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Design and Stabilization of Sampled-Data
Neural-Network-Based Control Systems

H. K. Lam, Member, IEEE, and Frank H. F. Leung, Senior Member, IEEE

Abstract—This paper presents the design and stability analy-
sis of a sampled-data neural-network-based control system. A
continuous-time nonlinear plant and a sampled-data three-layer
fully connected feedforward neural-network-based controller are
connected in a closed loop to perform the control task. Stability
conditions will be derived to guarantee the closed-loop system
stability. Linear-matrix-inequality- and genetic-algorithm-based
approaches will be employed to obtain the largest sampling period
and the connection weights of the neural network subject to
the considerations of the system stability and performance. An
application example will be given to illustrate the design procedure
and effectiveness of the proposed approach.

Index Terms—Neural network, nonlinear system, sampled-
data control.

I. INTRODUCTION

THE SUPERIOR learning and generalization abilities of
neural networks have attracted the public attention for

many years. It was shown that a three-layer fully connected
feedforward neural network (TLFCFFNN) is a universal ap-
proximator that is able to approximate any smooth continuous
function in a compact domain to an arbitrary accuracy [1].
Owing to these outstanding properties, neural networks were
widely applied in different applications to handle different
problems such as forecasting [2], handwritten character recog-
nition [3], automatic control [4], etc.

This paper focuses on the stability and the performance
optimization issues of the neural-network-based sampled-data
control systems. A neural-network-based control system is
composed of a nonlinear plant and a neural-network-based con-
troller connected in closed loop. The highly nonlinear nature
of the plant and the neural network and the complexity of
the network structure make the analysis difficult and complex.
Different neural-network-based control approaches subject to
the consideration of system stability were reported. In [5], an
adaptive neural-network-based controller with variable hidden
nodes was proposed. The stability of the closed-loop system is
achieved by compensating the nonlinearity of the plant using
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the online estimated parameter values. The estimation error is a
potential cause of the closed-loop system instability. To handle
the effect of the estimation error to the system stability, adaptive
neural-network-based controllers [6], [7] with switching con-
trol signals were proposed. However, the switching signals will
introduce an undesired chattering effect to the system. In [8]
and [9], adaptive neural networks combined with some conven-
tional controllers were proposed. In most of these approaches,
the use of the neural networks was mainly for modeling the
nonlinearity of the plants. Other control schemes were then
employed to achieve the system stability. In summary, the
system stability was mostly achieved by the adaptive and/or
sliding mode control techniques in these approaches, but not
by the neural network itself. When the network parameters
are online changing according to some adaptive laws, it will
increase the computational demand, structural complexity, and
implementation cost of the neural-network-based controller. In
[10]–[12], stability conditions have been derived for a class
of neural-network-based control systems with a feedforward
multilayer-perceptron (MLP) neural network. The derived sta-
bility conditions were for checking the stability of the neural-
network-based control systems. However, the ways for finding
the network parameters and optimizing the system performance
were ignored. These are in fact two important issues for putting
the neural-network-based controller into practice.

In most of the published work, the investigations were based
on purely continuous-time or discrete-time neural-network-
based control systems; the sampled-data neural-network-based
control systems are seldom considered. To investigate the
system stability, the sampled-data systems can be regarded
as systems with time-varying delays [13]–[16]. In this paper,
sampled-data TLFCFFNN-based control systems subject to
parameter uncertainties will be studied. The nonlinearity of the
plant needs to be considered during the design of the sampled-
data TLFCFFNN-based controller. Furthermore, the control
signals are kept constant during the sampling period and cannot
be changed to deal with the nonlinearity of the plant. These
characteristics make the analysis and design more difficult and
complex. In this paper, stability conditions will be derived to
guarantee the stability of the sampled-data TLFCFFNN-based
control systems using the Lyapunov-based approach. The find-
ing of the largest sampling period and the connection weights
of the TLFCFFNN-based controllers and the optimization of
the system performance subject to the system stability will be
formulated as a generalized eigenvalue minimization problem
(GEVP) [17] and a genetic algorithm (GA) [18] minimization
problem, respectively.
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Fig. 1. Block diagram of a TLFCFFNN-based control system.

