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Diagnosing Affine Models of Options Pricing:

Evidence from VIX

Abstract

Affine jump-diffusion models have been the mainstream in options pricing because

of their analytical tractability. Popular affine jump-diffusion models, however, are still

unsatisfactory in describing the options data and the problem is often attributed to the

diffusion term of the unobserved state variables. Using prices of variance-swaps (i.e.,

squared VIX) implied from options prices, we provide fresh evidence regarding the mis-

specification of affine jump-diffusion models, as variance-swap prices are affine functions of

the state variables in a broader class of models that do not restrict the diffusion term of the

state variables. We apply the nonparametric methodology used by Aı̈t-Sahalia (1996b),

supplemented with bootstrap tests and other parametric tests, to the S&P 500 index

options data from January 1996 to September 2008. We find that, while the affine diffusion

term of the state variables may contribute to the mis-specification as the literature has

suggested, the affine drift of the state variables, jump intensities, and risk premiums are

also sources of mis-specification.



1. Introduction

Recent advances in modeling options prices are aimed at solving the problems of volatility

smile and smirk, which refer to the phenomena that the implied volatility from the Black-

Scholes formula is a smile-shaped function of the strike price before the 1987 stock market

crash and a decreasing function after the crash. Since the problems stem from the constant

volatility assumption of the Black-Scholes model, major advances are made along the line

of stochastic volatility models, in which unobserved instantaneous volatility of the under-

lying security follows another stochastic process and serves as an additional state variable

in pricing options. More recent developments add jump components to the processes of

both the price of the underlying security and the state variables which are components of

stochastic volatilities. The affine jump-diffusion models make headway towards resolving

the pricing issue. Important milestones include the models of Heston (1993) and Duffie,

Pan, and Singleton (2000).1 However, empirical studies show that the existing models are

still inadequate in fitting the observed options prices in cross-sections to various degrees.

Bakshi, Cao, and Chen (1997) find that the Heston’s model requires highly implausi-

ble parameters of the volatility-return correlation and the volatility-of-volatility. Bates

(2000) extends the stochastic volatility/jump-diffusion model to a two-factor specification

with time-varying jump intensity. Pan (2002) and Eraker (2004) report improvements of

models with jumps in both the underlying price and the stochastic volatility processes

in the time-series dimension. The fit of cross-sections of options data, however, is still

unsatisfactory even with added jump components.

The existing evidence in the literature suggests that the rejection of affine jump-

diffusion models of options pricing is due to the mis-specification of the diffusion term of

stochastic volatility. For example, Duffie et al. (2000) suggest that the deficiency of certain

1Empirical analysis of equity index options using affine jump-diffusion models includes Bakshi, Cao,
and Chen (1997), Bates (2000), Chernov and Ghysels (2000), Pan (2002), Eraker, Johannes, and Polson
(2003), Eraker (2004), Broadie, Chernov, and Johannes (2007), among others. For recent surveys on the
options pricing literature, see Broadie and Detemple (2004) and Garcia, Ghysels and Renault (2010).
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specific affine jump-diffusion options pricing models is that these models unnecessarily

restrict the correlation between the state variables driving the underlying returns and the

stochastic volatility. Jones (2003) finds that the square-root stochastic volatility model

of Heston’s type is incapable of generating realistic return behavior and concludes that

the stochastic volatility models in the constant elasticity-of-variance class or with a time-

varying leverage effect are more consistent with the underlying asset and options data.

Christoffersen, Jacobs, and Mimouni (2010) find that a stochastic volatility model with a

linear diffusion term fits options prices better than the square-root process, which implies

that the conditional variance of the stochastic volatility is better modeled as a quadratic

function of the state variables. To sum up, some authors identify the problem with specific

affine models as the restrictiveness of the diffusion term of the state variables which can

be solved by using less restrictive diffusion terms within the affine class of models, while

others find that the entire affine class is inadequate because of the empirical evidence of

the non-affine diffusion term of the state variables.

In this paper we address the following questions. Are diffusion terms of the state

variables in specific affine models the only source of the problems in options pricing?

Can the problem of specific models be resolved within the class of affine jump-diffusion

models by having a more flexible diffusion term? The analysis we conduct in this paper

is based on one observation that, in a much wider class of models than the affine jump-

diffusion models, variance-swap prices are affine functions of state variables and inherit the

properties of state variables. The wider class with this property, named as the semi-affine

models in this paper, is the class that imposes no restriction on the diffusion term of the

state variables. We examine the affine properties of the conditional mean and conditional

variance of the variance-swap prices implied from options and reject them. Since the

affine property of the conditional mean of variance-swap prices does not rely on the affine

property of the diffusion term of the state variables, the rejection of the affine property

of the conditional mean of variance-swap prices can be traced to the inappropriate affine

specifications of either the conditional mean of state variables, jump intensities, or risk
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premiums.

The methodology we use in this paper begins with the nonparametric method used by

Aı̈t-Sahalia (1996b) and Stanton (1997) on short-term interest rate, followed by bootstrap

tests and some parametric tests. The use of nonparametric methods allows us to address

issues with general affine models, rather than specific affine models. We apply our methods

to the S&P 500 index options from January 1996 to September 2008. The nonparametric

estimation and testing results in this paper show that the conditional mean, conditional

variance and conditional covariance of the variance-swap prices of the S&P 500 index

exhibit strong non-affine properties. More specifically, the mean reversion of variance-

swap prices is much faster and the volatility of variance-swap prices is much greater at

the high levels of variance-swap prices than what affine functions imply. Parametric tests

further confirm the results. Both nonparametric and parametric results suggest that the

specifications of the affine drift of state variables, jump intensities, and risk premiums are

all potential reasons for the rejection of affine jump-diffusion models. The problems of

specific affine models cannot be resolved by more flexible diffusion terms not only within

the affine class of models, but also within the semi-affine class of models. It should be

noted, however, that our empirical evidence presented in this paper is limited to the case

of S&P 500 index options, and does not necessarily extend to other data.

Our specification analysis of the affine jump-diffusion models is based on the dynamic

features of the variance-swap prices inferred from cross-sections of option prices. This

is in contract to the approach in the existing literature where option pricing models are

fitted to the prices of individual options. Our approach has the following advantages.

First, since state variables are unobserved, complicated econometric methods have been

used in the literature to estimate the models, which make it difficult to identify which

aspect of the affine jump-diffusion models causes problems. This is especially so when

Heston’s univariate model is extended to multivariate models. Our approach of examining

the conditional mean and variance of transformed state variables in parametric and non-
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parametric analyses is straightforward to implement and avoids complicated econometric

procedures. Second, the prices of certain long-maturity, deep in- or out-of-the-money

options may contain errors due to liquidity reasons. The existence of these errors makes

it difficult to know whether a model is rejected because of model mis-specification or

because of data errors. Our approach of using variance-swap prices avoids this problem

because prices of individual options are aggregated, so the impact of idiosyncratic errors

is substantially reduced.

Our intended contribution of this paper is to provide evidence at a fairly general level

that the mis-specification of the affine models goes beyond the diffusion term of the state

variables, as the literature has been focused on. Since models outside the affine class are

difficult to solve, such information can be valuable to theoretical modelers in directing

their efforts towards finding better models. While our empirical results are limited to

the S&P 500 index options only, the methodology can be used in other cases in which

sufficient cross-sections of options data are available.

The rest of the paper is organized as follows. Section 2 presents the jump-diffusion

models that we investigate and the properties of variance-swap prices under jump-diffusion

models. Section 3 explains the construction of the S&P 500 index model-free variance-

swap prices and provides the summary statistics. Section 4 presents the results for the

nonparametric estimation of the conditional moments of model-free variance-swap prices.

Section 5 discusses the nonparametric tests and presents the results. Section 6 conducts

parametric tests. Section 7 discusses some robustness issues of the main results and

Section 8 concludes the paper.
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2. The options pricing framework and variance-swap

prices

2.1. The options pricing framework

Suppose the log price of an underlying security, st = logSt, of a number of European

options is driven by the stochastic process under the physical probability, P , as follows,

dst = µs(xt)dt+ σs(xt)dWt + zstdJt − νsλ(xt)dt, (1)

dxt = µx(xt)dt+ σx(xt)dWt + zxtdJt − νxλ(xt)dt, (2)

where xt is a k-dimensional state variable, Wt is a standard n-vector Brownian motion

with n ≥ k+ 1, Jt is an m-vector counting process with jump intensity λ(xt) independent

of Wt, µs(xt) and µx(xt) are the conditional mean of dst and dxt, σsσs
′ and σxσx

′ are

the conditional variance of the diffusive component of dst and dxt, zst is the conformable

matrix of random jump sizes of dst with mean νs, zxt is the conformable matrix of random

jump sizes of dxt with mean νx, both independent of Wt and Jt. Since the functional form

of µs(xt), σs(xt), µx(xt), σx(xt) and λ(xt) and the distribution function of zst and zxt

are all unspecified, except for the regularity conditions to guarantee the existence of the

solution, st and xt, this is a very general class of jump-diffusion models used in the options

pricing literature.2

Suppose a riskfree asset exists with the riskfree rate being rt which may depend on xt.

Since xt is not assumed to be traded and the jump components of the processes cannot

be hedged, there exists a risk-neutral probability, P̃ , though not unique, under which

W̃t = Wt +
∫ t

0
φ(xs)ds is a Brownian motion for an n-vector, φ(xt), Jt has an intensity

function, λ̃(xt), and distributions of jump sizes (zst, zxt) are potentially different with

means ν̃s and ν̃x. Under P̃ , the log price of the underlying security and the state variables

2Our analysis is limited to the jump-diffusion models with finite activity jumps, which do not include
infinite activity jump processes used in the literature.
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evolve as

dst = µ̃s(xt)dt+ σs(xt)dW̃t + zstdJt − ν̃sλ̃(xt)dt, (3)

dxt = µ̃x(xt)dt+ σx(xt)dW̃t + zxtdJt − ν̃xλ̃(xt)dt, (4)

where µ̃s(xt) = µs(xt)−σs(xt)φ(xt)−νsλ(xt)+ν̃sλ̃(xt) and µ̃x(xt) = µx(xt)−σx(xt)φ(xt)−

νxλ(xt) + ν̃xλ̃(xt). For P̃ to be a risk-neutral probability,

µ̃s(xt) = rt −
1

2
σs(xt)σs(xt)

′ − [Ẽt(e
zst − 1− zst)]λ̃(xt), (5)

so that, by Ito’s lemma, Ẽt(dSt/St) = rtdt where Ẽt is the expectation with respect

to P̃ conditional on time t information. Options can be priced under the risk-neutral

probability as discounted expected future payoffs.

For the model to be affine under the actual probability P , the following conditions are

imposed.

(i) µs(xt) is affine in xt.

(ii) σs(xt)σs(xt)
′ is affine in xt.

(iii) Each element of µx(xt) is affine in xt.

(iv) Each element of σx(xt)σx(xt)
′ is affine in xt.

(v) Each element of σs(xt)σx(xt)
′ is affine in xt.

(vi) Each element of λ(xt) is affine in xt.

For the model to be affine under the risk-neutral probability P̃ , the following additional

conditions are imposed.

(vii) σs(xt)φ(xt) is affine in xt.

(viii) Each element of σx(xt)φ(xt) is affine in xt.

