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Tuning of the Structure and Parameters of a Neural
Network Using an Improved Genetic Algorithm

Frank H. F. LeungMember, IEEEH. K. Lam, S. H. Ling, and Peter K. S. Tam

Abstract—This paper presents the tuning of the structure and [7], system modeling, and control [16]. Owing to its particular
parameters of a neural network using an improved genetic algo- structure, a neural network is very good in learning [2] using
e e ey e o g A PEEI . Some eaing algorhs such as GA 1] and backpropagation
tions. A neural network with switches introduced to its links is pro- [2]. In g_eneral, the learning steps of a.neural'netW(_)rk are as fol-
posed. By doing this, the proposed neural network can learn both 10Ws. First, a network structure is defined with a fixed number
the input—output relationships of an application and the network Of inputs, hidden nodes and outputs. Second, an algorithm is
structure using the improved GA. The number of hidden nodes is chosen to realize the learning process. However, a fixed struc-
Chosen manually by inCl’eaSing |t from a Sma” number until the ture may not provide the Opuma' performance within a given
learning performance in terms of fitness value is good enough. Ap- training period. A small network may not provide good per-
plication examples on sunspot forecasting and associative memory . T . . .
are given to show the merits of the improved GA and the proposed formance owing to its limited information processing power. A
neural network. large network, on the other hand, may have some of its con-
nections redundant [18], [19]. Moreover, the implementation
cost for a large network is high. To obtain the network struc-
ture automatically, constructive and destructive algorithms can
be used [18]. The constructive algorithm starts with a small net-

I. INTRODUCTION work. Hidden layers, nodes, and connections are added to ex-
ENETIC algorithm (GA) is a directed random searclﬁ?a”d the network dynamically [191—[24]. The destructive algo-
technique [1] that is widely applied in optimization”thm starts with a large network. Hidden layers, nodes, andlcon-
problems [1], [2], [5]. This is especially useful for complex”ec'“ons are then 'deleted to contract the network dynamically
optimization problems where the number of parameters is large]> [26]- The design of a network structure can be formulated
and the analytical solutions are difficult to obtain. GA can helfyto @ search problem. GAs [27], [28] were employed to ob-
to find out the optimal solution globally over a domain [1], [2] &N the SO|U'[IOI’I.' Pattern-classification approaches [29] can also
[5]. It has been applied in different areas such as fuzzy contR§ found to design the network structure. Some other methods
[9]-[11], [15], path planning [12], greenhouse climate contrdV€re proposed to learn both the network §tructure and connec-
[13], modeling and classification [14] etc. tion weights. An' ANNA ELEONORA a}lgorlthm was proposed

A lot of research efforts have been spent to improve the pésel- New genetic operator and encoding procedures that allows
formance of GA. Different selection schemes and genetic op? OPPortune length of the coding string were introduced. Each
erators have been proposed. Selection schemes such as r4fRE CONSsists of two parts: the connectivity bits and the connec-
based selection, elitist strategies, steady-state election and t§gR Weight bits. The former indicates the absence or presence
nament selection have been reported [32]. There are two kind9b# link, and the latter indicates the value of the weight of alink.
genetic operators, namely crossover and mutation. Apart frdif>NARL algorithm was also proposed in [37]. The number of
random mutation and crossover, other crossover and mutatiifiden nodes and connection links for each networkis first ran-
mechanisms have been proposed. For crossover mechanidfgly chosen within some defined ranges. Three steps are then
two-point crossover, multipoint crossover, arithmetic crossovétS€d t0 generate an offspring: copying the parents, determining
and heuristic crossover have been reported [1], [31]-[33]. Fe mutations to be performed, and mutating the copy. The mu-
mutation mechanisms, boundary mutation, uniform mutatiofftion of & copy is separated into two classes: the parametric mu-
and nonuniform mutation can be found [1], [31]-[33]. tat!ons that alter the connectlon_we|ghts, and the structural mu-

Neural network was proved to be a universal approximatEi’rt'O”Sthfit alter the num_ber of hidden nodes and the presence of
[16]. A three-layer feedforward neural network can apprc))([1etwork links. An _evolutlonary system named EPNet can also
mate any nonlinear continuous function to an arbitrary accura8 found for evolving neural networks [19]. Rank-based selec-
Neural networks are widely applied in areas such as predicti@n @nd five mutations were employed to modify the network

structure and connection weights.