II. NONLINEAR SYSTEM AND

NEURAL-NETWORK-BASED CONTROLLER

A TLFCFFNN-based control system as shown in Fig. 1 con-
sists of a continuous-time nonlinear system and a TLFCFFNN-
based controller. Referring to this figure, the sampled-data
TLFCFFNN-based controller is formed by a sampler with sam-
pling period h, a discrete-time TLFCFFNN-based controller,
and a zero-order-hold (ZOH) unit. With this control framework,
the development and implementation costs may be reduced as
the sampled-data TLFCFFNN-based controller can easily be
realized by a microcomputer.

A. Nonlinear Plant

The continuous-time nonlinear plant to be controlled is of the
following form:

ẋ(t) = f (x(t),u(t)) (1)

where x(t) = [x1(t) x2(t) · · · xn(t)]T ∈ �n×1 is the system
state vector; u(t) = [u1(t) u2(t) · · · um(t)]T ∈ �m×1 is the
input vector; and f(·) denotes a nonlinear function with known
form. The nonlinear plant of (1) can be written in the following
form [22], [23]:

ẋ(t) =
p∑

i=1

wi (x(t)) (Aix(t) + Biu(t)) (2)

where Ai ∈ �n×n and Bi ∈ �n×m are the constant system and
input matrices, respectively; p is a nonzero positive integer; and
wi(x(t)) has the following properties:

p∑
i=1

wi (x(t)) = 1, wi (x(t)) ∈ [0 1]; i = 1, 2, . . . , p.

(3)

Remark 1: Based on the assumption that the nonlinear plant
can be represented in the general form of (1), there are two ways
to obtain the system model in the form of (2) for the nonlin-
ear plant, namely: 1) by system identification techniques [22]
based on the input–output data and 2) by mathematical deriva-
tion [23] if the nonlinear plant can be represented as ẋ(t) =
A(x(t))x(t) + B(x(t))u(t), where A(x(t)) and B(x(t)) are
the system and input matrices of the nonlinear plant, respec-
tively. It is assumed in the second method that the form of the
mathematical model is known. Notice that the value ofwi(x(t))

Fig. 2. TLFCFFNN.

is unknown if the nonlinear plant is subject to parameter
uncertainties.

B. Sampled-Data Three-Layer Fully Connected Feedforward
Neural-Network-Based Controller

A traditional multiple-input-multiple-output discrete-time
TLFCFFNN [19] is shown in Fig. 2. Its input–output relation-
ship is given by

yk(tγ) =
nh∑
j=1

gk,jtf

(
n∑

i=1

mj,ixi(tγ) − bj

)
,

k = 1, 2, . . . , nout (4)

where tγ = γh, γ = 0, 1, 2, . . . ,∞, denotes a time instant;
h = tγ+1 − tγ denotes the constant sampling period; mj,i de-
notes the connection weight between the jth hidden node and
the ith input node; gk,j denotes the connection weight between
the kth output node and the jth hidden node; bj denotes the bias
for the jth hidden node; tf (·) denotes the activation function;
nh denotes the number of hidden nodes; nout denotes the
number of output nodes; x(tγ) = [x1(tγ) x2(tγ) · · · xn(tγ)]T

denotes the sampled system state vector at time instant tγ . The
sampled-data TLFCFFNN-based controller for the nonlinear
system of (2), with nout = mn, is defined as u(t), as in (5)
shown at the bottom of the next page.

It should be noted that u(t) = u(tγ), which holds constant
value by the ZOH unit during tγ < t ≤ tγ+1. From (4) and (5),
we have

u(t) =
nh∑
j=1

mj (x(tγ))Gjx(tγ), γ = 0, 1, 2, . . . ,∞ (6)
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where

Gj =




g1,j g2,j · · · gn,j

gn+1,j gn+2,j · · · g2n,j

...
...