(ix) Each element of λ̃(xt) is affine in xt.
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Together with (i)-(vi), the additional conditions (vii)-(ix) guarantee that µ̃s(xt) and

µ̃x(xt) are affine in xt, so the model is affine under the risk-neutral probability, P̃ . The

advantage of affine jump-diffusion models is their analytical tractability. Heston (1993)

shows the closed form expression of prices of European options for the simplest affine

diffusion model. Duffie et al. (2000) extend it to general affine models and to other

derivatives.

Strictly speaking, a closed form option pricing formula can be obtained as long as the

model is affine only under the risk-neutral probability, P̃ . That is, one may directly specify

that µ̃s(xt), µ̃x(xt), σs(xt)σs(xt)
′, σx(xt)σx(xt)

′, σs(xt)σx(xt)
′ and λ̃(xt) are affine without

specifying that µs(xt), µx(xt), and λ(xt) are affine. The empirical results we present in this

paper have nothing to say about this alternative approach.3 Since the paper is motivated

by the fact that affine models under P̃ face challenges and the ultimate goal of this line

of research is to find out the sources of mis-specification, considerations of models that

have no restrictions under actual probability P defeat the purpose.

The thrust of this paper is based on the observation that the prices of a class of

derivatives known as variance-swaps are affine functions of xt in models less restrictive

than the affine models defined above. A variance-swap is a forward contract on the

realized quadratic variation of st over a fixed time horizon. It will be shown below that

the variance-swap price, which is the expectation of the quadratic variation under the

risk-neutral probability, is a function of the first moment of the state variable xt alone.

No restrictions on σx(xt) are required for the variance-swap price to be affine in xt. This

observation leads us to define the class of semi-affine jump-diffusion models as follows.

Definition. The semi-affine class of jump diffusion models used in this paper is defined by

conditions (ii), (iii), (vi), (viii), and (ix).

3In the literature of the term structure of interest rates, there are models that are non-affine under
the actual probability, but affine under the risk-neutral probability with a contrived specification of risk
premiums. We are not aware of any such models in options pricing.
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The condition (ii) can be viewed as a definition of state variables in this class of

models and it does not impose any material restrictions. The key ingredients of a semi-

affine model are, therefore, the affine drift of the state variables under probability P , the

affine jump intensities under both P and P̃ , and the risk premiums associated with the

state variables. The class of semi-affine models is obviously broader than the class of

affine models because it is defined with less restrictive conditions.

The key difference between affine models and semi-affine models is that the crucial

conditions (iv) and (v) of the affine models are not imposed on the semi-affine models

which leave σx(xt) unrestricted. This statement, however, requires further clarification

because σx(xt) still appears in (viii). Since φ(xt) is unrestricted, for any specification of

σx(xt) that is bounded away from zero as in all affine models, there always exists a φ(xt)

such that σx(xt)φ(xt) is an affine function of xt. It is in this sense that semi-affine models

do not put restriction on σx(xt).
4

This feature of the semi-affine models distinguishes them from affine models and plays

a crucial role in this paper. As many authors, such as Jones (2003) and Christoffersen et

al. (2010), attribute the unsatisfactory performance of specific affine models to the affine

restriction on the diffusion term of the state variables, i.e., condition (iv), examinations of

semi-affine models help discover if the affine restriction of the diffusion term of the state

variables is the only problem the affine models have.

2.2. Variance-swap prices

Since state variables in the jump-diffusion options pricing models cannot be observed

directly, econometric inferences have to rely on variables that track the unobserved state

variables. Variance-swap prices are good candidates for this purpose. A variance-swap

is a forward contract determined at t between two parties to exchange at t + τ a value

4A related discussion can be found in Cheridito, Filipovic̀, and Kimmel (2007) in the context of affine
models of interest-rates.
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Ṽτ,t and the realized quadratic variation of su between t and t + τ , 1
τ

∫ t+τ
t
〈su, su〉du,

where 〈·, ·〉 indicates quadratic variation and the multiplier 1
τ

reflects the convention of

annualization when the unit of t is a year. The value Ṽτ,t is known as the variance-

swap price. Since a variance-swap has no value at its inception, t, it must be true that,

theoretically, Ṽτ,t = Ẽt
1
τ

∫ t+τ
t
〈su, su〉du. Since Ṽτ,t is the expectation conditional on the

information at t, it must be a measurable function of xt. The empirical part of this paper

is based on the following propositions. The proofs of these results are presented in the

Appendix.

Proposition 1. Under the assumptions of semi-affine jump-diffusion models, the prices of

variance-swaps are affine functions of the state variables, xt.

Therefore, under the assumptions of semi-affine models, variance-swap prices inherit

the affine properties of the state variables under both the actual probability P and risk-

neutral probability P̃ . This facilitates a test of the affine properties of the state variables

using the properties of variance-swap prices under P . In the following sections, we ex-

amine the conditional means and conditional variances of the variance-swap prices under

probability P as a test of affine properties of the state variables. Since the semi-affine

jump-diffusion models do not require that the squared diffusion term of the state variables

be affine in the state variables, we are able to tell whether this requirement is the only

restriction responsible for the unsatisfactory performance of certain specific affine models

in fitting options prices.

Similar results have appeared in the literature, so the proposition is not new. For

example, Duan and Yeh (2010) find a similar result for a one-factor affine model and

Egloff, Leippold, and Wu (2010) find the same result for a multi-factor affine model

without jumps. The proofs of the results are more-or-less the same. However, none of

them emphasize that the result can be obtained in semi-affine models such as the one

defined in this paper. To our knowledge, no attempt has been made for the purpose of

model diagnostics, using the result that variance-swap prices inherit the properties of the
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state variables in semi-affine models.

Variance-swap prices can be obtained from the actual market for variance-swaps or

can be created synthetically using prices of liquid options on the underlying. For our

purpose of testing the semi-affine models, the latter approach has an obvious advantage.

This is so because variance-swaps are traded over-the-counter, without a central clearing

house. Price data from any specific dealer may contain all kinds of errors, due to lack

of liquidity, behavior biases of specific traders, or simply human errors, which make the

inferences based on these actual prices less reliable. On the other hand, the test of affine

properties conducted in this paper does not require observations of actual variance-swap

prices. All it requires is that, theoretically, variance-swap prices are affine functions of

the unobserved state variables.

We construct variance-swap prices as portfolios of out-of-the-money calls and puts,

using the approach demonstrated by Carr and Madan (1998) and Demeterfi et al. (1999)

as follows.

Vτ,t =
2

τ
erτ

(∫ Fτ,t

0

1

K2
pτ,t(K)dK +

∫ ∞
Fτ,t

1

K2
cτ,t(K)dK

)
, (6)

where r is the riskfree rate and is assumed to be constant, Fτ,t is the t+τ -forward price of

St, and cτ,t(K) and pτ,t(K) are prices of European calls and puts with strike price K and

maturity at t+ τ . The resultant synthetic variance-swap price is known as the model-free

variance-swap price. Under the assumption that the stochastic process for the price of

the underlying security is continuous, i.e., there is no jump component, Vτ,t = Ṽτ,t. As

such, the variance-swap prices are replicated by portfolios of out-of-the-money calls and

puts. In practice, calls and puts of all strikes are not available and the forward price of

St involves estimating dividends paid from t to t+ τ , so approximations are involved. We

adopt the same approach to calculating the VIX as used by the Chicago Board Options

Exchange (CBOE). The approach includes implying the forward price from the prices of

near-the-money options according to the put-call parity, approximating the integration

with a numerical integration scheme over the range of available strikes, estimating the
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price of the variance-swap of a fixed maturity by linearly interpolating prices of variance-

swaps of adjacent maturities, and using the bid-ask average prices of the options as the

true prices. All of these ingredients may introduce some approximation errors. Since there

are so many factors which are essentially unrelated to each other, and the effects of most

of them on the sign of the approximation error cannot be determined, the approximation

is unlikely to yield systematic biases.5

With jump components, however, the replicating strategy in Eq. (6) is no longer

exact, i.e., Vτ,t 6= Ṽτ,t. The errors induced by jumps in the replication, Vτ,t − Ṽτ,t, are

small on average for the S&P 500 index. Carr and Wu (2009) provide the order of the

approximation error of Eq. (6) due to jumps and conclude that the approximation error

is less than 1% of the average variance level. While the errors are small on average, they

can be large at times. In general, the error can be unbounded. Nevertheless, the next

proposition justifies our use of model-free variance-swap prices in the analysis.

Proposition 2. Suppose the riskfree rate is a constant. Denote the drift of xt as µ̃x(xt) =

Γ(θ− xt) and the jump intensity as λ̃(xt) = λ̃0 + Λ̃xt. The approximation error of Vτ,t as

Ṽτ,t is also an affine function of the state variables under the assumptions of semi-affine

models, as follows,

Vτ,t − Ṽτ,t

=
2

τ
Ẽ
(
ezst − 1− zst − z2

st/2
)
Ẽt

[∫ t+τ

t

(λ̃0 + Λ̃xu)du

]
= 2

[
Ẽz3

st

3!
+
Ẽz4

st

4!
+ · · ·

] [
λ̃0 + Λ̃θ + Λ̃(τΓ)−1(Ik − e−τΓ)(xt − θ)

]
. (7)

According to the proposition, the first factor of the approximation error due to jumps

is determined by the shape of the jump size distribution in the process of the underlying

5As a robustness check, we adopt the method proposed by Jiang and Tian (2007) to reduce the errors
arising from the unavailability of options of all strikes. The variance-swap prices calculated using this
alternative approach are quantitatively similar to those from the standard approach and the conclusions
on testing the affine properties using the two approaches are the same.
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asset. If the jump size distribution is more skewed or with fatter tails, then the absolute

value of the approximation error will be greater. The second factor of the approximation

error is determined by the expected jump intensity from the present to the maturity of the

variance-swap conditioned on the information at the time. Since the jump intensity is an

affine function of the state variable, λ̃0+Λ̃xu, the unconditional mean of the approximation

error, Ẽ[Vτ,t− Ṽτ,t], will be greater if, loosely speaking, λ̃0 and Λ̃ are greater, and the mean

of xu, θ, is greater. The sign of the unexpected approximation error, Vτ,t− Ṽτ,t− Ẽ[Vτ,t−

Ṽτ,t], is positive when xt > θ. The absolute value of the unexpected approximation error

is greater if the persistence of xt is greater (i.e., Γ is smaller).6

It should be realized that the approximation error caused by the existence of jump

components can be unbounded because it is an affine function of the state variables, which

are unbounded for most non-trivial affine processes.7 The importance of Proposition 2,

however, is that the approximation error does not affect the use of model-free variance-

swap prices in testing the semi-affine properties of the state variables. If the conditional

means of model-free variance-swap prices are found to be non-affine, it must be caused

by the assumptions of semi-affine properties, rather than the approximation error due to

jumps. This is so because the approximation error itself is affine in the state variables and

will not generate non-affine distortions if the state variables follow a semi-affine process.

From Eq. (5), the riskfree rate is a function of the state variables. The assumption of a

constant riskfree rate in the proposition is made mainly for simplicity, without which, the

use of the model-free variance-swap price formula as the theoretical variance-swap price

6Jiang and Oomen (2008) provide a test for the presence of jumps based on the replication error
due to jumps for the payoff of the realized quadratic variation. The replication involves a continuously
rebalanced delta hedging strategy for a short position in two log contracts. The annualized replication

error is given by 1
τ

∑Jt+τ
i=Jt+1 2(ezsti − 1 − zsti − z2sti/2), where ti is the time for the ith jump. The

expression given in Proposition 2 can be obtained alternatively by taking risk-neutral expectation of the
above expression under the assumptions of semi-affine models.

