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We report a large voltage gain of 130, together with a high magnetoelectric voltage coefficient of
7.6 V/Oe, in a long-type heterostructure made by combining a coil-wound, length-magnetized
magnetostrictive Tb0.3Dy0.7Fe1.92 �Terfenol-D� alloy plate and a length-polarized piezoelectric
0.7Pb�Mg1/3Nb2/3�O3–0.3PbTiO3 single-crystal plate along the length direction. The observed
voltage gain is found to originate from the product effect of the electromagnetic induction in the coil
and the resonance magnetoelectric effect in the heterostructure. © 2009 American Institute of
Physics. �doi:10.1063/1.3246148�

The magnetoelectric �ME� effect, which shows simulta-
neous ferromagnetic and ferroelectric order in the same
material, has been a hot research topic in recent years due to
its potential applications in many multifunctional devices,
including passive magnetic field sensors, nonvolatile
electric-write/magnetic-read memories, spin-wave genera-
tors, microwave filters, etc.1 ME composites consisting of
magnetostrictive and piezoelectric material phases have
drawn special interest owing to their multifunctionality with
improved design and application flexibilities.2–9 In particular,
the generally high ME voltage coefficient ��V�, defined as an
induced electric voltage in response to an applied ac mag-
netic field �dVac /dHac�, has led to the practical development
of passive magnetic field sensors.10

In fact, studies on the ME effect in composites has been
mainly focused on magnetic field sensing applications in-
volving relatively small signals; that is, an electric voltage
�Vac� is induced from an applied ac magnetic field �Hac� un-
der the bias of a dc magnetic field �Hbias�. Reports on high-
field or high-voltage ME devices are indeed insufficient. It is
only quite recently that research was performed on voltage
step-up transformers based on the ME effect.11–13 In this let-
ter, we report a colossal voltage gain effect, which accompa-
nies a giant ME effect, in a long-type ME heterostructure
comprising a coil-wound, length-magnetized magnetostric-
tive Tb0.3Dy0.7Fe1.92 �Terfenol-D� alloy plate arranged along
the length direction with a length-polarized piezoelectric
0.7Pb�Mg1/3Nb2/3�O3–0.3PbTiO3 �PMN-PT� single-crystal
plate.

Figure 1 shows the schematic diagram and photograph
of the proposed heterostructure with ME voltage gain
effect. The heterostructure has a coil-wound, length-
magnetized magnetostrictive Terfenol-D alloy plate and a
length-polarized piezoelectric PMN-PT single-crystal plate
arranged along the length direction and with their interface
being bonded using silver-loaded epoxy. This long-type
longitudinal-longitudinal �LL� configuration is similar to the

well-known Rosen-type piezoelectric transformer.14 It is
noted that the heterostructure carries two major design ben-
efits. First, Terfenol-D has giant magnetostrictive effect,
while PMN-PT has ultrahigh piezoelectric effect. Second,
this long-type LL configuration utilizes the niches of both the
longitudinal magnetostrictive and piezoelectric effects as the
longitudinal piezomagnetic coefficient and magnetomechani-
cal coupling coefficient in Terfenol-D and the longitudinal
piezoelectric coefficient and electromechanical coupling co-
efficient in PMN-PT are almost two times higher than their
transverse counterparts.4 To practically realize the two major
design benefits, the Terfenol-D plate was commercially sup-
plied with dimensions 14�6�1 mm3 and having its �112�
crystallographic axis oriented along the length direction. The
PMN-PT plate, with the same dimensions as the Terfenol-D
plate and having its �001� crystallographic axis arranged
along the length direction, was cut from a PMN-PT ingot
grown in-house using a modified Bridgman technique.15

The working principle of our heterostructure is essen-
tially based on the product effect of the electromagnetic ef-
fect �or Faraday’s law of electromagnetic induction� in the
coil, the magnetostrictive �or magnetoelastic� effect in the
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FIG. 1. �Color online� �a� Schematic diagram and �b� photograph of the
proposed ME heterostructure with both voltage gain and ME effects. The
arrows M and P denote the magnetization and polarization directions,
respectively.
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Terfenol-D plate, and the piezoelectric �or elastoelectric� ef-
fect in the PMN-PT plate. In other words, an ac magnetic
field �Hac�, which is excited by an ac electric current �Iin�
associated with an ac electric voltage �Vin� in a coil of N
turns wrapped around the Terfenol-D plate, is applied along
the longitudinal direction of the heterostructure as illustrated
in Fig. 1. This Hac induces an ac magnetostrictive strain in
the Terfenol-D plate based on the magnetostrictive effect
which, in turn, is transferred dynamically to stress the
PMN-PT plate. As a result of the piezoelectric effect, the
transferred dynamic stress produces an ac electric voltage
�Vout� across the length of PMN-PT plate. When the fre-
quency of Vin is equal to the resonance frequency of the
heterostructure, the ME effect will be greatly enhanced, giv-
ing a much amplified Vout from a given Vin. Thus, our het-
erostructure will exhibit a large voltage gain due to the reso-
nance ME effect.

