
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003 79

Tuning of the Structure and Parameters of a Neural
Network Using an Improved Genetic Algorithm

Frank H. F. Leung, Member, IEEE, H. K. Lam, S. H. Ling, and Peter K. S. Tam

Abstract—This paper presents the tuning of the structure and
parameters of a neural network using an improved genetic algo-
rithm (GA). It will also be shown that the improved GA performs
better than the standard GA based on some benchmark test func-
tions. A neural network with switches introduced to its links is pro-
posed. By doing this, the proposed neural network can learn both
the input–output relationships of an application and the network
structure using the improved GA. The number of hidden nodes is
chosen manually by increasing it from a small number until the
learning performance in terms of fitness value is good enough. Ap-
plication examples on sunspot forecasting and associative memory
are given to show the merits of the improved GA and the proposed
neural network.

Index Terms—Genetic algorithm (GA), neural networks, param-
eter learning, structure learning.

I. INTRODUCTION

GENETIC algorithm (GA) is a directed random search
technique [1] that is widely applied in optimization

problems [1], [2], [5]. This is especially useful for complex
optimization problems where the number of parameters is large
and the analytical solutions are difficult to obtain. GA can help
to find out the optimal solution globally over a domain [1], [2],
[5]. It has been applied in different areas such as fuzzy control
[9]–[11], [15], path planning [12], greenhouse climate control
[13], modeling and classification [14] etc.

A lot of research efforts have been spent to improve the per-
formance of GA. Different selection schemes and genetic op-
erators have been proposed. Selection schemes such as rank-
based selection, elitist strategies, steady-state election and tour-
nament selection have been reported [32]. There are two kinds of
genetic operators, namely crossover and mutation. Apart from
random mutation and crossover, other crossover and mutation
mechanisms have been proposed. For crossover mechanisms,
two-point crossover, multipoint crossover, arithmetic crossover,
and heuristic crossover have been reported [1], [31]–[33]. For
mutation mechanisms, boundary mutation, uniform mutation,
and nonuniform mutation can be found [1], [31]–[33].

Neural network was proved to be a universal approximator
[16]. A three-layer feedforward neural network can approxi-
mate any nonlinear continuous function to an arbitrary accuracy.
Neural networks are widely applied in areas such as prediction

Manuscript received September 5, 2001; revised February 6, 2002 and July 2,
2002. This work was supported by the Centre for Multimedia Signal Processing,
Department of Electronic and Information Engineering, The Hong Kong Poly-
technic University, under Project A432.

The authors are with the Centre for Multimedia Signal Processing, Depart-
ment of Electronic and Information Engineering, The Hong Kong Polytechnic
University, Kowloon, Hong Kong.

Digital Object Identifier 10.1109/TNN.2002.804317

[7], system modeling, and control [16]. Owing to its particular
structure, a neural network is very good in learning [2] using
some learning algorithms such as GA [1] and backpropagation
[2]. In general, the learning steps of a neural network are as fol-
lows. First, a network structure is defined with a fixed number
of inputs, hidden nodes and outputs. Second, an algorithm is
chosen to realize the learning process. However, a fixed struc-
ture may not provide the optimal performance within a given
training period. A small network may not provide good per-
formance owing to its limited information processing power. A
large network, on the other hand, may have some of its con-
nections redundant [18], [19]. Moreover, the implementation
cost for a large network is high. To obtain the network struc-
ture automatically, constructive and destructive algorithms can
be used [18]. The constructive algorithm starts with a small net-
work. Hidden layers, nodes, and connections are added to ex-
pand the network dynamically [19]–[24]. The destructive algo-
rithm starts with a large network. Hidden layers, nodes, and con-
nections are then deleted to contract the network dynamically
[25], [26]. The design of a network structure can be formulated
into a search problem. GAs [27], [28] were employed to ob-
tain the solution. Pattern-classification approaches [29] can also
be found to design the network structure. Some other methods
were proposed to learn both the network structure and connec-
tion weights. An ANNA ELEONORA algorithm was proposed
[36]. New genetic operator and encoding procedures that allows
an opportune length of the coding string were introduced. Each
gene consists of two parts: the connectivity bits and the connec-
tion weight bits. The former indicates the absence or presence
of a link, and the latter indicates the value of the weight of a link.
A GNARL algorithm was also proposed in [37]. The number of
hidden nodes and connection links for each network is first ran-
domly chosen within some defined ranges. Three steps are then
used to generate an offspring: copying the parents, determining
the mutations to be performed, and mutating the copy. The mu-
tation of a copy is separated into two classes: the parametric mu-
tations that alter the connection weights, and the structural mu-
tations that alter the number of hidden nodes and the presence of
network links. An evolutionary system named EPNet can also
be found for evolving neural networks [19]. Rank-based selec-
tion and five mutations were employed to modify the network
structure and connection weights.