7For example, a variable following the square-root process, the simplest non-trivial affine process
without jumps, has a conditional distribution of the non-central χ2 type, and therefore is unbounded.
Adding and mixing an independent jump component to it will not change that even if the jump size
distribution is bounded.
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may contain additional approximation errors. Fortunately, the assumption of a constant

riskfree rate is innocuous as far as the empirical performance of option pricing models

is concerned, as most options are relatively short term, with time-to-expiration less than

two years typically. Bakshi et al. (1997), for example, find that a stochastic riskfree rate

is not helpful for improving the options pricing performance.

3. Data description

We use daily data of the S&P 500 index options from January 1996 to September 2008.

The options written on the S&P 500 index are the most actively traded European-style

contracts, and the S&P 500 index options and the S&P 500 futures options have been

the focus of recent empirical options studies. The best known model-free variance-swap

price for the S&P 500 index is the squared VIX, which has a maturity of one month and

is constructed by CBOE. Data for VIX are downloaded from the CBOE website. A few

recent studies show that options pricing models should contain multiple unobserved state

variables.8 We construct longer-term variance-swap prices of the S&P 500 index using

the same CBOE VIX calculation method (Chicago Board Options Exchange, 2003). The

options data needed are from OptionMetrics. The daily interest rate data are from the

U.S. Treasury Department’s website.

The prices of a model-free variance-swap with a fixed maturity are calculated as follows.

For a given day, the variance-swap prices with maturities equal to those of available

options contracts are calculated first. The variance-swap price with a given maturity is

then calculated by interpolating two variance-swap prices with maturities closest to the

given maturity. According to CBOE, the VIX is constructed using options of maturities

8Christoffersen, Heston, and Jacobs (2009) find that a two-factor stochastic volatility model provides
more flexibility in modeling the time-series variation in the smirk and the volatility term structure than
single-factor stochastic volatility models. Li and Zhang (2010) use a nonparametric approach to arrive
at the conclusion that in addition to the price of the underlying security, exactly two state variables
are required for pricing S&P 500 index options. Christoffersen et al. (2008) propose a GARCH options
pricing model with long-run and short-run volatility factors that outperforms the one-factor options
pricing model of Heston and Nandi (2000), especially for pricing long maturity options.
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no greater than 39 days. We choose options with the longest maturities to construct the

long-maturity variance-swap price. To ensure that at least two maturities are available to

calculate a fixed maturity variance-swap price for the entire sample, the options with two

shortest maturities of no less than 350 days are used to calculate the 18-month variance-

swap price. The 1-month and 18-month variance-swap prices are denoted as V1 and V18,

respectively.

Fig. 1 plots V1 and V18. In general, V1 and V18 move up and down together. Both of

the short-maturity and the long-maturity variance-swap prices are relatively low in 1996

and during 2004-2006 and relatively high for the rest of the years in the sample. There

are also clear contrasts between V1 and V18. V1 is more volatile and has several spikes

during the sample period. V18 is more stable and more persistent.

Fig. 1 Here

Table 1 reports the summary statistics of V1, V18 and their first differences, ∆V1 and

∆V18. It is shown that V1 is slightly higher than is V18 on average. V1 is also more volatile

and more positively skewed than is V18. The time-series of V1 and V18 are only modestly

persistent, as the autocorrelations of V1 and V18 decay quickly when compared with daily

interest-rate data.9 The p-values of the augmented Dickey-Fuller unit root test of V1 and

V18 are low, suggesting that the levels of V1 and V18 are stationary. ∆V1 has a larger

standard deviation than does ∆V18 and they are about equally positively skewed.

Table 1 Here

In the next few sections, we estimate the conditional mean and variance-covariance

of the variance-swap price changes and test the affine properties of these quantities. The

9For example, the autocorrelations for the daily 1-month constant maturity treasury yield for the
same sample period are ρ1 = 0.9990, ρ2 = 0.9976, ρ3 = 0.9964, ρ5 = 0.9946, ρ10 = 0.9903, ρ20 = 0.9838
and ρ30 = 0.9780, much more persistent than V1 and V18.
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main focus is on the conditional mean because semi-affine models do not impose restric-

tions on variances and covariances. We begin with a nonparametric method because

there are no obvious alternatives to the affine jump-diffusion models.10 The method we

use is an extension of the method used by Aı̈t-Sahalia (1996b) and Stanton (1997) on

the conditional mean and conditional variance functions of the short-term interest-rate

model.

The method, when applied to interest rates, draws certain criticism, Pristker (1998)

argues that Aı̈t-Sahalia’s test does not perform well in finite samples and it over-rejects

the null of affine conditional mean because the interest rate data are highly persistent.

Chapman and Pearson (2000) argue that due to the truncation of the upper limit of finite

samples, the kernel regression estimation of the conditional mean is downward biased

at the upper end. The criticism does not apply squarely to the case of variance-swap

prices we study in this paper for two reasons. First, variance-swap prices are much less

persistent than the interest rates. Because of this, we don’t need to invoke the result

in Aı̈t-Sahalia and Park (2012) who derive the asymptotic distribution of the test for

integrated data. Second, our method analyzes transition density, instead of stationary

density, of the process. The transition density based nonparametric tests do not rely as

much on stationarity and the transition density contains additional information in the

data that is unavailable in the stationary density. Hong and Li (2005) and Chen and Gao

(2004) show that transition density based tests have good size and power properties.

We use a bootstrap method to improve the finite sample performance of the nonpara-

metric test. The bootstrap method has been employed in various studies in the literature

and has been shown to have good finite-sample performances. Corradi and Swanson

(2005) show that bootstrap methods provide accurate standard errors even for highly

persistent data. We also conduct a simulation study which shows that the bootstrap

10Nonparametric methods are applied to options pricing in Hutchinson, Lo, and Poggio (1994), Aı̈t-
Sahalia (1996a), Aı̈t-Sahalia and Lo (1998), Broadie et al. (2000a, 2000b), Aı̈t-Sahalia, Wang, and Yared
(2001), Aı̈t-Sahalia and Duarte (2003), and Li and Zhao (2009), among others.
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test performs well for persistent data. To supplement the nonparametric method, we

also adopt a parametric approach with specific non-affine alternatives gleaned from the

nonparametric estimation.

4. Nonparametric estimation

In this section, we estimate the conditional moments of variance-swap prices nonpara-

metrically and examine their affine properties. Specifically, we estimate the conditional

moments of the daily changes in the variance-swap prices, ∆V1 and ∆V18, as

∆V1,t+1 = µ1(V1,t, V18,t) + η1,t+1, (8)

∆V18,t+1 = µ18(V1,t, V18,t) + η18,t+1, (9)

and

η̂2
1,t+1 = σ2

1(V1,t, V18,t) + ξ1,t+1, (10)

η̂2
18,t+1 = σ2

18(V1,t, V18,t) + ξ18,t+1, (11)

η̂1,t+1η̂18,t+1 = σ1,18(V1,t, V18,t) + ξ1,18,t+1. (12)

where ∆Vτj ,t+1 = Vτj ,t+1−Vτj ,t for τj = 1 and 18, and η̂1,t+1 and η̂18,t+1 are fitted residuals

from Eq. (8) and Eq. (9).

The conditional moments are fitted using both the local constant (Nadaraya-Watson)

and local linear kernel estimators. For the former,

µ̂τj(V1, V18) =

T∑
t=1

φ(V1,t−V1
hV1

)φ(V18,t−V18
hV18

)∆Vτj ,t+1

T∑
t=1

φ(V1,t−V1
hV1

)φ(V18,t−V18
hV18

)

(13)

σ̂2
τj

(V1, V18) =

T∑
t=1

φ(V1,t−V1
hV1

)φ(V18,t−V18
hV18

)η̂2
τj ,t+1

T∑
t=1

φ(V1,t−V1
hV1

)φ(V18,t−V18
hV18

)

(14)
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σ̂1,18(V1, V18) =

T∑
t=1

φ(V1,t−V1
hV1

)φ(V18,t−V18
hV18

)η̂1,t+1η̂18,t+1

T∑
t=1

φ(V1,t−V1
hV1

)φ(V18,t−V18
hV18

)

(15)

where τj = 1, 18, φ is a kernel function, hw is the bandwidth for an explanatory variable,

w, and T is the number of observations. We choose the second-order Gaussian kernel

with φ(z) = 1√
2π
e−z

2/2. The optimal bandwidth, hw, is determined by the cross-validation

method for each conditional moment and for each explanatory variable. Using the cross-

validation method, a vector of bandwidth h is chosen to minimize the objective function

CV(h) =
1

T

T∑
t=1

[zt − m̂−t,h(ut)]2ν(ut), (16)

where m̂−t,h(ut) is the kernel estimator of zt without using the observation zt, and ν(ut) is

a weighting function for the observation ut. The role of ν is to reduce the boundary biases

in the bandwidth selection by reducing the weight of the extreme levels of ut. ν is one if

each component of ut is between the 2.5th and 97.5th percentile and zero otherwise. We

also estimate an independent case in which µ1(V1,t, V18,t) and σ2
1(V1,t, V18,t) only depend

on V1,t, µ18(V1,t, V18,t) and σ2
18(V1,t, V18,t) only depend on V18,t, and σ1,18(V1,t, V18,t) = 0.

For the case of one-dimensional ut, ν is one if ut is between the 5th and 95th percentile

and zero otherwise.

The estimation result of the conditional mean and the conditional variance for the

independent case is shown in Fig. 2. The solid line shows the mean estimate, and the

dashed lines cover the 90% confidence interval.11 The estimated conditional mean of

∆V1 is a concave function of V1. From the low to medium level of V1, the conditional

mean is close to zero. For the high level of V1, the conditional mean is negative and the

speed of mean reversion is relatively fast. The unconditional mean of V1 over the sample

period is 0.047, at which level, the conditional mean of ∆V1 is slightly above zero. This

suggests that V1 has a tendency to move even higher at the mean level. Similar to ∆V1,

11The confidence interval is calculated using Kunsch’s (1989) block bootstrap method to account for
the time-series dependence of the observations.
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the conditional mean of ∆V18 is concave in V18. The non-affine conditional mean of the

variance-swap prices for the independent case rejects the affine restrictions on the semi-

affine jump-diffusion model. The conditional variance of ∆V1 and ∆V18 is convex, which

suggests that it increases faster in V1 and V18 than what the affine process dictates.

The local constant kernel regression tends to estimate a flatter surface near the bound-

ary of the domain when the slopes of the surface are actually steep because the average is

taken for observations from inside the boundary only. The local linear kernel regression is

known for its better performance in this situation. The results based on local linear kernel

regressions show that the fitted conditional mean functions are quantitatively similar to

those based on local constant kernel regressions for low variance-swap price levels, as the

slopes of the functions are flat. But for high variance-swap price levels, the non-affine

properties of the conditional means of ∆V1 and ∆V18 are even more pronounced when lo-

cal linear kernel regressions are used in the estimation. On the other hand, the non-affine

properties of the conditional variances estimated by local linear kernel regressions are less

pronounced because the means are fitted better. The results are not reported here to

conserve the space.