. . .
...

g(m−1)n+1,j g(m−1)n+2,j · · · gmn,j


 (7)

mj (x(tγ)) =
tf

(
n∑

i=1

mj,ixi(tγ) − bj

)
nh∑
l=1

tf

(
n∑

v=1
ml,vxv(tγ) − bl

) ∈ [0 1] (8)

which exhibits the property that
∑nh

j=1 mj(x(tγ)) = 1.
The activation function tf (·) is chosen such that
tf (

∑n
v=1 ml,vxv(tγ) − bl) ≥ 0 for all l = 1, 2, . . . , nh, and∑nh

l=1 tf (
∑n

v=1 ml,vxv(tγ) − bl) 	= 0 at any time so as to
satisfy the property of (8).

Remark 2: Referring to (2), the dynamical behavior of the
nonlinear plant is characterized by wi(x(t)), Ai, and Bi.
A sampled-data TLFCFFNN-based controller is proposed to
stabilize the nonlinear plant. As the control action of the
sampled-data TLFCFFNN-based controller is mainly governed
by the parameters of the neural network, i.e., mj,i and gk,j ,
its stabilizability is governed by the network parameters. In the
following sections, the design of the network parameters based
on the nonlinear plant’s parameters will be formulated as a
linear-matrix inequality (LMI) problem under the consideration
of system stability. It will be shown later on that the network
parameter gk,j mainly determines the system stability. Their
values will be designed based on the nonlinear plant’s para-
meters Ai and Bi. The network parameter mj,i, on the other
hand, only affects the closed-loop system performance. Their
values will be determined using GA to optimize the system
performance.

C. Sampled-Data TLFCFFNN-Based Control Systems

A sampled-data TLFCFFNN-based control system as shown
in Fig. 1 is formed by connecting the continuous-time non-
linear system of (2) and the sampled-data TLFCFFNN-based
controller of (6) in closed loop. In the following, wi(x(t)) and
mj(x(tγ)) are written as wi and mj , respectively, for sim-
plicity. Let τ(t) = t− tγ ≤ h for tγ < t ≤ tγ+1, from (2)
and (6) and the property that

∑p
i=1 wi =

∑nh

j=1 mj =∑p
i=1

∑nh

j=1 wimj = 1, we have

ẋ(t) =
p∑

i=1

nh∑
j=1

wimj (Aix(t) + BiGjx (t− τ(t))) . (9)

III. STABILITY AND DESIGN OF SAMPLED-DATA

TLFCFFNN-BASED CONTROL SYSTEMS

The stability, design, and performance optimization of the
sampled-data TLFCFFNN-based control system of (9) will be
investigated in this section.

A. Stability Analysis and Maximum Sampling Period

The solution to 1) the stability conditions in terms of LMIs
[17], 2) the connection weights of the TLFCFFNN, and 3) the
maximum sampling period can be determined by solving the
GEVP stated in the following theorem.

Theorem 1: The sampled-data TLFCFFNN-based control
system of (9) formed by the continuous-time nonlinear system
in the form of (2) and the sampled-data TLFCFFNN-based con-
troller of (6) is guaranteed to be asymptotically stable if there
exist matrices X1 ∈ �n×n, X2 ∈ �n×n, X3 ∈ �n×n, M ∈
�n×n, M(11)

ij ∈ �n×n, M(21)
ij ∈ �n×n, M(22)

ij ∈ �n×n, Y ∈
�n×n, and Nj ∈ �m×n, i = 1, 2, . . . , p; j = 1, 2, . . . , nh,
such that the LMIs given at the bottom of the page are satisfied,

u(t) =




y1(tγ) y2(tγ) · · · yn(tγ)
yn+1(tγ) yn+2(tγ) · · · y2n(tγ)

...
...