In this paper, a three-layer neural network with switches in-
troduced in some links is proposed to facilitate the tuning of
the network structure in a simple manner. A given fully con-
nected feedforward neural network may become a partially con-
nected network after learning. This implies that the cost of im-
plementing the proposed neural network, in terms of hardware
and processing time, can be reduced. The network structure and

1045-9227/03$17.00 © 2003 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

80 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003

Fig. 1. Procedure of standard GA.

parameters will be tuned simultaneously using a proposed im-
proved GA. As application examples, the proposed neural net-
work with link switches tuned by the improved GA is used to
estimate the number of sunspots [7], [8] and realize an associa-
tive memory. The results will be compared with those obtained
by traditional feedforward networks [2] trained by 1) the stan-
dard GA with arithmetic crossover and nonuniform mutation
[1], [2], [5] and 2) the backpropagation with momentum and
adaptive learning rate [30].

This paper is organized as follows. In Section II, the improved
genetic algorithm is presented. In Section III, it will be shown
that the improved GA performs more efficiently than the stan-
dard GA [1], [2], [5] based on some benchmark test functions
[3], [4], [6], [17]. In Section IV, the neural network with link
switches, and the tuning of its structure and parameters using
the improved GA will be presented. Application examples will
be presented in Section V. A conclusion will be drawn in Sec-
tion VI.

II. I MPROVED GA

The standard GA process [1], [2], [5] is shown in Fig. 1. First,
a population of chromosomes is created. Second, the chromo-
somes are evaluated by a defined fitness function. Third, some
of the chromosomes are selected for performing genetic oper-
ations. Forth, genetic operations of crossover and mutation are
performed. The produced offspring replace their parents in the
initial population. In this reproduction process, only the selected
parents in the third step will be replaced by their corresponding
offspring. This GA process repeats until a user-defined criterion
is reached. In this paper, the standard GA is modified and new
genetic operators are introduced to improve its performance.
The improved GA process is shown in Fig. 2. Its details will
be given as follows.

A. Initial Population

The initial population is a potential solution set. The first
set of population is usually generated randomly

(1)

(2)

(3)

where denotes the population size;
denotes the number of variables to be tuned; ,

; , are the
parameters to be tuned; and are the min-
imum and maximum values of the parameter, respectively
for all . It can be seen from (1)–(3) that the potential solution
set contains some candidate solutions (chromosomes).
The chromosome contains some variables (genes).

B. Evaluation

Each chromosome in the population will be evaluated by a
defined fitness function. The better chromosomes will return
higher values in this process. The fitness function to evaluate
a chromosome in the population can be written as

fitness (4)

The form of the fitness function depends on the application.

C. Selection

Two chromosomes in the population will be selected to un-
dergo genetic operations for reproduction by the method of spin-
ning the roulette wheel [1]. It is believed that high potential par-
ents will produce better offspring (survival of the best ones).
The chromosome having a higher fitness value should therefore
have a higher chance to be selected. The selection can be done
by assigning a probability to the chromosome

(5)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

LEUNG et al.: TUNING OF THE STRUCTURE AND PARAMETERS OF A NEURAL NETWORK 81

Fig. 2. Procedure of the improved GA.

The cumulative probability for the chromosome is defined
as

(6)

The selection process starts by randomly generating a nonzero
floating-point number, . Then, the chromosome
is chosen if (). It can be observed from
this selection process that a chromosome having a larger
will have a higher chance to be selected. Consequently, the best
chromosomes will get more offspring, the average will stay and
the worst will die off. In the selection process, only two chro-
mosomes will be selected to undergo the genetic operations.