In this paper, a three-layer neural network with switches in-
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Procedure of the standard GA
begin
-0 // T number of iteration
initialize P(7) //P(7): population for iteration T
evaluate f(P(7)) /1 f(P(7)):fitness function
while (not termination condition) do
begin

T—¥+1

select 2 parents p; and p, from P(7-1)

perform genetic operations (crossover and mutation)

reproduce a new P(7)

evaluate f(P(7))

end
end
Fig. 1. Procedure of standard GA.
parameters will be tuned simultaneously using a proposed im- Pi=[Piy, Piv 0 Pi; v Pinovars )
proved GA. As application examples, the proposed neural net- i=1,2, ..., pop_size;

work with link switches tuned by the improved GA is used to

estimate the number of sunspots [7], [8] and realize an associa- , ,

tive memory. The results will be compared with those obtained Paral,;, <pi; < para., 3)

by traditional feedforward networks [2] trained by 1) the stan-

dard GA with arithmetic crossover and nonuniform mutatiowhere pop_size denotes the population sizepo_vars

[1], [2], [5] and 2) the backpropagation with momentum angéenotes the number of variables to be tuneg,

adaptive learning rate [30]. t = 1,2,..., pop_size; j = 1,2,..., no-vars, are the
This paper is organized as follows. In Section Il, the improvegRrameters to be tunegural ;. and para},,, are the min-

genetic algorithm is presented. In Section IlI, it will be showimum and maximum values of the parameter, respectively

that the improved GA performs more efficiently than the staifier all 7. It can be seen from (1)—(3) that the potential solution

dard GA [1], [2], [5] based on some benchmark test functiorset P contains some candidate solutiops (chromosomes).

[3], [4], [6], [17]. In Section IV, the neural network with link The chromosome; contains some variables, (genes).

switches, and the tuning of its structure and parameters using

the improved GA will be presented. Application examples wiB, Evaluation

be presented in Section V. A conclusion will be drawn in Sec-

tion VI.

i=1,2,..., nowars (2)

Each chromosome in the population will be evaluated by a
defined fitness function. The better chromosomes will return
higher values in this process. The fithess function to evaluate
a chromosome in the population can be written as

The standard GA process [1], [2], [5] is shown in Fig. 1. First,
a population of chromosomes is created. Second, the chromo-
somes are evaluated by a defined fithess function. Third, some
of the chromosomes are selected for performing genetic oper-
ations. Forth, genetic operations of crossover and mutation ﬂée
performed. The produced offspring replace their parents in the
initial population. In this reproduction process, only the selectéet Selection
parents in the third step will be replaced by their correspondingTwo chromosomes in the population will be selected to un-
offspring. This GA process repeats until a user-defined criterigfargo genetic operations for reproduction by the method of spin-
is reached. In this paper, the standard GA is modified and neyg the roulette wheel [1]. It is believed that high potential par-
genetic operators are introduced to improve its performanggts will produce better offspring (survival of the best ones).
The improved GA process is shown in Fig. 2. Its details wilthe chromosome having a higher fitness value should therefore
be given as follows. have a higher chance to be selected. The selection can be done
by assigning a probability; to the chromosome;

Il. IMPROVED GA

fitness= f(pi). 4

form of the fitness function depends on the application.

A. Initial Population

The initial population is a potential solution sBt The first £(ps)
set of population is usually generated randomly i = W7 1=1,2, ..., pop_size. (5)
P = {ph P2, ---, ppop_size} (1) kgl f<pk)
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Procedure of the improved GA
begin
-0 /I . number of iteration
initialize P(7) //P(7): population for iteration T
evaluate f(P(7)) /1 f(P(7)):fitness function
while (not termination condition) do
begin
T—%+1
select 2 parents p; and p, from P(7-1)
perform crossover operation according to equations (7) to (13)
perform mutation operation according to equation (14) to generate three
offspring nos,, nos,; and nos;
/I reproduce a new P(7)
if random number < p, // p,: probability of acceptance
The one among nos;, nos, and nos; with the largest fitness value
replaces the chromosome with the smallest fitness value in the
population
else begin
if f(nos,) > smallest fitness value in the P(7-1)
nos, replaces the chromosome with the smallest fitness value
end
if f(nos,) > smallest fitness value in the updated P(7—1)
nos, replaces the chromosome with the smallest fitness value
end
if f(nos;) > smallest fitness value in the updated P(7—1)
nos; replaces the chromosome with the smallest fitness value
end
end
evaluate f(P(7))
end
end

Fig. 2. Procedure of the improved GA.