Fig. 2 Here

The patterns of the condition mean and conditional variance of the variance-swap

prices can be compared with those of short-term interest rates estimated using nonpara-

metric methods by Aı̈t-Sahalia (1996b) and Stanton (1997). The similarity is that, for

both short-term interest rates and variance-swap prices, the conditional mean and the

conditional variance of their changes are found to be non-affine. The conditional means

are concave and the conditional variances are convex. There are some small differences,

however. The conditional mean of the change in short-term interest rates exhibits a cer-

tain degree of curvature throughout the entire range of the short-term interest rates. The

conditional mean of variance-swap prices, however, is more like two connected straight
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lines with different slopes: it is almost flat in the low range of the variance-swap prices,

but it abruptly changes to a very steep line in the high range. The conditional variance

of the short-term interest rates is slightly U-shaped, while the conditional variance of the

variance-swap prices is monotonically increasing.

For the dependent case, the conditional mean of ∆V1 is a function of V1 and V18.

Its estimate is presented conditional on V18 at the low, medium and high levels in the

left panels of Fig. 3. Conditional on the low and medium levels of V18, V1 shows little

tendency to revert to the mean. Conditional on the high level of V18, the conditional mean

is positive for some regions of V1, and it becomes negative when V1 is also very high. The

confidence interval is wider conditional on the high level of V18 than conditional on the

low level of V18. The conditional mean of ∆V18 as a function of V1 and V18 is shown in

the right panels of Fig. 3. The magnitude of the conditional mean of ∆V18 is smaller than

that of ∆V1, suggesting that V18 is more persistent. The strongest mean reversion of V18

also occurs conditional on the high level of V1. The non-affine conditional mean of ∆V1

and ∆V18 of the dependent case confirms the findings of the univariate case that the affine

restrictions on the semi-affine jump-diffusion model are rejected.

Fig. 3 Here

The estimated conditional variance for the dependent case is shown in Fig. 4. In

the left panels, the estimated conditional variance of ∆V1 is shown as a function of V1

conditional on the low, medium and high levels of V18. The right panels are for the

estimated conditional variance of ∆V18. We note the difference in scales for different

panels. For both ∆V1 and ∆V18, the conditional variances are convex functions of their

levels. The non-affine property is stronger for ∆V1 than for ∆V18, and more so when

conditional on low levels of V1 and V18 than conditional on high levels. It is also shown

that ∆V1 has a higher variability than does ∆V18.

Fig. 4 Here
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The estimated conditional covariance for the dependent case is shown in Fig. 5. In

the left panels, the estimated conditional covariance between ∆V1 and ∆V18 is shown as

a function of V1 for the low, medium and high levels of V18. The right panels show the

estimated conditional covariance as a function of V18 for the different levels of V1. The

conditional covariance is increasing in V1 and V18 in general. It is a convex function of V1

and V18 at low levels of V1 and V18. However, at high levels of V1 and V18, the conditional

covariance is a concave function of V1 and V18, and decreases at the extreme high levels of

V1 and V18. The results suggest that both the conditional variance of ∆V1 and ∆V18 and

their conditional covariance are inconsistent with the affine process since they increase at

much faster rates in the levels of V1 and V18 than what the affine process suggests.

Fig. 5 Here

5. Nonparametric tests

In this section, we conduct rigorous nonparametric tests of the affine properties of the

conditional mean, conditional variance, and conditional covariance of ∆V1 and ∆V18. We

consider four tests for the independent case, in which the conditional mean and conditional

variance of ∆V1 are functions of V1 only, the conditional mean and conditional variance

of ∆V18 are functions of V18 only, and the conditional covariance of (∆V1,∆V18) is zero.

Specifically, we test the null hypotheses µ1(V1) = a + bV1, σ2
1(V1) = a + bV1, µ18(V18) =

a + bV18, and σ2
18(V18) = a + bV18 against unrestricted alternatives. For the dependent

case, we consider fifteen tests, in which each of the following five moments, µ1, µ18, σ2
1,

σ2
18, σ1,18, takes the following functional forms under the null hypothesis: a+ b1V1 + b2V18,

g(V1)+ bV18, or bV1 +g(V18), where g(·) is unrestricted. The totally unrestricted moments

under the alternative and the unrestricted g(·) are estimated nonparametrically.

We use the nonparametric test developed in Fan and Li (1996) and Zheng (1996) to test

the parametric or semiparametric function forms against the nonparametric alternatives,
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supplemented by the so-called two-point wild bootstrap method to approximate the null

distribution of the statistic to achieve more accurate finite sample results. Under the null

hypothesis, the test statistic is asymptotically distributed as a standard normal variate

under certain regularity conditions. A number of studies, such as Li and Wang (1998), Li

(2005), Li and Racine (2007, Chapter 12), and Gu, Li, and Liu (2007), show that the test

of Fan and Li (1996) and Zheng (1996) has good finite sample performance when used in

combination with the bootstrap method in various applications. Some of the additional

advantages of the bootstrap method are that it allows for heteroskedasticity, it works well

with serially correlated data, and the result is insensitive to the choice of the bandwidth.

We illustrate the methods of testing an affine model and a partially affine model in turn.

5.1. Testing affine models

For the case of an affine model, suppose we test the null hypothesis that the conditional

mean of ∆V1 is affine in (V1, V18). That is

H0 : E[∆V1|V1, V18] = a+ b1V1 + b2V18. (17)

A statistic can be constructed as I = E[εE(ε|V1, V18)], where ε = ∆V1 − a − b1V1 −

b2V18 is the residual under the null hypothesis. By the law of iterated expectations,

I = E[E2(ε|V1, V18)] ≥ 0. The equality holds if and only if the null hypothesis is true.

Thus, I serves as a proper statistic for consistently testing the null hypothesis. A density

weighted sample analogue of I is IT = 1
T

∑T
t=1 ε̂t+1E(ε̂t+1|V1,t, V18,t)f(V1,t, V18,t), where

ε̂t+1 = ∆V1,t+1 − â − b̂1V1,t − b̂2V18,t is the OLS regression residual and f(V1,t, V18,t) is

the joint density of (V1,t, V18,t).
12 Both E(ε̂t+1|V1,t, V18,t) and f(V1,t, V18,t) are estimated

nonparametrically. ÎT , which is IT standardized by a consistent estimator of its standard

error, follows the standard normal distribution asymptotically under the null. The null

12Fan and Li (1996) indicate that using the density-weighted version overcomes the random denom-
inator problem in the kernel estimation of E(ε̂t+1|V1,t, V18,t) and simplifies the asymptotic analysis of
IT .
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hypothesis is rejected if ĨT is greater than a threshold, say, 1.645 at the 5% significance

level.

Using the residual ε̂t+1, the two-point wild bootstrap samples under the null hypothesis

can be constructed as,

∆V ∗1,t+1 = â+ b̂1V1,t + b̂2V18,t + ε∗t+1, (18)

where ε∗t+1 = 1−
√

5
2
ε̂t+1 with probability 1+

√
5

2
√

5
, and ε∗t+1 = 1+

√
5

2
ε̂t+1 with probability

−1+
√

5
2
√

5
. The new errors have the following property: E∗(ε∗t+1) = 0, E∗(ε∗2t+1) = ε̂2

t+1

and E∗(ε∗3t+1) = ε̂3
t+1, where E∗ indicates the expected value in the simulation. Then,

the bootstrap samples are used to compute the test statistic Î∗T in the same way ÎT is

computed. The empirical distribution of Î∗T under the null hypothesis can be obtained

from many bootstrap samples. In practice, we construct 100 bootstrap samples. When

ÎT is greater than the 95th percentile of the empirical distribution of Î∗T , the bootstrap

test rejects the null hypothesis at the 5% significance level and the bootstrap p-value is

5%.

5.2. Estimating and testing partially affine models

To estimate a partially affine model, consider µ1(V1, V18) = g(V1) + bV18 as an example.

The regression is

∆V1,t+1 = g(V1,t) + bV18,t + εt+1, (19)

where ∆V1,t+1 = V1,t+1 − V1,t and g(.) is unspecified. Taking the expectation of Eq. (19)

conditional on V1,t gives

E(∆V1,t+1|V1,t) = g(V1,t) + bE(V18,t|V1,t). (20)

Subtracting Eq. (20) from Eq. (19) and multiplying by the density of V1,t, f(V1,t), yields

[∆V1,t+1 − E(∆V1,t+1|V1,t)]f(V1,t) = b[V18,t − E(V18,t|V1,t)]f(V1,t) + εt+1f(V1,t). (21)
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E(∆V1,t+1|V1,t), E(V18,t|V1,t) and f(V1,t) are estimated nonparametrically. Given the esti-

mates of the conditional expectations and the density function, b is estimated by regressing

[∆V1,t+1 − E(∆V1,t+1|V1,t)]f(V1,t) on [V18,t − E(V18,t|V1,t)]f(V1,t) using OLS. With the es-

timated b̂, g(V1,t) is estimated by regressing ∆V1,t+1 − b̂V18,t on V1,t nonparametrically, or

is simply estimated by E(∆V1,t+1|V1,t)− b̂E(V18,t|V1,t) as suggested by Eq. (20).13

To test the null hypothesis E(∆V1|V1, V18) = g(V1) + bV18 against E(∆V1|V1, V18) =

g1(V1, V18) is equivalent to testing E(∆V1−bV18|V1) = g(V1) againstE(∆V1−bV18|V1, V18) =

g2(V1, V18), where g1(V1, V18) and g2(V1, V18) are unrestricted. This suggests that given b,

testing partially affine models against nonparametric alternatives is equivalent to testing

omitted variables. A density-weighted version of the test statistic for omitted variables or

partially affine models is I = E[εf(V1)E(εf(V1)|V1, V18)f(V1, V18)], where ε is the residual

from the null hypothesis. For our case of testing partially affine models against non-

parametric alternatives, ε = ∆V1 − g(V1) − bV18. The sample analogue of I is IT =

1
T

∑T
t=1 ε̂t+1f(V1,t)E(ε̂t+1f(V1,t)|V1,t, V18,t)f(V1,t, V18,t), where ε̂t+1 = ∆V1,t+1 − ĝ(V1,t) −

b̂V18,t, ĝ(V1,t) is the nonparametric estimator of g(V1,t), and f(V1,t), E(ε̂t+1f(V1,t)|V1,t, V18,t)

and f(V1,t, V18,t) are estimated nonparametrically.

The bootstrap samples under the null hypothesis can be constructed as,

∆V ∗1,t+1 = ĝ(V1,t) + ε∗t+1, (22)

where ε∗t+1 = 1−
√

5
2
ε̂t+1 with probability 1+

√
5

2
√

5
, and ε∗t+1 = 1+

√
5

2
ε̂t+1 with probability −1+

√
5

2
√

5
.

The linear term b̂V18,t is unnecessary since the test can be regarded as an omitted vari-

ables test and the estimation of the linear term can be avoid. The test statistic computed

from the bootstrap samples is I∗T = 1
T

∑T
t=1 ε̂

∗
t+1f(V1,t)E(ε̂∗t+1f(V1,t)|V1,t, V18,t)f(V1,t, V18,t),

where ε̂∗t+1 = ∆V ∗1,t+1−ĝ∗(V1,t) and ĝ∗(V1,t) is the nonparametric estimator of E(∆V ∗1,t+1|V1,t).

Statistical inference is then made by comparing the standardized test statistic ÎT from

13The reason for multiplying by f(V1,t) is to avoid the technical difficulties in deriving the asymptotic

distribution of b̂ arising from the random denominator problem in the kernel estimation of E(∆V1,t+1|V1,t)
and E(V18,t|V1,t), indicated in Li and Racine (2007, p.224). b̂ is a consistent estimator of b.
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the original sample with a distribution of the standardized test statistics Î∗T from the

bootstrap samples.