D. Genetic Operations

The genetic operations are to generate some new chromo-
somes (offspring) from their parents after the selection process.
They include the crossover and the mutation operations.

1) Crossover: The crossover operation is mainly for ex-
changing information from the two parents, chromosomes
and , obtained in the selection process. The two parents

will produce one offspring. First, four chromosomes will be
generated according to the following mechanisms:

(7)

(8)

(9)

(10)

(11)

(12)

where denotes the weight to be determined by users,
denotes the vector with each element obtained by

taking the maximum among the corresponding element of
and . For instance, .
Similarly, gives a vector by taking the minimum
value. For instance, .
Among to , the one with the largest fitness value is used

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003

as the offspring of the crossover operation. The offspring is de-
fined as

(13)

denotes the indexwhich gives a maximum value of ,
.

If the crossover operation can provide a good offspring,
a higher fitness value can be reached in less iteration. In
general, two-point crossover, multipoint crossover, arithmetic
crossover or heuristic crossover can be employed to realize the
crossover operation [1], [31]–[33]. The offspring generated
by these methods, however, may not be better than that from
our approach. As seen from (7)–(10), the potential offspring
spreads over the domain. While (7) and (10) result in searching
around the center region of the domain [a value ofnear to
one in (10) can move to be near], (8) and (9)
move the potential offspring to be near the domain boundary [a
large value of in (8) and (9) can move and to be near

and respectively].
2) Mutation: The offspring (13) will then undergo the mu-

tation operation. The mutation operation is to change the genes
of the chromosomes. Consequently, the features of the chromo-
somes inherited from their parents can be changed. Three new
offspring will be generated by the mutation operation

(14)

where , can only take the value of 0
or 1, , , are randomly generated
numbers such that . The
first new offspring () is obtained according to (14) with
that only one (being randomly generated within the range)
is allowed to be one and all the others are zeros. The second
new offspring is obtained according to (14) with that some
randomly chosen are set to be one and others are zero. The third
new offspring is obtained according to (14) with all .
These three new offspring will then be evaluated using the fit-
ness function of (4). A real number will be generated randomly
and compared with a user-defined number . If the
real number is smaller than , the one with the largest fitness
value among the three new offspring will replace the chromo-
some with the smallest fitness in the population. If the real
number is larger than , the first offspring will replace
the chromosome with the smallest fitness valuein the popu-
lation if ; the second and the third offspring will
do the same. is effectively the probability of accepting a bad
offspring in order to reduce the chance of converging to a local
optimum. Hence, the possibility of reaching the global optimum
is kept.

In general, various methods like boundary mutation, uniform
mutation, or nonuniform mutation [1], [32], [33] can be em-
ployed to realize the mutation operation. Boundary mutation is

to change the value of a randomly selected gene to its upper
or lower bound. Uniform mutation is to change the value of a
randomly selected gene to a value between its upper and lower
bounds. Nonuniform mutation is capable of fine-tuning the pa-
rameters by increasing or decreasing the value of a randomly
selected gene by a weighted random number. The weight is usu-
ally a monotonic decreasing function of the number of iteration.
In our approach, we have three offspring generated in the muta-
tion process. From (14), the first mutation is in fact the uniform
mutation. The second mutation allows some randomly selected
genes to change simultaneously. The third mutation changes all
genes simultaneously. The second and the third mutations allow
multiple genes to be changed. Hence, the searching domain is
larger than that formed by changing a single gene. The genes
will have a larger space for improving when the fitness values
are small. On the contrary, when the fitness values are nearly
the same, changing the value of a single gene (the first muta-
tion) will give a higher probability of improving the fitness value
as the searching domain is smaller and some genes may have
reached their optimal values.

After the operation of selection, crossover, and mutation, a
new population is generated. This new population will repeat
the same process. Such an iterative process can be terminated
when the result reaches a defined condition, e.g., the change of
the fitness values between the current and the previous iteration
is less than 0.001, or a defined number of iteration has been
reached.