. . .
...

y(m−1)n+1(tγ) y(m−1)n+2(tγ) · · · ymn(tγ)





x1(tγ)
x2(tγ)

...
xn(tγ)




nh∑
l=1

tf

(
n∑

v=1
ml,vxv(tγ) − bl

) , tγ < t ≤ tγ+1 (5)

X1 = XT
1 > 0, M = MT > 0, Y = YT > 0,




2X1 − M 0 NT
j BT

i

0 M(11)
ij M(21)T

ij

BiNj M(21)
ij M(22)

ij


 ≥ 0




M(11)
ij M(21)T

ij X1 XT
2

M(21)
ij M(22)

ij 0 XT
3

X1 0 −Y 0
X2 X3 0 −M


 < − 1

h




X2 + XT
2 X1AT

i + NT
j BT

i − XT
2 + X3 0 0

AiX1 + BiNj − X2 + XT
3 −X3 − XT

3 0 0
0 0 0 0
0 0 0 0
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for i = 1, 2, . . . , p; j = 1, 2, . . . , nh, where the connection
weights of the TLFCFFNN are defined as Gj = NjX−1

1 .
The largest sampling period h is obtained by solving the

following GEVP:

minimize
X1,X2,X3,M

(11)
ij

,M
(21)
ij

,M
(22)
ij

,M,Y,Nj

1
h

subject to the above LMIs.
Proof: The proof is given in Appendix A. �

Remark 3: The largest value of h denotes the largest sam-
pling period that the sampled-data TLFCFFNN-based con-
troller is guaranteed to stabilize the nonlinear system.

Remark 4: It can be seen from Theorem 1 that the stability
conditions do not involve the plant parameter wi. In other
words, the value of wi does not affect the system stability,
which enhances the robustness of the closed-loop system if
the parameter uncertainties of the nonlinear plant are only
affecting wi.

Remark 5: It can be seen from Theorem 1 that the sta-
bility conditions depend only on the network parameter gk,j

(element of Gj = NjX−1
1 ) and not on the network parameter

mj,i. By solving the stability conditions in Theorem 1, the
value of gk,j can be obtained. Furthermore, the values of mj,i

can be freely designed to achieve good system performance,
as long as the constraints tf (

∑n
v=1 ml,vxv(tγ) − bl) ≥ 0 and∑nh

l=1 tf (
∑n

v=1 ml,vxv(tγ) − bl) 	= 0 are satisfied.

B. Performance Optimization

The maximum sampling period hmax can be obtained by us-
ing Theorem 1. A sampling period h between 0 and hmax, i.e.,
0 < h ≤ hmax, can be employed as the sampling period of the
sampled-data TLFCFFNN-based controller. Under this chosen
h, the stability of the sampled-data TLFCFFNN-based control
system is guaranteed by Theorem 1. In the following, the
system performance will then be optimized based on the LMI
approach under the chosen constant sampling period h. The per-
formance of a system can be quantitatively measured by the fol-
lowing performance index, which is commonly used in optimal

control [20].

J =

τ1∫
τ0

[
x(tγ)
u(t)

]T [ J1 J2

JT
2 J3

] [
x(tγ)
u(t)

]
dtγ (10)

where τ1−τ0 > 0 denote the optimization period, J1=JT
1 > 0,

J3 = JT
3 > 0, and

[
J1 J2

JT
2 J3

]
> 0, which is determined by the

designer. The performance optimization can be formulated as a
GEVP and summarized into the following theorem.

Theorem 2: The sampled-data TLFCFFNN-based system of
(9) formed by the continuous-time nonlinear system in the
form of (2) and the sampled-data TLFCFFNN-based controller
of (6) is guaranteed to be asymptotically stable if there exist
matrices X1 ∈ �n×n, X2 ∈ �n×n, X3 ∈ �n×n, M ∈ �n×n,
M(11)

ij ∈ �n×n, M(21)
ij ∈ �n×n, M(22)

ij ∈ �n×n, Y ∈ �n×n,
and Nj ∈ �m×n, i = 1, 2, . . . , p; j = 1, 2, . . . , nh, such that
the LMIs given at the bottom of the page are satisfied, with
a defined constant sampling period 0 ≤ h ≤ hmax: for i =
1, 2, . . . , p; j = 1, 2, . . . , nh, where the connection weights of
the TLFCFFNN are defined as Gj = NjX−1

1 .
The system performance of (10) is optimized by solving the

following GEVP:

minimize
X1,X2,X3,M

(11)
ij

,M
(21)
ij

,M
(22)
ij

,M,Y,Nj

η

subject to the above LMIs.
Proof: The proof is given in Appendix B. �

Remark 6: A constant value should be assigned to h (0 <
h ≤ hmax) before applying Theorem 2, where the maximum
sampling period hmax is obtained by Theorem 1.