5.3. Testing results

The results of the nonparametric tests shown in Table 2 are in line with the impression

from Fig. 2-5. Panel A reports results based on local constant kernel regressions in the

estimation. For the independent case, the conditional mean of ∆V1 is marginally sig-

nificant, while the affine properties of other conditional moments are strongly rejected.

For the dependent case, we find strong non-affine properties in the conditional means of

∆V1 and ∆V18, the conditional variances of ∆V1 and ∆V18, and their conditional covari-

ance, evidenced by the very low p-values. The results also show that the nonparametric

components of V1 and V18 capture the non-affine property in the conditional moments.

The partially affine model allowing for the nonparametric component of g(V1) captures

the non-affine property in the conditional mean and conditional variance of ∆V1. The

nonparametric component of g(V18) captures the non-affine property not only in the con-

ditional mean and conditional variance of ∆V18, but also in the conditional mean of ∆V1

and the conditional covariance. Panel B reports results based on local linear kernel re-

gressions. The p-values for testing the affine properties of the conditional means of ∆V1

and ∆V18 are virtually identical to those based on local constant kernel regressions. The

non-affine properties of the conditional variances and conditional covariance are slightly

weaker than those based on local constant kernel regressions because, as we mentioned

earlier, local linear kernel regressions fit the conditional means better at the upper end of

V1 and V18 and the estimated values of second moments are lower at the upper end.

Table 2 here

The non-affine conditional means of the variance-swap prices indicate that either the

affine jump intensity of the underlying price/volatility process, the drift or the risk pre-
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mium of the volatility process of the semi-affine jump-diffusion model is mis-specified.

Therefore, the non-affine diffusion of the volatility process is not the only reason for the

rejection of the affine jump-diffusion model of options pricing.

5.4. Finite sample performance of the bootstrap test

In this subsection, we conduct a simulation analysis of the finite sample performance of

the bootstrap testing method. The data are simulated to capture the important features

of the variance-swap prices so that the performance of the test on persistent time-series

data can be examined. The data are generated under the null hypothesis of either affine

or semi-affine models. We explain the independent case first.

For the independent case, one variance-swap suffices. Let a time-series of V̌1,t+1 be

generated by the following model,

V̌1,t+1 = φ0 + (φ1 + 1)V̌1,t +
√
φ2V̌

φ3
1,t εt+1, (23)

where εt+1 is drawn from the standard normal distribution independently across t. The

starting value, V̌1,1 is equal to 0.02, which is approximately the level of the actual 1-month

variance-swap price at the beginning of the sample period. The parameters are estimated

by the quasi maximum likelihood method using the entire sample of the actual 1-month

variance-swap prices. The estimates are φ0 = 0.0004, φ1 = −0.0048, φ2 = 0.019 and

φ3 = 2.1. The parameters determined this way correspond to a semi-affine model. We

also consider an affine model in which φ3 = 1, so the conditional variance of ∆V̌1 is affine.

The remaining parameters in the affine model are estimated as φ0 = 0.00066, φ1 = −0.013

and φ2 = 0.00075.

For the semi-affine model with φ3 6= 1, we test the null hypothesis that the conditional

mean of ∆V̌1 is affine. For the case of φ3 = 1, we further test the affine property of

the conditional variance. We construct 500 time-series samples from each of the above

models, and use the bootstrap method described previously to test the null hypothesis
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at a certain significance level. From the 500 samples, we calculate the rejection rate. A

test with the rejection rate close to the significance level is considered as a good test. We

also vary the sample size and bandwidth to examine the sensitivity of the test to these

variables. We consider the sample sizes of 1000, 2000, and 3208. The latter is the size of

the actual sample used in this study. We consider the case of the optimal bandwidth h∗,

an under-smoothed case with h∗/1.5 and an over-smoothed case with 1.5h∗.

Table 3 reports results based on local constant kernel regressions in the estimation.

The percentage rejection rates out of the 500 tests on the simulated samples for the

independent case are reported in the left panel of Table 3. For the affine case with φ3 = 1,

the rejections rates for both of the conditional mean and conditional variance are in line

with the significance levels. For the semi-affine case with φ3 6= 1, the test tends to over-

reject the null for smaller samples. For the simulated data of the same sample size as the

actual sample used in this study, the performance is good.

Table 3 Here

For the dependent case, the data are generated by the model,

V̌1,t+1 = ψ0,1 + (ψ1,1 + 1)V̌1,t + ψ2,1V̌18,t +

√
ψ3,1V̌

ψ4,1

1,t ε1,t+1 +

√
ψ5,1V̌

ψ6,1

18,t ε2,t+1 (24)

V̌18,t+1 = ψ0,18 + ψ1,18V̌1,t + (ψ2,18 + 1)V̌18,t +

√
ψ3,18V̌

ψ4,18

1,t ε1,t+1 +

√
ψ5,18V̌

ψ6,18

18,t ε2,t+1, (25)

where ε1,t+1 and ε2,t+1 are drawn from the standard normal distribution independent of

each other and across t. The parameters are estimated by the quasi maximum likelihood

method using both the 1-month and 18-month variance-swap prices. The parameters

estimated for Eq. (24) are ψ0,1 = 0.00011, ψ1,1 = −0.025, ψ2,1 = 0.025, ψ3,1 = 0.037,

ψ4,1 = 2.4, ψ5,1 = 0.000048, ψ6,1 = 0.77; the parameters estimated for Eq. (25) are

ψ0,18 = 0.00045, ψ1,18 = 0.011, ψ2,18 = −0.022, ψ3,18 = 0.000078, ψ4,18 = 2.7, ψ5,18 =

0.0033 and ψ6,18 = 2.1. The parameters for the affine case with ψ4,1 = ψ6,1 = ψ4,18 =

ψ6,18 = 1 are ψ0,1 = 0.00011, ψ1,1 = −0.034, ψ2,1 = 0.034, ψ3,1 = 0.0007, ψ5,1 = 0.000049,
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ψ0,18 = 0.00034, ψ1,18 = 0.0087, ψ2,18 = −0.016, ψ3,18 = 0.000005 and ψ5,18 = 0.00012.

The results of testing performance for the dependent case are in the right panel of Table

3. They are similar to those of the independent cases.

Table 4 reports results based on local linear kernel regressions. The rejection rates

are also very close to nominal sizes of the tests. Overall, the results in Table 3 and 4

show that the bootstrap test performs quite well for persistent time-series data. They

also indicate that the rejection rates are not sensitive to the bandwidth choices in both

the independent and dependent cases.

Table 4 Here

5.5. Alternative choices of testing variables

We also consider the tests based on the first difference of the slope and curvature of the

term structure of variance-swap prices. The slope and curvature are defined as V18 − V1

and (V1 + V18)/2− V9, respectively, where V9 is the 9-month variance-swap price. Under

the null hypothesis that the conditional means of the variance-swap prices are affine in

the variance-swap prices, so are the conditional means of the slope and curvature since

they are linear combinations of the conditional means of the variance-swap prices.

The advantage of using the slope and curvature for testing purpose is that they are

less persistent than the variance-swap prices are, so the nonparametric tests of affine

properties on the conditional means of the slope and curvature have better finite sample

properties than those for the variance-swap prices themselves.14 On the other hand, the

tests based on the slope and curvature lose power to a certain extent because the non-

affine patterns in the conditional means of the variance-swap prices tend to cancel with

each other in the slope and curvature, as they involve differences.

14The autocorrelations for the daily observations of V18−V1 are ρ1 = 0.9436, ρ2 = 0.9003, ρ3 = 0.8668,
ρ5 = 0.8062, ρ10 = 0.7094, ρ20 = 0.5747 and ρ30 = 0.4710. For (V1 + V18)/2 − V9, the autocorrelations
are ρ1 = 0.9121, ρ2 = 0.8546, ρ3 = 0.8096, ρ5 = 0.7428, ρ10 = 0.6240, ρ20 = 0.4765 and ρ30 = 0.3644.
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The results based on the slope and curvature are qualitatively the same as those on

variance-swap prices themselves. The p-values for the tests tend to be higher, however.

They are not reported here to save the space.15

6. Parametric tests

To supplement the tests against nonparametric alternatives, we adopt a parametric ap-

proach with specific non-affine alternatives. Tests against carefully designed parametric

alternatives are more powerful. We use the nonparametric estimation results in Section 4

as a guide to specify the non-affine parametric alternatives. The non-affine property in

the conditional mean is captured by the squared and reciprocal terms quite well. For the

independent case, the conditional mean function is specified as

µτj(Vτj) = α0,τj + α1,τjVτj + α2,τjV
2
τj

+ α3,τj(1/Vτj), (26)

for τj = 1, 18. The affine property of the conditional mean is rejected if α2,τj 6= 0 or α3,τj 6=

0. Aı̈t-Sahalia (1996b) also considers this specification for the non-affine conditional mean

of interest rate models. For the dependent case, the specification is

µτj(V1, V18) = α0,τj +α1,τjV1+α2,τjV18+α3,τjV
2

1 +α4,τjV
2

18+α5,τj(1/V1)+α6,τj(1/V18), (27)

for τj = 1, 18. Similarly, the affine property of the conditional mean is rejected if α3,τj 6= 0,

or α4,τj 6= 0, or α5,τj 6= 0, or α6,τj 6= 0. As the explanatory variables are simple transfor-

mations of Vτ s, they are highly correlated. To reduce the multicollinearity problem, we

orthogonalize the explanatory variables as in Chapman and Pearson (2000).

To illustrate the orthogonalization and estimation procedure, consider the dependent

case as an example. V18 is regressed on a constant and V1, and the regression residual is

the orthogonalized V18, denoted as Ṽ18. Likewise, V 2
1 is regressed on a constant, V1 and Ṽ18

and the regression residual is the orthogonalized V 2
1 , denoted as Ṽ 2

1 . Other variables, Ṽ 2
18,

15We thank the referee for suggesting such tests. The results are available upon request.
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˜(1/V1) and ˜(1/V18) are defined similarly. To account for the possible spurious non-affine

property of the conditional mean at the upper end of the variance-swap prices, where

variance of residuals tends to be large, similar to the approach in Chapman and Pearson

(2000), we use weighted least squares to estimate the regression,

∆Vτj ,t+1 = α0,τj + α1,τjV1,t + α2,τj Ṽ18,t + α3,τj Ṽ
2

1,t

+α4,τj Ṽ
2

18,t + α5,τj
˜(1/V1,t) + α6,τj

˜(1/V18,t) + ετj ,t+1, (28)

where ∆Vτj ,t+1 = Vτj ,t+1− Vτj ,t for τj = 1, 18. The weight is the reciprocal of the variance

of ∆Vτj ,t+1 estimated as a function of V1,t and V18,t nonparametrically.

The conditional variance and conditional covariance increase exponentially with the

levels of the variance-swap prices, which suggests a power function to capture such non-

affine property. For the independent case, the conditional variance function is specified

as

σ2
τj

(Vτj) = (β0,τj + β1,τjVτj ,t)
γτj , (29)

for τj = 1, 18. For the dependent case, the conditional variance function is specified as

σ2
τj

(V1, V18) = (β0,τj + β1,τjV1,t + β2,τjV18,t)
γτj , (30)

for τj = 1, 18 and the specification for the conditional covariance is

σ1,18(V1, V18) = (β0,1,18 + β1,1,18V1,t + β2,1,18V18,t)
γ1,18 . (31)

The affine property of the conditional variance or conditional covariance is rejected if

γ 6= 1.