III. B ENCHMARK TEST FUNCTIONS

Some benchmark test functions [3], [4], [6], [17] are used to
examine the applicability and efficiency of the improved GA.
Six test functions , will be used, where

. is an integer denoting the dimen-
sion of the vector . The six test functions are defined as follows:

(15)

where and the minimum point is at

(16)

where and the minimum point is at

(17)

where and the minimum point is at
. The floor function, ,

is to round down the argument to an integer

(18)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

LEUNG et al.: TUNING OF THE STRUCTURE AND PARAMETERS OF A NEURAL NETWORK 83

where and the minimum point is at .
is a function to generate uniformly a floating-point

number between zero and one inclusively

(19)

where we have as shown in the equation at the bottom of
the next page, and and the maximum point is at

(20)
where and the minimum point is at . It
should be noted that the minimum values of all functions in the
defined domain are zero except for . The fitness functions
for to and are defined as

(21)

and the fitness function for is defined as

(22)

and we have the equation shown at the bottom of the page.
The proposed GA goes through these six test functions.

The results are compared with those obtained by the standard
GA with arithmetic crossover and nonuniform mutation [1],
[31]–[33]. For each test function, the simulation takes 500
iterations and the population size is ten for the proposed and
the standard GAs. The probability of crossover is set at 0.8 for
all functions and the probability of mutation for functionsto

are 0.8, 0.8, 0.7, 0.8, 0.8, and 0.35, respectively. The shape
parameters of the standard GA [2] for nonuniform mutation,
which is selected by trial and error through experiments for
good performance, are set at for , and ,
for , for and . For the proposed GA, the values
of are set to be 0.5, 0.99, 0.1, 0.5, 0.01, and 0.01 for the
six test functions, respectively. The probability of acceptance

is set at 0.1 for all functions. These values are selected by
trial and error through experiments for good performance. The
initial values of in the population for a test function are set
to be the same for both the proposed and the standard GAs.
For tests 1 to 6, the initial values are , ,

, , and ,
respectively. The results of the average fitness values over 100

times of simulations based on the proposed and standard GAs
are shown in Fig. 3 and tabulated in Table I. Generally, it can
be seen that the performance of the proposed GA is better than
that of the standard GA.

IV. NEURAL NETWORK WITH LINK SWITCHES AND TUNING

USING THE IMPROVED GA

In this section, a neural network with link switches is pre-
sented. By introducing a switch to a link, the parameters and
the structure of the neural network can be tuned using the im-
proved GA.

A. Neural Network With Link Switches

Neural networks [5] for tuning usually have a fixed structure.
The number of connections may be too large for a given ap-
plication such that the network structure is unnecessarily com-
plex and the implementation cost is high. In this section, a mul-
tiple-input–multiple-output (MIMO) three-layer neural network
is proposed as shown in Fig. 4. The main different point is that
a unit step function is introduced to each link. Such a unit step
function is defined as

if
if

(23)

This is equivalent to adding a switch to each link of the neural
network. Referring to Fig. 4, the input–output relationship of the
proposed MIMO three-layer neural network is as follows:

(24)

, , are the inputs which are functions
of a variable ; denotes the number of inputs; denotes
the number of the hidden nodes; , ;

, denotes the weight of the link between theth
hidden node and theth output; denotes the weight of the
link between theth input and the th hidden node; denotes
the parameter of the link switch from theth input to the th
hidden node; denotes the parameter of the link switch from
the th hidden node to theth output; denotes the number
of outputs of the proposed neural network;and denote the
biases for the hidden nodes and output nodes, respectively;
and denote the parameters of the link switches of the biases
to the hidden and output layers, respectively; denotes
the logarithmic sigmoid function:

(25)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

84 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Simulation results of the improved and standard GAs. The averaged fitness value of test functions obtained by the improved (solid line) and standard
(dotted line) GAs. (a)f (x). (b) f (x). (c) f (x). (d) f (x). (e)f (x). (f) f (x).

, , is the th output of the proposed
neural network. By introducing the switches, the weights
and , and the switch states can be tuned. It can be seen that

the weights of the links govern the input–output relationship of
the neural network while the switches of the links govern the
structure of the neural network.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

LEUNG et al.: TUNING OF THE STRUCTURE AND PARAMETERS OF A NEURAL NETWORK 85

TABLE I
SIMULATION RESULTS OF THEPROPOSEDGA AND THE STANDARD GA

BASED ON THEBENCHMARK TEST FUNCTIONS

Fig. 4. Proposed three-layer neural network.