The cumulative probability; for the chromosome; is defined will produce one offspring. First, four chromosomes will be

as generated according to the following mechanisms:
P1 + P2
i OSi = [08% 08% T Os}w_vars] = T (7)
Gi = Z k. 1=1,2,..., pop_size. (6) s =[0s2 o0s2 --- o0s2 . ]
k=1 _ S
. . = Pmax(l — w) + max , w 8
The selection process starts by randomly generating a nonzero Pumax( ) (P1, p2) ®)
floating-point numberd € [0 1]. Then, the chromosomg; 0s2 = [0s3 053 - 083, L ure
is chosen ifg; 1 < d < §; (§o = 0). It can be observed from o (1 . 9
this selection process that a chromosome having a Igiger) = Pmin(l — w) + min (p1, p2)w 9)
will have a higher chance to be selected. Consequently, the best os? = [os} os3 - 05, Lure]
chromosomes will get more offspring, the average will stay and 1 i
the worst will die off. In the selection process, only two chro- _ (Ponax + Prnin) (1 = w) + (P1 + P2)uw (10)
mosomes will be selected to undergo the genetic operations. 2
Pmax = [ParGye  parag,, - parajid™] (11)
Pmin = [paral,, para?;,, -+ para?%:ers] (12)

D. Genetic Operations

wherew € [0 1] denotes the weight to be determined by users,
The genetic operations are to generate some new chromesx(p;, p2) denotes the vector with each element obtained by

somes (offspring) from their parents after the selection procetaking the maximum among the corresponding element;of
They include the crossover and the mutation operations.  andp,. For instancemax([1 -2 3], [2 3 1]) =[2 3 3].
1) Crossover: The crossover operation is mainly for ex-Similarly, min(p, p2) gives a vector by taking the minimum
changing information from the two parents, chromosompes value. For instancenin([1 —2 3],[2 3 1)) =[1 -2 1].
and p», obtained in the selection process. The two paremsnongos! to os?, the one with the largest fitness value is used

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.



82 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003

as the offspring of the crossover operation. The offspring is d& change the value of a randomly selected gene to its upper
fined as or lower bound. Uniform mutation is to change the value of a
randomly selected gene to a value between its upper and lower
bounds. Nonuniform mutation is capable of fine-tuning the pa-
rameters by increasing or decreasing the value of a randomly
selected gene by a weighted random number. The weight is usu-
is denotes the indexwhich gives a maximum value gf(os! ) ally a monotonic decreasing function of the number of iteration.
i— 1.2 3. 4. ¢ In our approach, we have three offspring generated in the muta-

If the crossover operation can provide a good oﬁsprinHP” process. From (14), the first mutation is in fact the uniform
a higher fitness value can be reached in less iteration. Mtation. The second mutation allows some randomly selected
general, two-point crossover, multipoint crossover, arithmef€Nnes to change simultaneously. The third mutation changes all
crossover or heuristic crossover can be employed to realize §&1€s simultaneously. The second and the third mutations allow
crossover operation [1], [31]-[33]. The offspring generate’iﬂ‘”'“ple genes to be changed. H(—;-nce, the searching domain is
by these methods, however, may not be better than that friffg€r than that formed by changing a single gene. The genes
our approach. As seen from (7)—(10), the potential offspriﬁ’t’;'" have a larger space for improving when the fithess values
spreads over the domain. While (7) and (10) result in searchifi Small. On the contrary, when the fitness values are nearly
around the center region of the domain [a valuewofear to he same, changing the value of a single gene (the first muta-
one in (10) can moves? to be neafp; + p2)/2], (8) and (9) tion) will give a higher probability ofimproving the fitness value
move the potential offspring to be near the domain boundarydd the searching domain is smaller and some genes may have
large value ofv in (8) and (9) can moves? andos? to be near '€ached their optimal values. ,

Prmax ANdPmin respectively]. After the operation of selection, crossover, and mutation, a
2) Mutation: The offspring (13) will then undergo the mu-"eW population is generated_. Thi§ new population will repeat
tation operation. The mutation operation is to change the gerl@§ Same process. Such an iterative process can be terminated
of the chromosomes. Consequently, the features of the chroMien the result reaches a defined condition, e.g., the change of

somes inherited from their parents can be changed. Three 486 fitness values between the current and the previous iteration
offspring will be generated by the mutation operation is less than 0.001, or a defined number of iteration has been

reached.