The ME properties of the proposed heterostructure were
measured using an in-house automated measurement system
under free-free condition.9 Figure 2�a� shows the frequency
dependence of ME voltage coefficient ��V� of the hetero-
structure under various Hbias. Two giant sharp resonance
peaks, which correspond to the half-wavelength �or funda-
mental� and full-wavelength �or second� longitudinal shape
resonances of the heterostructure, respectively, are observed
for various Hbias. �V has a strong dependence on Hbias due
to the Hbias-dependent piezomagnetic coefficient of the
Terfenol-D plate.9 The maximum value of �V is found to be
11.6 V/Oe at the fundamental shape resonance frequency of

36 kHz under an optimal HBias of 400 Oe. The resonance ME
effect makes the heterostructure to be favorable for ME
transducer applications. To give a physical insight into the
resonance ME effect, the electrical impedance spectrum of
the heterostructure was measured as shown in Fig. 2�b�. Two
resonance peaks are observed at 36 and 72 kHz, which agree
well with the results of ME voltage coefficient spectrum in
Fig. 2�a�. The results clearly demonstrate that the resonance
�V occurs at the electromechanical resonance of the hetero-
structure.

Figure 3 shows the voltage gain of the heterostructure as
a function of frequency with a constant Vin of 0.1 Vrms at
various resistive loads and under an optimal Hbias of 400 Oe.
The inset of Fig. 3 is the zoom-in view of the fundamental
shape resonance region. A maximum voltage gain of �130
is seen under open-circuit condition. In fact, the voltage gain
and resonance frequency increase gradually with increasing
load resistance. Compared to conventional piezoelectric
transformers,16 the input part �i.e., the Terfenol-D plate� of
the heterostructure has a very high energy density of
4.9–25 kJ /m3.17,18 Thus, our heterostructure is a promising
candidate for miniature voltage transformers or ME convert-
ers.

Figure 4 shows the voltage gain and the corresponding
power of the heterostructure as a function of resistive load

FIG. 2. �Color online� �a� Frequency dependence of ME voltage coefficient
��V� of the heterostructure under various HBias and �b� electrical impedance
spectrum of the heterostructure.

FIG. 3. �Color online� Voltage gain of the heterostructure as a function of
frequency with a constant Vin of 0.1 Vrms at various resistive loads and
under an optimal Hbias of 400 Oe. The inset shows the zoom-in view of the
fundamental shape resonance region.

FIG. 4. �Color online� Voltage gain and power of the heterostructure as a
function of resistive load at a constant Vin of 0.1 Vrms.

143503-2 Wang et al. Appl. Phys. Lett. 95, 143503 �2009�



�P=Vin
2 /R� at a constant Vin of 0.1 Vrms. The data was ob-

tained directly from Fig. 3 at the fundamental resonance
frequency. It is clear that the voltage gain increases, while
the power increases initially reaching a maximum value of
0.73 mW �Vin=0.1 Vrms� at a 12 k� load and then decreas-
ing, with increasing resistive load. The similar load effect has
also been observed in piezoelectric transformer.16 Neverthe-
less, an improved power could be obtained if an increased
Vin or an increased number of turns of solenoid is used.

In summary, we have reported a colossal voltage gain
effect, in conjunction with a giant ME effect, in a long-type
heterostructure of a coil-wound Terfenol-D alloy plate and a
PMN-PT single-crystal plate. The maximum voltage gain
and ME voltage coefficient have been found to be �130 and
7.6 V/Oe, respectively at the fundamental shape resonance of
the heterostructure under open-circuit condition and for an
optimal bias magnetic field of 400 Oe. The heterostructure
has great potential for use in miniature solid-state voltage
transformers or ME converters.
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