B. Tuning of the Parameters and Structure

The proposed neural network can be employed to learn the
input–output relationship of an application by using the im-
proved GA. The input–output relationship is described by

(26)

where and
are the given inputs and the desired

outputs of an unknown nonlinear function respectively,
denotes the number of input–output data pairs. The fitness func-
tion is defined as

fitness
err

(27)

err (28)

The objective is to maximize the fitness value of (27)
using the improved GA by setting the chromosome to be

for all , , . It can be seen
from (27) and (28) that a larger fitness value implies a smaller
error value.

Fig. 5. Sunspot cycles from year 1700 to 1980.

V. APPLICATION EXAMPLES

Two application examples will be given in this section to il-
lustrate the merits of the proposed neural networks tuned by the
improved GA.

A. Forecasting of the Sunspot Number

An application example on forecasting the sunspot number
[7], [8], [27] will be given in this section. The sunspot cycles
from 1700 to 1980 are shown in Fig. 5. The cycles generated
are nonlinear, nonstationary, and non-Gaussian which are dif-
ficult to model and predict. We use the proposed three-layer
neural network (three-input-single-output) with link switches
for the sunspot number forecasting. The inputs,, of the pur-
posed neural network are defined as ,

, and , where denotes the year and
is the sunspot numbers at the year. The sunspot numbers

of the first 180 years (i.e.,) are used to train
the proposed neural network. Referring to (24), the proposed
neural network used for the sunspot forecasting is governed by

(29)

The number of hidden nodes is changed from three to seven
to test the learning performance. The fitness function is defined
as follows:

fitness
err

(30)

err (31)

The improved GA is employed to tune the parameters and
structure of the neural network of (29). The objective is to
maximize the fitness function of (30). The best fitness value is
one and the worst one is zero. The population size used for the
improved GA is ten, and for all values of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003

TABLE II
SIMULATION RESULTS FOR THEAPPLICATION EXAMPLE OF FORECASTING THE

SUNSPOTNUMBER AFTER 1000 ITERATIONS OFLEARNING

. The lower and the upper bounds of the link weights are de-
fined as
and, , ;

[16]. The chromosomes used
for the improved GA are .
The initial values of all the link weights between the input and
hidden layers are one, and those between the hidden and output
layers are 1. The initial value of in (23) is 0.5.

For comparison purpose, a fully connected three-layer
feedforward neural network (three-input–one-output) [2] is
also trained by the standard GA with arithmetic crossover and
nonuniform mutation [1], [2], [5], and backpropagation with
momentum and adaptive learning rate [30]. Also, the proposed
neural network trained by the standard GA will be considered.
For the standard GA, the population size is ten, the probability
of crossover is 0.8 and the probability of mutation is 0.1.
The shape parametersof the standard GA with arithmetic
crossover and nonuniform mutation, which is selected by trial
and error through experiment for good performance, is set to
be one. For the backpropagation with momentum and adaptive
learning rate, the learning rate is 0.2, the ratio to increase the
learning rate is 1.05, the ratio to decrease the learning rate is
0.7, the maximum validation failures is five, the maximum
performance increase is 1.04, the momentum constant is 0.9.
The initial values of the link weights are the same as those of
the proposed neural network. For all approaches, the learning
processes are carried out by a personal computer with a P4 1.4
GHz CPU. The number of iterations for all approaches is 1000.

The tuned neural networks are used to forecast the sunspot
number during the years 1885–1980. The number of hidden
nodes is changed from four to eight. The simulation results
for the comparisons are tabulated in Tables II and III. From
Table II, it is observed that the proposed neural network trained
with the improved GA provides better results in terms of
accuracy (fitness values) and number of links. The training
error [governed by (31)] and the forecasting error [governed
by] are tabulated in Table III.
Referring to Table III, the best result is obtained when the
number of hidden node is six. Fig. 6 shows the simulation
results of the forecasting using the proposed neural network
trained with the improved GA (dashed lines) and the actual
sunspot numbers (solid lines) for . The number of

TABLE III
TRAINING ERROR AND FORECASTINGERROR IN MEAN ABSOLUTE

ERROR (MAE) FOR THE APPLICATION EXAMPLE OF FORECASTING

THE SUNSPOTNUMBER

Fig. 6. Simulation results of a 96-year prediction using the proposed neural
network (n = 6) with the proposed GA (dashed line), and the actual sunspot
numbers (solid line) for the years 1885–1980.

connected link is 18 after learning (the number of links of a
fully connected network is 31 which includes the bias links).
It is about 42% reduction of links. The training error and the
forecasting error are 11.5730 and 14.0933, respectively.