0Ss = [081 0S8y +¢ OSno_'uars] — oszos . (13)

n0s; = [0s1 052 -+ 0Sno_vars) [ll. BENCHMARK TEST FUNCTIONS

+ [b1Anosy baAnoss -+ bno_varsAN0Sno_vars) Some benchmark test functions [3], [4], [6], [17] are used to
j=1,23 (14) examine the applicability and efficiency of the improved GA.
T Six test functiong;(x),i = 1, 2, 3, 4, 5, 6 will be used, where

whereb;,i = 1, 2, ..., no_vars, can only take the value of 0 * = [21 w2 - ]?' n s an integer denoting the dimen-
or 1 An/os i=1.2 ' no_vars, are randomly generateds'on of the vectok. The six test functions are defined as follows:
1 1 - ] [ ) - 1

numbers such thatara ;< os; + Anos; < paral,,. . The n

first new offspring § = 1) is obtained according to (14) with fi(x) = Z a2, —512<x; <5.12 (15)
that only oneb; (i being randomly generated within the range) P

is allowed to be one and all the others are zeros. The second

new offspring is obtained according to (14) with that sabne wheren = 3 and the minimum point is af; (0, 0, 0) = 0

randomly chosen are set to be one and others are zero. The third

new offspring is obtained according to (14) with &Jl = 1. n-1 ) )

These three new offspring will then be evaluated using the fit- fa(x) = Z (100 (zip1 —27)" + (xi — 1) )

ness function of (4). A real number will be generated randomly i=1

and compared with a user-defined numpgre [0 1]. If the —2.048 < z; < 2.048 (16)

real number is smaller tham,, the one with the largest fithess
value among the three new offspring will replace the chromeseren = 2 and the minimum point is gt (0, 0) = 0
some with the smallest fitheg’s in the population. If the real
number is larger thap,, the first offspringnos; will replace n
the chromosome with the smallest fitness vafyén the popu-  f3(x) = 6n + Z floor(z;), =512 <w; <512 (17)
lation if f(nos;) > f,; the second and the third offspring will i=1
do the samep, is effectively the probability of accepting a bad - . .
L . where n = 5 and the minimum point is at

offspring in order to reduce the chance of converging to anc;‘g:;([r 12, 5] [5.12, 5]) = 0. The floor function, floor (")
optimum. Hence, the possibility of reaching the global optimurdy 124 2l» - -+ 1922, 91) = . JLOOTR )y
is kept. is to round down the argument to an integer

In general, various methods like boundary mutation, uniform n
mutation, or nonuniform mutation [1], [32], [33] can be em- ¢ (x) = Z izt + Gauss(0, 1), —1.28 < z; < 1.28 (18)
ployed to realize the mutation operation. Boundary mutation is P
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wheren = 3 and the minimum point is af,(0, 0, 0) = 0. times of simulations based on the proposed and standard GAs

Gauss(0, 1) is afunction to generate uniformly a floating-pointare shown in Fig. 3 and tabulated in Table I. Generally, it can

number between zero and one inclusively be seen that the performance of the proposed GA is better than
that of the standard GA.

1 1
fs(x) = k + — 2 6 IV. NEURAL NETWORK WITH LINK SWITCHES AND TUNING
=t El (i — aij) USING THE IMPROVED GA
—65.356 < 7; < 65.356 (19) In this section, a neural network with link switches is pre-