Remark 7: It should be noted that J1 ∈ �n×n and J3 ∈
�m×m are constant symmetric matrices and J2 ∈ �n×m is
a constant arbitrary matrix. Their values must be determined
before applying Theorem 2.

C. Tuning ofmj,i and bj

In Theorems 1 and 2, the maximum sampling period and
the connection weight gk,j are determined based on the LMI
approach. In this section, the connection weight mj,i and the

X1 = XT
1 > 0, M = MT > 0, Y = YT > 0,




2X1 − M 0 NT
j BT

i

0 M(11)
ij M(21)T

ij

BiNj M(21)
ij M(22)

ij


 ≥ 0




X2 + XT
2 + hM(11)

ij X1AT
i + NT

j BT
i − XT

2 + X3 + hM(21)T

ij hX1 hXT
2

AiX1 + BiNj − X2 + XT
3 + hM(21)

ij −X3 − XT
3 + hM(22)

ij 0 hXT
3

hX1 0 −hY 0
hX2 hX3 0 −hM


 < 0

[
J1 J2

JT
2 J3

]
> 0,


−ηI X1 NT

j

X1

Nj
−
[

J1 J2

JT
2 J3

]−1


 < 0
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bias bj will be determined. Owing to the nonlinear nature of
the activation function of the TLFCFFNN, it is difficult to
formulate the finding of mj,i and bj into an LMI problem.
Instead, GA can be employed to tune the values of mj,i and bj
by minimizing the following performance index for the closed-
loop system:

J =

τ1∫
τ0

[
x(t)
u(t)

]T [ J1 J2

JT
2 J3

] [
x(t)
u(t)

]
dt. (11)

It should be noted that the values of the sampling period h
and the connection weight gk,j obtained by Theorem 1 or 2
are kept constant during the training process. As the system
stability is governed by the sampling period and the connection
weight gk,j only, the values of mj,i and bj can be freely tuned
to alter the system performance.

D. Design Procedure

The design procedure of the sampled-data TLFCFFNN-
based controller is given as follows.

Step 1) Obtain the model of the nonlinear plant in the form
of (2).

Step 2) Determine the number of hidden node nh and
the activation functions for the sampled-data
TLFCFFNN-based controller in the form of (6).

Step 3) Determine the maximum sampling period hmax by
Theorem 1. Choose a constant sampling period h
such that 0 < h ≤ hmax.

Step 4) Under the chosen sampling period h in Step 3),
optimize the system performance and obtain the
connection weight gk,j based on Theorem 2.

Step 5) Under the chosen sampling period h and the connec-
tion weight gk,j , obtain the connection weight mj,i

and the bias bj by the GA process.
Step 6) Realize the sampled-data TLFCFFNN-based con-

troller based on the determined values of h, gk,j ,
mj,i, and bj .

IV. APPLICATION EXAMPLE

The proposed sampled-data TLFCFFNN-based controller
will be employed to stabilize an inverted pendulum subject to
parameter uncertainties. The objective is to drive the system
state of the inverted pendulum to zero at the steady state.

Step 1) The system behaviour of the inverted pendulum is
described by the following dynamic equation.