B. Associative Memory

Another application example on tuning an associative
memory will be given in this section. In this example, the
associative memory, which maps its input vector into itself, has
ten inputs and ten outputs. Thus, the desired output vector is its
input vector. Referring to (24), the proposed neural network is
given by

(32)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

LEUNG et al.: TUNING OF THE STRUCTURE AND PARAMETERS OF A NEURAL NETWORK 87

TABLE IV
SIMULATION RESULTS FOR THEAPPLICATION EXAMPLE OF ASSOCIATIVE

MEMORY AFTER 500 ITERATIONS OFLEARNING

50 input vectors (each input vector has the property that
to test the learning performance. The fitness function is de-

fined as follows:

fitness
err

(33)

err (34)

The improved GA is employed to tune the parameters and
structure of the neural network of (32). The objective is to
maximize the fitness function of (33). The best fitness value
is one and the worst one is zero. The population size used for
the improved GA is ten; and for all values
of . The lower and the upper bounds of the link weights are
defined as and

, ; ,
[16]. The chromosomes used for the improved GA

are . The initial values
of the link weights are all zero. For comparison purpose,
a fully connected three-layer feedforward neural network
(ten-input–ten-output) [2] trained by the standard GA (with
arithmetic crossover and nonuniform mutation) and another
trained by backpropagation (with momentum and adaptive
learning rate) are considered again. Also, the proposed neural
network trained by the standard GA will be considered. For
the standard GA, the population size is ten, the probability
of crossover is 0.8 and the probability of mutation is 0.03.
The shape parametersof the standard GA with arithmetic
crossover and nonuniform mutation, which is selected by trial
and error through experiments for good performance, is set to
be three. For the backpropagation with momentum and adaptive
learning rate, the learning rate is 0.2, the ratio to increase the
learning rate is 1.05, the ratio to decrease the learning rate is
0.7, the maximum validation failures is five, the maximum
performance increase is 1.04, the momentum constant is 0.9.
The initial values of the links weights are the same as those
of the proposed approach. The number of iterations for all
approaches is 500. The simulation results are tabulated in
Table IV. It can be seen from Table IV that the fitness values
for different approaches are similar, but our approach can offer
a smaller network.

VI. CONCLUSION

An improved GA has been proposed in this paper. By using
the benchmark test functions, it has been shown that the im-
proved GA performs more efficiently than the standard GA. Be-
sides, by introducing a switch to each link, a neural network
that facilitates the tuning of its structure has been proposed.
Using the improved GA, the proposed neural network is able
to learn both the input–output relationship of an application and
the network structure. As a result, a given fully connected neural
network can be reduced to a partially connected network after
learning. This implies that the cost of implementation of the
neural network can be reduced. Application examples on fore-
casting the sunspot number and tuning an associative memory
using the proposed neural network trained with the improved
GA have been given. The simulation results have been com-
pared with those obtained by the proposed network trained by
the standard GA, and traditional feedforward networks trained
by the standard GA (with arithmetic crossover and nonuniform
mutation) and the backpropagation (with momentum and adap-
tive learning rate).

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: Univ. Michigan Press, 1975.

[2] D. T. Pham and D. Karaboga,Intelligent Optimization Techniques, Ge-
netic Algorithms, Tabu Search, Simulated Annealing and Neural Net-
works. New York: Springer-Verlag, 2000.

[3] Y. Hanaki, T. Hashiyama, and S. Okuma, “Accelerated evolutionary
computation using fitness estimation,” inProc. IEEE Int. Conf. Syst.,
Man, Cybern., vol. 1, 1999, pp. 643–648.

[4] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, MI, 1975.

[5] Z. Michalewicz,Genetic Algorithm+Data Structures=Evolution Pro-
grams, 2nd extended ed. New York: Springer-Verlag, 1994.