The parameters in the conditional variance and conditional covariance functions are

estimated using nonlinear least squares. As shown in Fig. 2-5, the variance of residuals of

conditional variance and conditional covariance tend to increase with the level of variance-

swap prices, we similarly weight the observations by the reciprocal of the nonparametric

estimate of the variance of dependent variables before applying the nonlinear least squares

29



estimation. Fig. 2-5 also show that β0s in Eq. (29)-(31) are close to zero, and the estimates

of all β0s in Eq. (29)-(31) are statistically indifferent from zero. Without loss of generality,

we restrict β0 = 0 when estimating the models.16

The results are shown in Table 5 for the independent case and in Table 6 for the

dependent case. The t-statistics reported are adjusted for heteroskedasticity and 24 lags

of autocorrelation using Newey and West (1987). For the independent case, α2,1, α2,18 and

α3,18, the coefficient estimates on the non-affine terms of the conditional mean functions,

are statistically significant. γ is significantly greater than one for both of ∆V1 and ∆V18,

indicating that the conditional variances are disproportionally large at high levels of V1

and V18. The results suggest that both of the conditional means and conditional variances

are non-affine in the level of variance-swap prices.

Table 5 Here

For the dependent case, α3,1 and α6,1 are statistically significant, which evidences

the non-affine property of the conditional mean of ∆V1. α4,18 and α6,18, the coefficient

estimates on the non-affine terms of the conditional mean function of ∆V18, are also signif-

icant. The estimated γ for the conditional variance and conditional covariance functions

of ∆V1 and ∆V18 is significantly greater than 1. Overall, the results of the parametric

tests are in line with the impression from the nonparametric estimation in Fig. 2-5, and

consistent with those of the nonparametric tests in the previous section.

Table 6 Here

7. Robustness to omitted state variables

The non-affine property of the conditional means, conditional variances and conditional

covariances of variance-swap prices is identified from the analysis of the joint dynamics

16Results also suggest that restricting β0 = 0 increases the estimation precision of other parameters in
the models since their standard errors are reduced substantially.
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up to two variances-swap prices. Some recent studies show that options pricing models

with two unobserved state variables significantly outperform those with one state variable.

However, the two state variables models may still be inadequate to capture the time-series

and cross-sectional dynamics of options prices. This gives rise to the concern that the

non-affine property may potentially be due to missing variables in the model specifications.

To study the robustness of the results to missing variables, we include a medium-

maturity variance-swap in the specifications. Using the same model-free variance-swap

construction method, we calculate the prices of a 9-month variance-swap, denoted as V9.

The options with two shortest maturities of no less than 189 days are used to calculate

the 9-month variance-swap prices. Similarly, under the null, each of the nine conditional

moments, µ1, µ9, µ18, σ2
1, σ2

9, σ2
18, σ1,9, σ1,18, σ9,18, takes hypothesized functional forms, and

is tested against nonparametric alternatives. The following functional forms for the null

hypothesis are considered: a+b1V1 +b2V9 +b3V18, g(V1)+b1V9 +b2V18, b1V1 +g(V9)+b2V18,

and b1V1+b2V9+g(V18). The first functional form is affine in all three variance-swap prices,

whereas the rest contain a nonparametric component in one of (V1, V9, V18). There are 36

tests totally.

The p-values of the tests are reported in Table 7. Panel A reports results based on

local constant kernel regressions in the estimation. The affine property is rejected for

all the conditional means, conditional variances and conditional covariances of ∆V1, ∆V9

and ∆V18, as evidenced by the low p-values of the affine models. The p-values are much

higher for the models with a nonparametric component. The results show that the non-

affine property in the conditional mean and conditional variance of a variance-swap price

is captured by the nonparametric component of itself, whereas the non-affine property

in the conditional covariance is mostly captured by the nonparametric component of one

of the two variance-swap prices involved. In some cases, the non-affine property of the

conditional mean is also captured by the nonparametric components of other variance-

swap prices in addition to that of itself. Results based on local linear kernel regressions
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are reported in Panel B. Again, the affine properties of all the conditional moments

are rejected. Overall, the results suggest that the non-affine property of the conditional

means, conditional variances and conditional covariances of variance-swap prices is robust

to missing variables in the specifications in Section 5.

Table 7 Here

8. Conclusion

The affine jump-diffusion models are popular in the options pricing literature because

they are tractable to provide closed-form solutions of option prices. The evidence in the

existing literature suggests that the problem of the affine jump-diffusion models is with the

diffusion term of the state variables. In this paper, we focus on the affine restrictions on the

other aspects of the affine jump-diffusion models, namely the drift term, jump intensities,

and the risk premiums associated with the state variables. In the semi-affine models,

variance-swap prices are affine functions of the unobserved state variables and inherit the

affine properties of the unobserved state variables. Testing these affine restrictions on the

state variables is tantamount to testing the affine properties of the variance-swap prices.

We use both nonparametric and parametric methods and find strong non-affine properties

of the conditional mean, conditional variance and conditional covariance of the model-free

variance-swap prices.

The non-affine conditional mean of the change in variance-swap prices indicates that

the semi-affine jump-diffusion models are problematic. This suggests that the affine diffu-

sion term is not the only problem with the affine jump-diffusion models, as the semi-affine

models do not restrict the diffusion term of the state variables. The drift term of the state

variables, the jump intensities, and the risk premiums are all likely to be non-affine. The

exclusive attention in the literature on the diffusion term of the state variables is too nar-

rowly focused. The finding of non-affine conditional variance of the variance-swap prices
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is interesting by itself, but in no way implies that the conditional variance of the state

variables is non-affine when the variance-swap prices themselves are not affine in the state

variables.

The empirical results presented in this paper are helpful in directing future theoretical

research on modeling options prices. To that end, our further empirical research aims

at finding out the appropriate dynamic features of the stochastic processes governing the

underlying assets and the state variables, in terms of the functional forms of the drift

terms, diffusion terms, jump intensities, and risk premiums.
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Appendix

Under the assumptions of semi-affine models, dst and dxt evolve under risk-neutral prob-

ability, P̃ , as

dst = µ̃s(xt)dt+ σs(xt)dW̃t + zstdJt − ν̃s(λ̃0 + Λ̃xt)dt, (32)

dxt = Γ(θ − xt)dt+ σx(xt)dW̃t + zxtdJt − ν̃x(λ̃0 + Λ̃xt)dt, (33)

where

µ̃s(xt) = rt −
1

2
(σ0 + σ′1xt)− Ẽ(ezst − 1− zst)(λ̃0 + Λ̃xt), (34)

σs(xt)σs(xt)
′ = σ0 + σ′1xt. (35)

Proof of Proposition 1. The annualized quadratic variation of su between t and t+ τ

is

1

τ

∫ t+τ

t

〈su, su〉du =
1

τ

∫ t+τ

t

(σ0 + σ′1xu)du+
1

τ

Jt+τ∑
i=Jt+1

z2
sti
, (36)

where ti is the time for the ith jump. Taking expectation of the both sides under the

risk-neutral probability P̃ gives the variance-swap price Ṽτ,t as

Ṽτ,t =
1

τ
Ẽt

[∫ t+τ

t

(σ0 + σ′1xu)du

]
+

1

τ
Ẽ(z2

st)Ẽt

[∫ t+τ

t

(λ̃0 + Λ̃xu)du

]
. (37)

The terms 1
τ
Ẽt[
∫ t+τ
t

(σ0 +σ′1xu)du] and 1
τ
Ẽt[
∫ t+τ
t

(λ̃0 +Λ̃xu)du] can be calculated as follows.

From Eq. (33),

deΓtxt = eΓtΓθdt+ eΓtσx(xt)dW̃t + eΓtzxtdJt − eΓtν̃x(λ̃0 + Λ̃xt)dt. (38)

Integrating on both sides from t to t+ τ and taking expectation gives,

eΓ(t+τ)Ẽt[xt+τ ] = eΓtxt +

∫ t+τ

t

eΓuΓθdu = eΓtxt +
[
eΓ(t+τ) − eΓt

]
θ, (39)

where the diffusion and compensated jump terms are dropped out because their expecta-

tions are zero. It follows that

Ẽt[xt+τ ] = e−Γτxt + (Ik − e−Γτ )θ, (40)

34



where Ik is the identity matrix. As a result,

1

τ
Ẽt

[∫ t+τ

t

(σ0 + σ′1xu)du

]
=

1

τ

∫ t+τ

t

[σ0 + σ′1(e−Γ(u−t)xt + (Ik − e−Γ(u−t))θ)]du

= σ0 + σ′1θ + σ′1(τΓ)−1(Ik − e−τΓ)(xt − θ), (41)

and similarly,

1

τ
Ẽt

[∫ t+τ

t

(λ̃0 + Λ̃xu)du

]
= λ̃0 + Λ̃θ + Λ̃(τΓ)−1(Ik − e−τΓ)(xt − θ). (42)

The variance-swap price Ṽτ,t is then given by

Ṽτ,t = σ0 + σ′1θ + σ′1(τΓ)−1(Ik − e−τΓ)(xt − θ)

+ (Ẽz2
st)
[
λ̃0 + Λ̃θ + Λ̃(τΓ)−1(Ik − e−τΓ)(xt − θ)

]
, (43)

which is affine in xt.

Proof of Proposition 2. As shown by Carr and Madan (1998), any twice-continuous

differentiable payoff function, H(u), can be written as

H(u) = H(u)+(u−u)Hu(u)+

∫ ∞
u

Huu(K)(u−K)+dK+

∫ u

0

Huu(K)(K−u)+dK. (44)

Let H(St+τ ) = ln(St+τ/St), then,

ln

(
St+τ
St

)
= ln

(
S

St

)
+
St+τ − S

S

−

[∫ ∞
S

1

K2
(St+τ −K)+dK +

∫ S

0

1

K2
(K − St+τ )+dK

]
, (45)

where a+ = max(a, 0). Taking expectation on both sides and letting S = Fτ,t = Ste
rτ ,

where r is the riskfree rate and Fτ,t is the time t forward price with maturity at t + τ ,

gives

Ẽt

[
ln

(
St+τ
St

)]
= rτ − erτ

[∫ ∞
Fτ,t

1

K2
cτ,t(K)dK +

∫ Fτ,t

0

1

K2
pτ,t(K)dK

]
, (46)

where cτ,t(K) = e−rτ Ẽt(St+τ−K)+ and pτ,t(K) = e−rτ Ẽt(K−St+τ )+ are prices of calls and

puts, respectively, with maturity t+ τ and strike price K. The second term multiplied by
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2/τ is the model-free formula for variance-swap price, Vτ,t. We now calculate Ẽt[ln(St+τ
St

)].