θ̈(t)=
g sin (θ(t)) − ampLθ̇(t)2

sin(2θ(t))
2 − a cos (θ(t))u(t)

4L
3 − ampL cos2 (θ(t))

(12)

where θ(t) is the angular displacement of the pendu-
lum, g = 9.8 m/s2 is the acceleration due to gravity,
mp ∈ [mpmin mpmax ] = [2 5] kg is the mass of the
pendulum, Mc ∈ [Mcmin Mcmax ] = [30 35] kg is the
mass of the cart, a = 1/(mp +Mc), 2L = 1 m is
the length of the pendulum, and u(t) is the force

TABLE I
VALUES OF THE CONNECTION WEIGHT gk,j WITH

J2 =

[
0
0

]
AND J3 = 0.01

applied to the cart, mp and Mc are regarded as the
parameter uncertainties. The inverted pendulum
subject to parameter uncertainties can be repre-
sented by the following model:

ẋ(t) =
4∑

i=1

wi (x(t)) (Aix(t) + Biu(t)) (13)

where x(t)= [x1(t) x2(t)]T= [θ(t) θ̇(t)]T, x1(t) ∈
[x1min x1max ] = [−π/3 π/3], and x2(t) ∈
[x2min x2max ] = [−5 5]. The parameters of the
model are listed in Appendix C.

Step 2) A sampled-data TLFCFFNN-based controller with
four hidden nodes is employed to control the
inverted pendulum. From (6), the sampled-data
TLFCFFNN-based controller is given by

u(t) =
4∑

j=1

mj (x(tγ))Gjx(tγ),

tγ < t ≤ tγ+1, γ = 0, 1, 2, . . . ,∞. (14)

The logarithmic sigmoid function is used as the
transfer function, i.e., tf (

∑2
i=1 mj,ixi(tγ) − bj) =

1/(1 + exp[−(
∑2

i=1 mj,ixi(tγ) − bj)]).
Step 3) The largest sampling period hmax is found to be

0.0662 s based on Theorem 1. A constant sam-
pling period 0 < h = 0.05 < hmax is chosen for the
sampled-data TLFCFFNN-based controller.

Step 4) The performance index of (10) will be optimized to
achieve the system performance. We choose J1 =[

10 0
0 1

]
, J2 =

[
0
0

]
, and J3 = 0.01 in this ap-

plication example. The MATLAB LMI toolbox is
employed to solve the solution of the GEVP in
Theorem 2. The connection weights Gj = NjX−1

1

are shown in Table I.
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TABLE II
VALUES OF THE CONNECTION WEIGHT AND BIAS, mj,i AND bj ,

RESPECTIVELY, BEFORE AND AFTER THE GA PROCESS

WITH J2 =

[
0
0

]
AND J3 = 0.01

Step 5) The parameters mj,i and bj of the activation func-
tion can be obtained by optimizing the performance
index of (11) using the improved GA in [21] under
mc = 2 kg and Mp = 30 kg. The same J1, J2, and
J3 are employed in the GA process. In this applica-
tion example, the tunable parameters mj,i and bj ,
i = 1, 2; j = 1, 2, 3, 4, form the chromosomes of
the GA process. Their initial values are randomly
generated with the minimum and maximum bounds
chosen to be −1 and 1, respectively. The control
parameters of the training weight w and probability
of acceptance pa of the improved GA are chosen to
be 0.5 and 0.1, respectively. The population size and
the number of iteration are chosen to be 10 and 200,
respectively. The values of the connection weights
and bias, mj,i and bj , respectively, before and after
the GA process are listed in Table II.

The designed sampled-data TLFCFFNN-based controller is
employed to control the inverted pendulum of (12). Under
the initial state conditions of x(0) = [π/6 0]T and x(0) =
[π/3 0]T, the system responses and control signals of the
sampled-data TLFCFFNN-based control systems with mp =
2 kg and Mc = 30 kg are shown in Fig. 3. Referring to
this figure, it can be seen that the proposed sampled-data
TLFCFFNN-based controller is able to stabilize the inverted

pendulum. Under the same J2 and J3, J1=
[

100 0
0 1

]
and

J1=
[

1000 0
0 1

]
are also employed to obtained other sets of

Fig. 3. System responses and control signals of the inverted pendulum with
the optimized sampled-data TLFCFFNN-based controller with h = 0.05 s for

J1=

[
10 0
0 1

]
(solid lines), J1=

[
100 0
0 1

]
(dotted lines), and J1=

[
1000 0

0 1

]
(dashed lines), under mp = 2 kg and Mc = 30 kg. (a) x1(t). (b) x2(t).
(c) u(t).

