output estimate. For 
typical applications, 3 iterations are enough for getting 
a good initial estimate for subsequent adaptive CLS 
process. 

5 .  SIMULAL‘ION RESULTS 

In our computer simulation, a set of 256 gray-level 
digital images of size 256 x 256 pixels are divided into 
8x8 blocks and transform(-coded with JPEG scheme to 
generate blocky images. ‘The transform coefficients are 
quantized to  0.24 bit/pixel (bpp) with a uniform quan- 
tizer using the quantizalion table shown in Table 1. 
The  blocky images are than  restored with different ap- 
proaches for comparison. The  test images are further 
divided into 3 groups for analysis. The  grouping are 
based on the amount of variation of the local spatial 
characteristics among blocks. Images in groups 1 and 
3 have the least and the largest amount of variation 
respectively. 

A 3 x 3 Laplacian filter is used as the regularization 
operator S. The regularization parameter is chosen to  
satisfy the bound: cy = (2)’. The PPSNR is used as 

an objective criterion of merit.  ‘‘’kiL7~1’’~ 5 4 x 10-8 
was used as the terminating criterion of the iterative 
process. The  PPSNR is dlefined as 

where gz and x , , ~  are the (i, j ) t h  pixels of the original 
and the processed images respectively. 

For simplicity, we use CLSl [5] and CLS2 as the 
abbreviations for the iterative methods derived from 
eqns.(3) and (6) respectively. 

Table 2 lists the PPSNR improvements of a number 
of restored images after having been processed with 
CLSl and CLS2, as well as the number of iterations 
required to converge to  those PPSNRs. On the average, 
the objective improvement of CLS2 is approximately 4 

times over that  of CLSl in terms of dB. Note both 
CLSl and CLS2 have the maximum improvement for 
the ‘Hat’ image, which are about 0.2 dB and 0.9 d B  
respectively. 

Figure 2 shows the magnified portion of a JPEG 
encoded ‘Lena’ ( P P S N R  = 28.3573dB). Figures 3 
and 4 are the magnified portion of ‘Lena’ after having 
been processed by CLSl and CLS2 respectively. 

The  findings show that  CLS2 can further improve 
the image qualities on both objective and subjective 
measures over CLS1, especially for those images with 
highly uneven distribution of local spatial characteris- 
tics among blocks. 

6. CONCLUSIONS 
In this paper, we presented a new adaptive objective 

function for the constrained least square regularization 
approach and a new method for getting a better ini- 
tial estimate to  remove the blocking artifact. Findings 
reveal that  the proposed objective function performed 
better on both objective and subjective measures. 
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Table 1: The  
encoding. 

50 60 
60 60 
70 70 
70 96 
90 130 
120 255 
255 255 
255 255 

‘P. 

quantization table used in J P E G  

70 70 90 120 255 255 
70 96 130 255 25.5 255 
80 120 200 25.5 25.5 25.3 
120 145 255 255 25.5 255 
200 255 255 255 2.55 235 
25.5 255 255 255 255 25.5 
255 255 255 255 2.55 255 
255 255 255 255 25.5 255 

image ‘ CLSl [5]“’ I CLS2 
Baboon 0.084dB(13) 1 0.139dB(26) 

Table 2: The  experimental results for the test images. 
I . I J P E G  encoded I APPSNR (# of iterations) 1 

1 Cameraman O.O96dB(ll) ’ 0.336dB(27) 
Sailboat 0.101dB(14) 0.338dB(21) 

Average of group 1 

PenDers 

0.09dB 0.27dB 

I I  

Lena 
House 
Girl 

Average of g r o w  2 i 0.13dB ’ i 0.51dB 1 

0.136dBi13) 0.533dB(22) 
0.149dB(12) 0.622dB( 14) 
0.149dB(13) 0.634dB(21) 

v V L  

Face 
3 Hat 
Average of group 3 

Figure 2: J P E G  encoded ‘Lena’. 

0.168dB(13) 0.708dB( 5) 
0.210dB(14) 0.902dB(10) 

0.19dB 0.80dB 

Figure 3: CLSl processed ‘Lena’. 

Figure 4: CLS2 processed ‘Lena’. 

Figure 1: Shows the relationship of T,,n, B,,,, L,,,, 
Rm>n and Tn,n+1,  Bm,n - l ,  Lm+l,n,  Rm-1.n- 
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