Under the process Eq. (32)-(35),

Ẽt

[
ln

(
St+τ
St

)]
= Ẽt[st+τ − st]

= rτ − Ẽt
[∫ t+τ

t

σ0 + σ′1xu
2

du

]
− Ẽ(ezst − 1− zst)Ẽt

[∫ t+τ

t

(λ̃0 + Λ̃xu)du

]
= rτ − τ

2
[σ0 + σ′1θ + σ′1(τΓ)−1(Ik − e−τΓ)(xt − θ)]

− τẼ(ezst − 1− zst)
[
λ̃0 + Λ̃θ + Λ̃(τΓ)−1(Ik − e−τΓ)(xt − θ)

]
. (47)

Using Eq. (46) and Eq. (47), the model-free variance-swap price can be written as

Vτ,t =
2

τ
erτ

[∫ ∞
Fτ,t

1

K2
cτ,t(K)dK +

∫ Fτ,t

0

1

K2
pτ,t(K)dK

]

= 2r − 2

τ
Ẽt

[
ln

(
St+τ
St

)]
= σ0 + σ′1θ + σ′1(τΓ)−1(Ik − e−τΓ)(xt − θ)

+ 2Ẽ(ezst − 1− zst)
[
λ̃0 + Λ̃θ + Λ̃(τΓ)−1(Ik − e−τΓ)(xt − θ)

]
. (48)

From Eq. (43) and Eq. (48), the approximation error of the model-free formula of the

variance-swap price is

Vτ,t − Ṽτ,t

= 2Ẽ
(
ezst − 1− zst − z2

st/2
) [
λ̃0 + Λ̃θ + Λ̃(τΓ)−1(Ik − e−τΓ)(xt − θ)

]
= 2

[
Ẽz3

st

3!
+
Ẽz4

st

4!
+ · · ·

] [
λ̃0 + Λ̃θ + Λ̃(τΓ)−1(Ik − e−τΓ)(xt − θ)

]
. (49)

The last step follows from expanding ezst around zst = 0 using Taylor series expansion and

taking expectation. The last two equations show that the approximation error is affine

in xt and that the leading term in the approximation error is proportional to the third

moment of the jump size, whereas from Eq. (43) the second term in Ṽτ,t is proportional

to the second moment of the jump size.
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Table 1
Summary statistics of the Vτs and ∆Vτs

This table presents the mean, standard deviation, skewness, and the 1st, 5th, 50th, 95th,
and 99th percentiles of the empirical distribution of the daily observations of the 1-month
variance-swap price V1,t, the 18-month variance-swap price V18,t, and their first differences,
∆V1,t+1 and ∆V18,t+1, where ∆V1,t+1 = V1,t+1 − V1,t and ∆V18,t+1 = V18,t+1 − V18,t. It also
reports the autocorrelations of V1,t and V18,t, as well as the p-values of the augmented
Dickey-Fuller test for unit root. The sample period is from January 1996 to September
2008.

A. Summary statistics and tests of Vτ s
Mean Std Skew 1P 5P 50P 95P 99P

V1 0.0470 0.0306 1.6284 0.0109 0.0133 0.0410 0.1061 0.1581
V18 0.0446 0.0195 0.9317 0.0179 0.0206 0.0430 0.0812 0.0977

Autocorrelations ADF
ρ1 ρ2 ρ3 ρ5 ρ10 ρ20 ρ30 p-value

V1 0.9697 0.9449 0.9259 0.8918 0.8303 0.7215 0.6313 0.0011
V18 0.9895 0.9835 0.9767 0.9630 0.9315 0.8743 0.8340 0.0270

B. Summary statistics of ∆Vτ s
Mean Std Skew 1P 5P 50P 95P 99P

∆V1 0.0000 0.0075 0.8567 -0.0207 -0.0100 -0.0001 0.0109 0.0233
∆V18 0.0000 0.0028 0.8531 -0.0067 -0.0030 0.0000 0.0031 0.0072
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Table 2
Nonparametric bootstrap tests of the affine property of the conditional mean,
variance, and covariance of (∆V1,∆V18)

This table reports the p-values of bootstrap tests of the affine property of the conditional
mean, conditional variance, and conditional covariance of the first differences of the 1-
month and 18-month variance-swap prices, ∆V1 and ∆V18. The first column indicates
the functional forms under the null hypothesis that are affine in at least one component
of (V1, V18). The functional forms under alternative hypothesis are unrestricted and esti-
mated nonparametrically. µ1 is the conditional mean of ∆V1, µ18 is the conditional mean
of ∆V18, σ2

1 is the conditional variance of ∆V1, σ2
18 is the conditional variance of ∆V18,

and σ1,18 is the conditional covariance between ∆V1 and ∆V18. The test is based on 100
bootstrap samples. Panel A reports results based on local constant kernel regressions and
Panel B reports results based on local linear kernel regressions. The sample period is from
January 1996 to September 2008.

A. Local constant kernel regressions
Independent case

µ1(V1) µ18(V18) σ2
1(V1) σ2

18(V18)
a+ bV1 0.05 0.00
a+ bV18 0.00 0.00

Dependent case

µ1(V1, V18) µ18(V1, V18) σ2
1(V1, V18) σ2

18(V1, V18) σ1,18(V1, V18)
a+ b1V1 + b2V18 0.03 0.00 0.00 0.04 0.00
g(V1) + bV18 0.28 0.00 0.47 0.00 0.00
bV1 + g(V18) 0.60 0.24 0.02 0.09 0.44

B. Local linear kernel regressions
Independent case

µ1(V1) µ18(V18) σ2
1(V1) σ2

18(V18)
a+ bV1 0.05 0.00
a+ bV18 0.00 0.01

Dependent case

µ1(V1, V18) µ18(V1, V18) σ2
1(V1, V18) σ2

18(V1, V18) σ1,18(V1, V18)
a+ b1V1 + b2V18 0.03 0.00 0.00 0.02 0.03
g(V1) + bV18 0.22 0.00 0.78 0.01 0.04
bV1 + g(V18) 0.29 0.12 0.04 0.12 0.30
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Table 3
Rejection rates of the bootstrap test with simulated data (local constant)

This table shows the percentage rejection rates of the bootstrap test of the null hypothesis
of affine property for 500 simulated data series. The local constant kernel regression
method is used in the estimation. The left panels are for the independent case where the
data are simulated from the model

V̌1,t+1 = φ0 + (φ1 + 1)V̌1,t +
√
φ2V̌

φ3
1,t εt+1.

The right panels are for the dependent case where the data are generated by the models

V̌1,t+1 = ψ0,1 + (ψ1,1 + 1)V̌1,t + ψ2,1V̌18,t +

√
ψ3,1V̌

ψ4,1

1,t ε1,t+1 +

√
ψ5,1V̌

ψ6,1

18,t ε2,t+1

V̌18,t+1 = ψ0,18 + ψ1,18V̌1,t + (ψ2,18 + 1)V̌18,t +

√
ψ3,18V̌

ψ4,18

1,t ε1,t+1 +

√
ψ5,18V̌

ψ6,18

18,t ε2,t+1.

The results are reported for the optimal bandwidth h∗, under-smoothed bandwidth,
h∗/1.5, and over-smoothed bandwidth, 1.5h∗, for the sample sizes of 1000, 2000 and
3208, and for 5% and 10% significance levels.

Independent case Dependent case

H0 : µ1(V̌1) = a+ bV̌1 H0 : µ1(V̌1, V̌18) = a+ b1V̌1 + b2V̌18
(φ3 = 1) (ψ4,1 = 1, ψ6,1 = 1, ψ4,18 = 1, ψ6,18 = 1)

h∗/1.5 h∗ 1.5h∗ h∗/1.5 h∗ 1.5h∗

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1000 6.4 11.0 6.2 11.8 5.4 12.2 5.6 10.8 4.6 10.8 6.0 11.0
2000 4.6 10.6 5.6 11.0 5.0 11.2 5.6 10.6 6.0 11.4 6.4 11.6
3208 3.6 10.2 3.4 10.6 4.4 9.8 4.6 9.8 4.2 8.6 5.2 9.6

H0 : σ2
1(V̌1) = a+ bV̌1 H0 : σ2

1(V̌1, V̌18) = a+ b1V̌1 + b2V̌18
(φ3 = 1) (ψ4,1 = 1, ψ6,1 = 1, ψ4,18 = 1, ψ6,18 = 1)

h∗/1.5 h∗ 1.5h∗ h∗/1.5 h∗ 1.5h∗

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1000 7.0 10.0 6.6 10.4 6.8 12.0 5.0 9.4 5.2 9.8 6.4 10.2
2000 6.8 11.8 7.0 11.8 7.2 12.6 5.4 10.8 5.4 10.4 6.2 11.0
3208 5.8 11.0 6.4 11.4 6.8 11.8 4.8 8.6 4.4 9.8 4.4 11.2

H0 : µ1(V̌1) = a+ bV̌1 H0 : µ1(V̌1, V̌18) = a+ b1V̌1 + b2V̌18
(φ3 6= 1) (ψ4,1 6= 1, ψ6,1 6= 1, ψ4,18 6= 1, ψ6,18 6= 1)

h∗/1.5 h∗ 1.5h∗ h∗/1.5 h∗ 1.5h∗

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1000 7.2 15.0 9.0 16.4 9.6 17.6 3.8 9.8 4.2 10.8 5.4 12.2
2000 6.8 14.2 7.6 16.2 9.0 16.8 5.2 10.2 5.8 11.0 7.4 12.8
3208 6.2 12.8 6.0 13.4 7.2 13.2 4.2 10.4 4.8 11.2 6.6 12.6
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Table 4
Rejection rates of the bootstrap test with simulated data (local linear)

This table shows the percentage rejection rates of the bootstrap test of the null hypothesis
of affine property for 500 simulated data series. The local linear kernel regression method
is used in the estimation. The left panels are for the independent case where the data are
simulated from the model

V̌1,t+1 = φ0 + (φ1 + 1)V̌1,t +
√
φ2V̌

φ3
1,t εt+1.

The right panels are for the dependent case where the data are generated by the models

V̌1,t+1 = ψ0,1 + (ψ1,1 + 1)V̌1,t + ψ2,1V̌18,t +

√
ψ3,1V̌

ψ4,1

1,t ε1,t+1 +

√
ψ5,1V̌

ψ6,1

18,t ε2,t+1

V̌18,t+1 = ψ0,18 + ψ1,18V̌1,t + (ψ2,18 + 1)V̌18,t +

√
ψ3,18V̌

ψ4,18

1,t ε1,t+1 +

√
ψ5,18V̌

ψ6,18

18,t ε2,t+1.

The results are reported for the optimal bandwidth h∗, under-smoothed bandwidth,
h∗/1.5, and over-smoothed bandwidth, 1.5h∗, for the sample sizes of 1000, 2000 and
3208, and for 5% and 10% significance levels.