sented. By introducing a switch to a link, the parameters and
where we havea as shown in the equation at the bottom ofhe structure of the neural network can be tuned using the im-
the next page, and = 500 and the maximum point is at proved GA.
f5(—32, =32) =~ 1
. A. Neural Network With Link Switches
fo(x) = Z [;y?—lo cos(2mw;) +10],  —5.12 < w; < 5.12 Neural networks [5] for tuning usually have a fixed structure.
=1 The number of connections may be too large for a given ap-
(20)  plication such that the network structure is unnecessarily com-
wheren = 3 and the minimum point is afs(0, 0, 0) = 0. It plex and the implementation cost is high. In this section, a mul-
should be noted that the minimum values of all functions in thgle-input-multiple-output (MIMO) three-layer neural network
defined domain are zero except ffy(x). The fitness functions s proposed as shown in Fig. 4. The main different point is that

for f1 to f4 and f are defined as a unit step function is introduced to each link. Such a unit step
1 function is defined as
fitness = —— 1=1,2,3,4,6 (22) )
1+ fi(x) _Jo ifa<o
B(0) =17 fosgr @ER (23)

and the fitness function fof; is defined as
. This is equivalent to adding a switch to each link of the neural
fitness = f5(x). (22)  network. Referring to Fig. 4, the input—output relationship of the

. roposed MIMO three-layer neural network is as follows:
and we have the equation shown at the bottom of the page. prop y

The proposed GA goes through these six test functions. ™ Min
The results are compared with those obtained by the standarét) ZZ §(s3x) wik log sig lz(5(5%)“1'12’1‘(15)—5(3})17})
GA with arithmetic crossover and nonuniform mutation [1], i=1 i=1
[31]-[33]. For each test function, the simulation takes 500 —6 (s7) log sig(bz), k=1,2, ..., nour- (24)

iterations and the population size is ten for the proposed and . , ,
the standard GAs. The probability of crossover is set at 0.8 fgitt): ¢ = 1, 2, ..., nin, are the inputs which are functions
all functions and the probability of mutation for functiofisto  ©f & variablet; n;, denotes the number of inputs;, denotes
fs are 0.8, 0.8, 0.7, 0.8, 0.8, and 0.35, respectively. The sh4p§ number of the hidden nodes;i, j = 1, 2, ..., np; k =
parameters of the standard GA [2] for nonuniform mutation, s 2 - -+ Tout, denotes the weight of the link between fia

which is selected by trial and error through experiments fé¢dden node and theth output,v;; denotes the W‘fight of the
good performance, are setlat= 5 for f,, f» and f5, b — 0.1 link between theth input and thejth hidden nodes; denotes

for f3, b = 1 for f, and fs. For the proposed GA, the valuesthe parameter of the link switch from thith inpgt to thejth

of w are set to be 0.5, 0.99, 0.1, 0.5, 0.01, and 0.01 for thidden nodes?k denotes the parameter of the link switch from
six test functions, respectively. The probability of acceptandd€/th hidden node to theth outputin.. denote;s the number
D is set at 0.1 for all functions. These values are selected BfCUtPuts of the proposed neural netwokandb; denote the
trial and error through experiments for good performance. Tll?é";‘sezS for the hidden nodes and output nodes, respecméj‘gly;
initial values ofx in the population for a test function are se@Ndsi denote the parameters of the link switches of the biases
to be the same for both the proposed and the standard GiRsthe hidden and output layers, respectivély;sig(-) denotes
For tests 1 to 6, the initial values afe 1 1], [0.5 0.5], the logarithmic sigmoid function:

M - 1,[05 - 05,[10 --- 10]and[l 1 1], 1

respectively. The results of the average fitness values over 100 logsig(a) = Tteoa’ ae R (25)

a={ay} = -32 —-16 0 16 32 -32 —-16 O 16 32
ool 32 32 32 32 32 -16 —-16 -16 —-16 —16

-32 —-16 0 16 32 -32 -16 O 16 32 -32 -—-16 0 16 32
0 0o 0 0 O 16 16 16 16 16 32 32 32 32 32|°
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Fig. 3. Simulation results of the improved and standard GAs. The averaged fitness value of test functions obtained by the improved (solid livdgrend sta
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y(t), k = 1,2, ..., nout, is thekth output of the proposed the weights of the links govern the input—output relationship of

neural network. By introducing the switches, the weights the neural network while the switches of the links govern the
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andwv;;, and the switch states can be tuned. It can be seen ts@ticture of the neural network.
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TABLE | 200 T T T T
SIMULATION RESULTS OF THEPROPOSEDGA AND THE STANDARD GA
BASED ON THEBENCHMARK TEST FUNCTIONS 180 1
Test function Proposed GA Standard GA 160
fi(x) 1.0000 1.0000
f(x) 0.9707 0.6393 140+
f3(x) 1.0000 1.0000
f4(x) 0.8349 0.8037 120+
fs(x) 1.0000 1.0000
100 -
Jo(x) 1.0000 0.7297
80 H
60 -
40+ H
20 n
0 1 1 1 I 1
1700 1750 1800 1850 1900 1950

Fig. 5. Sunspot cycles from year 1700 to 1980.