[6] G. X. Yao and Y. Liu, “Evolutionary programming made faster,”IEEE
Trans. Evol. Comput., vol. 3, pp. 82–102, July 1999.

[7] M. Li, K. Mechrotra, C. Mohan, and S. Ranka, “Sunspot numbers
forecasting using neural network,” inProc. 5th IEEE Int. Symp. Intell.
Contr., 1990, pp. 524–528.

[8] T. J. Cholewo and J. M. Zurada, “Sequential network construction for
time series prediction,” inProc. Int. Conf. Neural Networks, vol. 4, 1997,
pp. 2034–2038.

[9] B. D. Liu, C. Y. Chen, and J. Y. Tsao, “Design of adaptive fuzzy logic
controller based on linguistic-hedge concepts and genetic algorithms,”
IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp. 32–53, Feb. 2001.

[10] Y. S. Zhou and L. Y. Lai, “Optimal design for fuzzy controllers by ge-
netic algorithms,”IEEE Trans. Ind. Applicat., vol. 36, pp. 93–97, Jan.
2000.

[11] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning
through symbiotic evolution for fuzzy controller design,”IEEE Trans.
Syst., Man. Cybern. B, vol. 30, pp. 290–302, Apr. 2000.

[12] H. Juidette and H. Youlal, “Fuzzy dynamic path planning using genetic
algorithms,”Electron. Lett., vol. 36, no. 4, pp. 374–376, Feb. 2000.

[13] R. Caponetto, L. Fortuna, G. Nunnari, L. Occhipinti, and M. G. Xibilia,
“Soft computing for greenhouse climate control,”IEEE Trans. Fuzzy
Syst., vol. 8, pp. 753–760, Dec. 2000.

[14] M. Setnes and H. Roubos, “GA-fuzzy modeling and classification: Com-
plexity and performance,”IEEE Trans. Fuzzy Syst., vol. 8, pp. 509–522,
Oct. 2000.

[15] K. Belarbi and F. Titel, “Genetic algorithm for the design of a class of
fuzzy controllers: An alternative approach,”IEEE Trans. Fuzzy Systems,
vol. 8, pp. 398–405, Aug. 2000.

[16] M. Brown and C. Harris,Neural Fuzzy Adaptive Modeling and Con-
trol. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[17] S. Amin and J. L. Fernandez-Villacanas, “Dynamic local search,” in
Proc. 2nd Int. Conf. Genetic Algorithms in Engineering Systems: Inno-
vations and Applications, 1997, pp. 129–132.

[18] X. Yao, “Evolving artificial networks,” Proc. IEEE, vol. 87, pp.
1423–1447, July 1999.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

88 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003

[19] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial
neural networks,”IEEE Trans. Neural Networks, vol. 8, pp. 694–713,
May 1997.

[20] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural net-
work speed controller for permanent-magnet synchronous motor drive,”
IEEE Trans. Fuzzy Syst., vol. 9, pp. 751–759, Oct. 2001.

[21] Y. Hirose, K. Yamashita, and S. Hijiya, “Back-propagation algorithm
which varies the number of hidden units,”Neural Networks, vol. 4, no.
1, pp. 61–66, 1991.

[22] A. Roy, L. S. Kim, and S. Mukhopadhyay, “A polynomial time algorithm
for the construction and training of a class of multiplayer perceptions,”
Neural Networks, vol. 6, no. 4, pp. 535–545, 1993.

[23] N. K. Treadold and T. D. Gedeon, “Exploring constructive cascade net-
works,” IEEE Trans. Neural Networks, vol. 10, pp. 1335–1350, Nov.
1999.

[24] C. C. Teng and B. W. Wah, “Automated learning for reducing the config-
uration of a feedforward neural network,”IEEE Trans. Neural Networks,
vol. 7, pp. 1072–1085, Sept. 1996.

[25] Y. Q. Chen, D. W. Thomás, and M. S. Nixon, “Generating-shrinking
algorithm for learning arbitrary classification,”Neural Networks, vol. 7,
no. 9, pp. 1477–1489, 1994.

[26] M. C. Moze and P. Smolensky, “Using relevance to reduce network size
automatically,”Connect. Sci., vol. 1, no. 1, pp. 3–16, 1989.