Independent case Dependent case

H0 : µ1(V̌1) = a+ bV̌1 H0 : µ1(V̌1, V̌18) = a+ b1V̌1 + b2V̌18
(φ3 = 1) (ψ4,1 = 1, ψ6,1 = 1, ψ4,18 = 1, ψ6,18 = 1)

h∗/1.5 h∗ 1.5h∗ h∗/1.5 h∗ 1.5h∗

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1000 7.6 12.6 8.2 13.2 8.4 13.0 5.6 9.2 5.0 8.6 5.6 11.2
2000 5.6 13.4 5.8 11.8 5.6 11.6 5.8 12.4 7.4 13.6 6.2 13.0
3208 5.2 11.0 5.6 11.2 5.4 11.0 5.4 10.6 6.0 11.2 5.8 11.6

H0 : σ2
1(V̌1) = a+ bV̌1 H0 : σ2

1(V̌1, V̌18) = a+ b1V̌1 + b2V̌18
(φ3 = 1) (ψ4,1 = 1, ψ6,1 = 1, ψ4,18 = 1, ψ6,18 = 1)

h∗/1.5 h∗ 1.5h∗ h∗/1.5 h∗ 1.5h∗

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1000 7.8 15.0 8.2 14.4 9.4 15.6 6.0 10.4 6.0 10.2 6.2 10.6
2000 7.6 11.8 8.6 12.6 7.6 12.6 4.8 9.4 4.6 10.2 5.6 10.6
3208 6.8 11.4 6.6 11.8 6.2 11.8 5.2 9.8 5.6 10.0 5.6 10.4

H0 : µ1(V̌1) = a+ bV̌1 H0 : µ1(V̌1, V̌18) = a+ b1V̌1 + b2V̌18
(φ3 6= 1) (ψ4,1 6= 1, ψ6,1 6= 1, ψ4,18 6= 1, ψ6,18 6= 1)

h∗/1.5 h∗ 1.5h∗ h∗/1.5 h∗ 1.5h∗

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1000 6.2 11.4 6.0 11.0 6.6 11.0 4.0 10.4 4.4 9.8 4.4 12.4
2000 6.6 13.4 7.2 11.8 7.0 12.4 6.0 10.4 7.0 11.4 7.2 13.4
3208 6.0 11.6 6.4 12.0 6.8 11.8 4.8 10.2 6.2 10.6 6.8 11.2
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Table 5
Parametric tests of the affine property of the conditional mean and variance
(independent case)
The parameters for the non-affine conditional mean function

∆Vτj ,t+1 = α0,τj + α1,τjVτj ,t + α2,τj Ṽ
2
τj ,t + α3,τj

˜1/Vτj ,t + ετj ,t+1, τj = 1, 18,

and the non-affine conditional variance function

η̂2
τj ,t+1 = (β1,τjVτj ,t)

γτj + ςτj ,t+1, τj = 1, 18

are estimated by weighted least squares, where the weight is the reciprocal of the nonpara-
metric estimate of the variance of dependent variables, and η̂τj ,t+1 is the fitted residual
from the nonparametric regression of the conditional mean function

∆Vτj ,t+1 = µτj(Vτj ,t) + ητj ,t+1, τj = 1, 18.

Ṽ 2
τj ,t is the residual of V 2

τj ,t
regressed on Vτj ,t and a constant. ˜1/Vτj ,t is the residual of 1/Vτj ,t

regressed on Vτj ,t, Ṽ
2
τj ,t and a constant. The t-statistics adjusted for heteroskedasticity and

24 lags of autocorrelation using Newey and West (1987) are reported in parentheses. The
sample period is from January 1996 to September 2008.

A. Conditional mean of ∆V1

α0,1 × 103 α1,1 α2,1 α3,1 × 105

1.5817 -0.0344 -0.5433 1.2103
( 6.23) (-4.97) (-4.73) ( 1.70)

B. Conditional mean of ∆V18

α0,18 × 103 α1,18 α2,18 α3,18 × 105

0.4303 -0.0090 -0.3847 3.9728
( 2.61) (-2.08) (-2.24) ( 2.49)

C. Conditional variance of ∆V1

β1,1 γ1 − 1
0.1756 1.1643
( 4.48) (11.08)

D. Conditional variance of ∆V18

β1,18 γ18 − 1
0.0986 1.2557
( 2.13) ( 6.44)
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Table 6
Parametric tests of the affine property of the conditional mean, variance, and
covariance (dependent case)
The parameters for the non-affine conditional mean function

∆Vτj ,t+1 = α0,τj + α1,τjV1,t + α2,τj Ṽ18,t + α3,τj Ṽ
2

1,t

+α4,τj Ṽ
2

18,t + α5,τj
˜(1/V1,t) + α6,τj

˜(1/V18,t) + ετj ,t+1, τj = 1, 18,

and the non-affine conditional variance and covariance functions

η̂2
τj ,t+1 = (β1,τjV1,t + β2,τjV18,t)

γτj + ςτj ,t+1,

η̂1,t+1η̂18,t+1 = (β1,1,18V1,t + β2,1,18V18,t)
γ1,18 + ς1,18,t+1, τj = 1, 18

are estimated by weighted least squares, where the weight is the reciprocal of the nonpara-
metric estimate of the variance of dependent variables, and η̂τj ,t+1 is the fitted residual
from the nonparametric regression of the conditional mean function

∆Vτj ,t+1 = µτj(V1,t, V18,t) + ητj ,t+1, τj = 1, 18.

Ṽ18,t is the residual of V18,t regressed on V1,t and a constant. Ṽ 2
1,t is the residual of V 2

1,t

regressed on V1,t, Ṽ18,t and a constant. Other variables, Ṽ 2
18,t,

˜(1/V1,t) and ˜(1/V18,t) are
defined similarly. The t-statistics adjusted for heteroskedasticity and 24 lags of autocor-
relation using Newey and West (1987) are reported in parentheses. The sample period is
from January 1996 to September 2008.

A. Conditional mean of ∆V1
α0,1 × 103 α1,1 α2,1 α3,1 α4,1 α5,1 × 105 α6,1 × 105

1.3237 -0.0280 0.0314 -0.3438 -0.5890 1.2278 7.6973
( 5.59) (-4.27) ( 3.05) (-2.87) (-1.77) ( 1.35) ( 2.27)

B. Conditional mean of ∆V18
α0,18 × 103 α1,18 α2,18 α3,18 α4,18 α5,18 × 105 α6,18 × 105

0.1247 -0.0023 -0.0149 -0.0889 -0.3178 0.4660 3.8034
( 1.47) (-1.05) (-3.27) (-1.88) (-2.15) ( 1.40) ( 2.40)

C. Conditional variance of ∆V1
β1,1 β2,1 γ1 − 1

0.1252 -0.0228 0.9441
( 3.56) (-2.45) ( 6.78)

D. Conditional variance of ∆V18
β1,18 β2,18 γ18 − 1

0.0073 0.0451 1.0247
( 1.78) ( 0.97) ( 3.48)

E. Conditional covariance between ∆V1 and ∆V18
β1,1,18 β2,1,18 γ1,18 − 1
0.0359 0.0302 1.0987
( 2.27) ( 1.35) ( 5.36)
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Table 7
Nonparametric tests of the affine property of the conditional mean, variance,
and covariance for (∆V1,∆V9,∆V18)
This table reports the p-values of bootstrap tests of the affine property of the conditional
mean, conditional variance, and conditional covariance of the first differences of the 1-
month, 9-month, and 18-month variance-swap prices, ∆V1, ∆V9 and ∆V18. The first
column indicates the functional forms under the null hypothesis in which at most one
component of (V1, V9, V18) is nonparametric. The alternative hypothesis is nonparametric.
µ1 is for the conditional mean of ∆V1, µ9 for the conditional mean of ∆V9, and µ18 for the
conditional mean of ∆V18. σ2

1 is for the conditional variance of ∆V1, σ2
9 for the conditional

variance of ∆V9, and σ2
18 for the conditional variance of ∆V18. σ1,9 is for the conditional

covariance between ∆V1 and ∆V9, σ1,18 for the conditional covariance between ∆V1 and
∆V18, and σ9,18 for the conditional covariance between ∆V9 and ∆V18. The test is based on
100 bootstrap samples. Panel A reports results based on local constant kernel regressions
and Panel B reports results based on local linear kernel regressions. The sample period
is from January 1996 to September 2008.

A. Local constant kernel regressions
Conditional mean

µ1 µ9 µ18

a+ b1V1 + b2V9 + b3V18 0.01 0.04 0.01
g(V1) + b1V9 + b2V18 0.46 0.57 0.00
b1V1 + g(V9) + b2V18 0.75 0.26 0.05
b1V1 + b2V9 + g(V18) 0.57 0.74 0.05

Conditional variance and conditional covariance

σ2
1 σ2

9 σ2
18 σ1,9 σ1,18 σ9,18

a+ b1V1 + b2V9 + b3V18 0.00 0.00 0.01 0.00 0.00 0.00
g(V1) + b1V9 + b2V18 0.56 0.42 0.00 0.12 0.01 0.00
b1V1 + g(V9) + b2V18 0.00 0.07 0.00 0.18 0.29 0.39
b1V1 + b2V9 + g(V18) 0.00 0.00 0.15 0.03 0.42 0.67

B. Local linear kernel regressions
Conditional mean

µ1 µ9 µ18

a+ b1V1 + b2V9 + b3V18 0.02 0.05 0.01
g(V1) + b1V9 + b2V18 0.64 0.46 0.00
b1V1 + g(V9) + b2V18 0.92 0.38 0.11
b1V1 + b2V9 + g(V18) 0.55 0.61 0.17

Conditional variance and conditional covariance

σ2
1 σ2

9 σ2
18 σ1,9 σ1,18 σ9,18

a+ b1V1 + b2V9 + b3V18 0.00 0.00 0.01 0.00 0.01 0.01
g(V1) + b1V9 + b2V18 0.85 0.38 0.00 0.36 0.00 0.02
b1V1 + g(V9) + b2V18 0.02 0.08 0.01 0.06 0.29 0.48
b1V1 + b2V9 + g(V18) 0.00 0.00 0.16 0.00 0.34 0.61

48



1996 1998 2000 2002 2004 2006 2008
0

0.05

0.1

0.15

0.2

0.25
V
1
,t

1996 1998 2000 2002 2004 2006 2008
0

0.05

0.1

0.15

0.2

0.25

V
1
8
,t

Fig. 1. Time-series plots of variance-swap prices

This figure shows the daily observations of the 1-month model-free variance-swap price

V1 and the 18-month model-free variance-swap price V18 from January 1996 to September

2008.
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Fig. 2. Estimated conditional mean and conditional variance (independent

case)

This figure shows the nonparametric estimation of the conditional mean and conditional

variance for the first differences of the 1-month and 18-month variance-swap prices, ∆V1

and ∆V18. The solid line is the fitted curve. The dashed lines cover the 90% confidence

interval. The two panels on the left are for ∆V1 and the two panels on the right are for

∆V18. The sample period is from January 1996 to September 2008.
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Fig. 3. Estimated conditional mean (dependent case)

This figure shows the nonparametric estimation of the conditional mean for the first

differences of the 1-month and 18-month variance-swap prices, ∆V1 and ∆V18. The left

panels are for the conditional mean of ∆V1 as a function of V1 for different levels of V18,

and the right panels are for the conditional mean of ∆V18 as a function of V18 for different

levels of V1. The solid line is the fitted curve. The dashed lines cover the 90% confidence

interval. The sample period is from January 1996 to September 2008.
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Fig. 4. Estimated conditional variance (dependent case)

This figure shows the nonparametric estimation of the conditional variance for the first

differences of the 1-month and 18-month variance-swap prices, ∆V1 and ∆V18. The left

panels are for the conditional variance of ∆V1 as a function of V1 for different levels of

V18, and the right panels are for the conditional variance of ∆V18 as a function of V18 for

different levels of V1. The solid line is the fitted curve. The dashed lines cover the 90%

confidence interval. The sample period is from January 1996 to September 2008.
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Fig. 5. Estimated conditional covariance (dependent case)

This figure shows the nonparametric estimation of the conditional covariance between the

first differences of the 1-month and 18-month variance-swap prices, ∆V1 and ∆V18. The

left panels show the conditional covariance as a function of V1 for different levels of V18

and the right panels show the conditional covariance as a function of V18 for different

levels of V1. The solid line is the fitted curve. The dashed lines cover the 90% confidence

interval. The sample period is from January 1996 to September 2008.
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