V. APPLICATION EXAMPLES

Two application examples will be given in this section to il-
lustrate the merits of the proposed neural networks tuned by the
improved GA.

A. Forecasting of the Sunspot Number

An application example on forecasting the sunspot number
[71, [8], [27] will be given in this section. The sunspot cycles
from 1700 to 1980 are shown in Fig. 5. The cycles generated
are nonlinear, nonstationary, and non-Gaussian which are dif-

O swicch ficult to model and predict. We use the proposed three-layer
neural network (three-input-single-output) with link switches
Fig. 4. Proposed three-layer neural network. for the sunspot number forecasting. The inpufsof the pur-
posed neural network are defined:agt) = y{(t — 1), z2(t) =
B. Tuning of the Parameters and Structure yd(t —2), andz3(t) = y¢(t — 3), wheret denotes the year and

The proposed neural network can be employed to learn t () is the sunspot numbers at the yeaFhe sunspot numbers

input—output relationship of an application by using the inf?f the first 180 years (i.e1705 < ¢ < 1.884) are used to train
proved GA. The input—output relationship is described by 1€ Proposed neural network. Referring to (24), the proposed
neural network used for the sunspot forecasting is governed by

y'(t) = g (z%(t)), t=1,2,....ng (26) i,
yi(t) =Y 6 (s5) win
wherezd(t) = [2(t) =29(t) --- =z (¢)] andy?(t) = =1

[yf(t) y4(t) --- y2 (t)]arethegiveninputsand the desired 3

outputs of an unknown nonlinear functigi.) respectivelyn, - logsig Z (8(sijvijzi(t) — 6(s)bs) | —6(s7) logsig(bz. (29)

denotes the number of input—output data pairs. The fithess func- i=1

tion is defined as The number of hidden nodes, is changed from three to seven
to test the learning performance. The fithess function is defined

fitness= Trer (27)  as follows:
na fithness= 1 (30)
Z > [ (0) = (o) e
err= = - (28) o= |yit) — ()]
ng = 17 31
= er=3_ 0 (31)

t=1705
The objective is to maximize the fitness value of (27The improved GA is employed to tune the parameters and
using the improved GA by setting the chromosome to Ikstructure of the neural network of (29). The objective is to
[s% wjr si; vij s; b si bi]foralli, j, k. It can be seen maximize the fitness function of (30). The best fitness value is
from (27) and (28) that a larger fitness value implies a smallene and the worst one is zero. The population size used for the
error value. improved GA is tenw = 0.9 andp, = 0.1 for all values of
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feedforward neural network (three-input—one-output) [2] i§ g0l A
also trained by the standard GA with arithmetic crossover aa