[27] H. K. Lam, S. H. Ling, F. H. F. Leung, and P. K. S. Tam, “Tuning of the
structure and parameters of neural network using an improved genetic
algorithm,” inProc. 27th Annu. Conf. IEEE Ind. Electron. Soc., Denver,
CO, Nov. 2001, pp. 25–30.

[28] G. P. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks
using genetic algorithms,” inProc. 3rd Int. Conf. Genetic Algorithms
Applications, 1989, pp. 379–384.

[29] N. Weymaere and J. Martens, “On the initialization and optimization
of multiplayer perceptrons,”IEEE Trans. Neural Networks, vol. 5, pp.
738–751, Sept. 1994.

[30] S. S. Haykin,Neural Networks: A Comprehensive Foundation, 2nd
ed. Upper Saddle River, NJ: Prentice-Hall, 1999.

[31] X. Wang and M. Elbuluk, “Neural network control of induction ma-
chines using genetic algorithm training,” inConf. Record 31st IAS An-
nual Meeting, vol. 3, 1996, pp. 1733–1740.

[32] L. Davis,Handbook of Genetic Algorithms. New York: Van Nostrand
Reinhold, 1991.

[33] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,”IEEE
Computer, vol. 27, pp. 17–27, June 1994.

[34] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of ge-
netic algorithms and neural networks: A survey of the state of the art,”
in Proc. Int. Workshop Combinations Genetic Algorithms Neural Net-
works, 1992, pp. 1–37.

[35] S. Bornholdt and D. Graudenz, “General asymmetric neural networks
and structure design by genetic algorithms: A learning rule for tem-
poral patterns,” inProc. Int. Conf. Syst., Man, Cybern., vol. 2, 1993,
pp. 595–600.

[36] V. Maniezzo, “Genetic evolution of the topology and weight distribution
of neural networks,”IEEE Trans. Neural Networks, vol. 5, pp. 39–53,
Jan. 1994.

[37] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural networks,”IEEE Trans. Neural
Networks, vol. 5, pp. 54–65, Jan. 1994.

Frank H. F. Leung (M’92) was born in Hong Kong in 1964. He received the
B.Eng. and Ph.D. degrees in electronic engineering from the Hong Kong Poly-
technic University in 1988 and 1992, respectively.

He joined the Hong Kong Polytechnic University in 1992 and is now an As-
sociate Professor in the Department of Electronic and Information Engineering.
He has published more than 100 research papers on computational intelligence,
control and power electronics. At present, he is actively involved in the research
on Intelligent Multimedia Home and electronic Book.

Dr. Leung is a Reviewer for many international journals and had helped the
organization of many international conferences. He is a Chartered Engineer and
a Member of the Institution of Electrical Engineers (IEE).

H. K. Lam received the B.Eng. (Hons.) and Ph.D. degrees form the Department
of Electronic and Information Engineering, The Hong Kong Polytechnic Uni-
versity, Hong Kong, in 1995 and 2000, respectively.

He is currently a Research Fellow in the Department of Electronic and In-
formation Engineering at The Hong Kong Polytechnic University. His current
research interests include intelligent control and systems, computational intel-
ligence, and robust control.

S. H. Ling received the B.Eng. (Hons.) degree from the Department of Electrical
Engineering, The Hong Kong Polytechnic University, Hong Kong, in 1999. He
is currently a Research Student in the Department of Electronic and Informa-
tion Engineering, The Hong Kong Polytechnic University. His research interests
include evolutionary computation, fuzzy logic, neural networks, and intelligent
homes.

Peter K. S. Tamreceived the B.E., M.E., and Ph.D. degrees from the University
of Newcastle, Newcastle, Australia, in 1971, 1973, and 1976, respectively, all
in electrical engineering.

From 1967 to 1980, he held a number of industrial and academic positions
in Australia. In 1980, he joined The Hong Kong Polytechnic University, Hong
Kong, as a Senior Lecturer. He is currently an Associate Professor in the De-
partment of Electronic and Information Engineering. He has participated in the
organization of a number of symposiums and conferences. His research inter-
ests include signal processing, automatic control, fuzzy systems, and neural net-
works.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 02:05 from IEEE Xplore. Restrictions apply.