TABLE 1l TABLE 11l
SIMULATION RESULTS FOR THEAPPLICATION EXAMPLE OF FORECASTING THE TRAINING ERROR AND FORECASTING ERROR IN MEAN ABSOLUTE
SUNSPOTNUMBER AFTER 1000 ITERATIONS OFLEARNING ERROR (MAE) FOR THE APPLICATION EXAMPLE OF FORECASTING
THE SUNSPOTNUMBER
Our Approach Standard GA with proposed neural
network Our Approach Standard GA with proposed neural
ny, Fitness Values | Number of Links Fitness Values Number of Links network
4 0.9429 9 0.9357 9 n, Training error Forecasting error Training error Forecasting error
5 0.9448 17 0.9348 9
6 0.9453 13 0.9385 M 4 12.1116 13.9734 13.7473 14.6301
] 0.0426 3 0.9402 4 5 11.6850 13.8354 13.9495 15.7997
3 0.9207 3 0.9261 3 6 11.5730 14.0933 13.1060 14.8927
- — — = 7 12.1791 14.7434 12.7207 13.9798
Standard GA with traditional neural | Back-Propagation with traditional neural 3 12.6076 123516 15.9594 19.5594
network network - — - - —
n, | Fitness Values | Number of Links Fitness Values Number of Links Standard GA with traditional neural | Back-Propagation with traditional neural
network network
2 832(5)2 gé ggégi ié ny, Training error | Forecasting error Training error Forecasting error
6 0.9401 31 0.8961 31 4 13.7666 15.6682 16.4123 20.1037
7 0.9402 36 0.8919 36 5 14.9151 15.7705 21.3844 262723
8 0.9366 41 0.8919 41 6 12.7433 16.9341 23.1991 285170
7 12.7207 14.1280 24.2294 29.6302
8 13.5383 14.2857 242323 29.8156
ny. The lower and the upper bounds of the link weights are de-
fined as—3/\/nh+1 > ij, Wik, bjl b% > 3/\/nh—|—1 200 ' ' ' ' ' ' ,'\'\ '
and, -1 > 5?1,5111»,5},5% > 1,4+ = 1,2,...,3; 180} N -
j = 1,2,...,nn, k = 1 [16]. The chromosomes used o } |
; 2 ) 1. o 721 2 32 r | ]
for the' |.mproved GA ar¢sj1' Wik Si; Vij S b; Sk bi]. I
The initial values of all the link weights between the input an 140+ : I 1
hidden layers are one, and those between the hidden and oug 120l ’ R |
layers are-1. The initial value ofx in (23) is 0.5. £ ,”‘. e~
. 2 Il
For comparison purpose, a fully connected three-lay< 100t N‘ /\ !’ \ ’; N 1. ]
| ANEN RN
R

i 4
nonuniform mutation [1], [2], [_5], and backpropagation witt 60%} f!' \ /KX\ | i I ll ‘L& ’, | \Y ?
momentum and adaptive learning rate [30]. Also, the propos 40_\.\ AL A }’ o I 'I b PN i
neural network trained by the standard GA will be considere \\ ,” \ /{ ‘\\\ ﬂ \ /’ | ,f! \ /, W \V |
For the standard GA, the population size is ten, the probabil 20} u{ X‘\\ﬂ/} \ H}) \ / J \H | ) J/*

e Y

of crossover is 0.8 and the probability of mutation is 0.1
The shape parametebsof the standard GA with arithmetic
crossover and nonuniform mutation, which is selected by trial
and error through experiment for good performance, is setfig. 6. Simulation results of a 96-year prediction using the proposed neural
be one. For the backpropagation with momentum and adaptﬁlﬁ"’gé'r‘s@zgoﬁ d(;li)nvg;t?otrhtig?é);ssefsgé—(ldgzsged line), and the actual sunspot
learning rate, the learning rate is 0.2, the ratio to increase the

I i is 1. h i he | i i . . :
earning rate is 1.05, the ratio to decrease the learning rateccl)snnected link is 18 after learning (the number of links of a

0.7, the maximum validation failures is five, the maximu . 2 o
. . , L5|y connected network is 31 which includes the bias links).
performance increase is 1.04, the momentum constant is § about 42% reduction of links. The training error and the
The initial values of the link weights are the same as thosefs : 0 ' g erre
Qrecasting error are 11.5730 and 14.0933, respectively.
the proposed neural network. For all approaches, the learning
processes are carried out _by a personal computer with'a P4R.4nss0ciative Memory
GHz CPU. The number of iterations for all approaches is 1000. o . -
The tuned neural networks are used to forecast the sunspdinOther application example on tuning an associative
number during the years 1885-1980. The number of hiddBifmery will be given in this section. In this example, the

nodesn,, is changed from four to eight. The simulation resylt@ssociative memory, which maps its input vector into itself, has

for the comparisons are tabulated in Tables Il and IIl. Frofﬁn inputs and ten outputs. Thus, the desired output vector is its

Table II, it is observed that the proposed neural network trainiPut vector. Referring to (24), the proposed neural network is
with the improved GA provides better results in terms d#Ven by .

accuracy (fithess values) and number of links. The training . . 2 _

error [governed by (31)] and the forecasting error [governed y(t) = Zl 6 (8]’“) Wik

by Y% (Jui(t) — yi(t)]/96)] are tabulated in Table IIl. = 0

Referring to Table Ill, the best result is obtained when the Jog si §(s Vo2 (8) — 6(s)bl
number of hidden node is six. Fig. 6 shows the simulation 0858 ; (001 visza(t) = o(s;)5)
results of the forecasting using the proposed neural network —§(s2) log sig(b2)

trained with the improved GA (dashed lines) and the actual k) SOBIE Dk

sunspot numbers (solid lines) far, = 6. The number of 1=1,2,...,10, k=1,2,...,10. (32)

Year
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TABLE IV
SIMULATION RESULTS FOR THEAPPLICATION EXAMPLE OF ASSOCIATIVE
MEMORY AFTER 500 ITERATIONS OFLEARNING

Our Approach Standard GA with proposed neural
network
ny, Fitness Values | Number of Links Fitness Values Number of Links
4 0.9648 79 0.9660 87
5 0.9629 91 0.9682 110
6 0.9651 113 0.9688 132
7 0.9642 137 0.9647 149
8 0.9607 153 0.9649 173
Standard GA with traditional neural | Back-Propagation with traditional neural
network network
n, Fitness Values | Number of Links Fitness Values Number of Links
4 0.9678 94 0.9678 94
5 0.9681 115 0.9669 115
6 0.9668 136 0.9677 136
7 0.9688 157 0.9677 157
8 0.9694 178 0.9677 178

50 input vectors (each input vector has the propertyZitaj =
1 to test the learning performance. The fitness function is d

fined as follows:

VI. CONCLUSION

An improved GA has been proposed in this paper. By using
the benchmark test functions, it has been shown that the im-
proved GA performs more efficiently than the standard GA. Be-
sides, by introducing a switch to each link, a neural network
that facilitates the tuning of its structure has been proposed.
Using the improved GA, the proposed neural network is able
to learn both the input—output relationship of an application and
the network structure. As aresult, a given fully connected neural
network can be reduced to a partially connected network after
learning. This implies that the cost of implementation of the
neural network can be reduced. Application examples on fore-
casting the sunspot number and tuning an associative memory
using the proposed neural network trained with the improved
GA have been given. The simulation results have been com-
pared with those obtained by the proposed network trained by
the standard GA, and traditional feedforward networks trained
gy the standard GA (with arithmetic crossover and nonuniform
mutation) and the backpropagation (with momentum and adap-

fitness= (33)

1+ err

50
10 tzl |21 (t) — y(t)]
err= ; 0

The improved GA is employed to tune the parameters and
structure of the neural network of (32). The objective is to 3
maximize the fitness function of (33). The best fithess value
is one and the worst one is zero. The population size used for
the improved GA is tenyy = 0.8 andp, = 0.1 for all values 141
of ny,. The lower and the upper bounds of the link weights are [5]
defined as-3/v/ny, + 1 > vjj, wjr, b}, by > 3/y/ny, + 1 and s
1> s, sl sl s > 0= 1,235 = 1,2, g,
k = 10 [16]. The chromosomes used for the improved GA [7]
aref[s?, wjr si; vij s; bj sp bi]. The initial values
of the link weights are all zero. For comparison purpose, (8]
a fully connected three-layer feedforward neural network
(ten-input—ten-output) [2] trained by the standard GA (with
arithmetic crossover and nonuniform mutation) and another
trained by backpropagation (with momentum and adaptive
learning rate) are considered again. Also, the proposed neur&f!
network trained by the standard GA will be considered. For
the standard GA, the population size is ten, the probability11]
of crossover is 0.8 and the probability of mutation is 0.03.
The shape parametebsof the standard GA with arithmetic
crossover and nonuniform mutation, which is selected by tria
and error through experiments for good performance, is set 83l
be three. For the backpropagation with momentum and adaptive
learning rate, the learning rate is 0.2, the ratio to increase thie4]
learning rate is 1.05, the ratio to decrease the learning rate is
0.7, the maximum validation failures is five, the maximum s
performance increase is 1.04, the momentum constant is 0.9.
The initial values of the links weights are the same as thos&sl
of the proposed approach. The number of iterations for al
approaches is 500. The simulation results are tabulated 7]
Table IV. It can be seen from Table 1V that the fithess values
for different approaches are similar, but our approach can offeﬁS]
a smaller network.

(1]
(2]

(34)

[9]

12

tive learning rate).
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