Gj as shown in Table I. It can be seen that different J1

place different weightings on the system states. The system
responses and control signals of the sampled-data TLFCFFNN-
based control systems with different J1 under mp = 2 kg and
Mc = 30 kg are also shown in Fig. 3. Referring to this figure, it
can be seen that the optimized sampled-data TLFCFFNN-based
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Fig. 4. System responses and control signals of the inverted pendulum
with sampled-data TLFCFFNN-based controllers for h = 0.05 s (dashed
lines), h = hmax/2 (dotted lines), h = hmax (dashed–dotted lines), and the

continuous-time (solid lines) with J1 =

[
10 0
0 1

]
, J2 =

[
0
0

]
, and J3 =

0.01 under mp = 2 kg and Mc = 30 kg. (a) x1(t). (b) x2(t). (c) u(t) of
the TLFCFFNN-based controllers.

controller with J1 =
[

1000 0
0 1

]
provides the fastest transient

responses, whereas that with J1 =
[

10 0
0 1

]
provides the slow-

est transient responses. Fig. 4 shows the system responses and
control signals of the sampled-data TLFCFFNN-based control
systems using h = 0.05 s, h = hmax/2, and h = hmax with

J1 =
[

10 0
0 1

]
, J2 =

[
0
0

]
, and J3 = 0.01, mp = 2 kg and

Mc = 30 kg. Furthermore, it can be seen that the sampled-
data TLFCFFNN-based controllers using h = hmax/2 and h =
hmax can also stabilize the nonlinear plant.

For comparison purpose, a continuous-time TLFCFFNN-
based controller of control law shown as follows is also em-
ployed to control the inverted pendulum:

u(t) =
4∑

j=1

mj (x(t))Gjx(t). (15)

The control signal of (15) depends on the current system
states. Fig. 4 shows the system responses and control signals
of the continuous-time TLFCFFNN-based control systems with
mp = 2 kg and Mc = 30 kg. The connection weights corre-

sponding to J1 =
[

10 0
0 1

]
are employed in this simulation.

Referring to Fig. 4, it can be seen that the sampled-data and
the continuous-time TLFCFFNN-based control systems pro-
vide similar system responses and control signals. Hence, the
continuous-time TLFCFFNN-based controller can be replaced
by the sampled-data one. Furthermore, it is observed that
a smaller sampling period of the sampled-data TLFCFFNN-
based controller provides system responses closer to those of
the continuous-time TLFCFFNN-based controller.

V. CONCLUSION

A sampled-data TLFCFFNN-based controller, which is
formed by a sampler, a TLFCFFNN, and a ZOH unit, has
been proposed for continuous-time nonlinear systems. Based
on the Lyapunov-based approach, the stability of the sampled-
data TLFCFFNN-based control systems has been investigated.
Stability conditions have been derived to guarantee the system
stability. The findings of the maximum value of the sampling
period and the values of the network connection weights and
the optimization of system performance have been formulated
as generalized eigenvalue and GA minimization problems, re-
spectively. An application example on stabilizing an inverted
pendulum subject to parameter uncertainties has been given
to illustrate the design procedure and the effectiveness of the
proposed approach.

APPENDIX A

The proof of Theorem 1 will be given as follows. Based
on the transformation method given in [13], the sampled-data
TLFCFFNN-based control system of (9) can be written in the
descriptor form, as in (A1) and (A2), shown at the bottom of
the next page.

Considering (A2), we have the following property that will
be used during the analysis:

p∑
i=1

nh∑
j=1

wimj

[
0 0

Ai + BiGj −I

] [
x(t)
y(t)

]

−
p∑

i=1

nh∑
j=1

wimj

[
0

BiGj

] t∫
t−τ(t)

y(ϕ)dϕ =
[
0
0

]
. (A3)
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To investigate the system stability of the sampled-data
TLFCFFNN-based control system of (9), the following
Lyapunov function candidate is considered:

V (t) = V1(t) + V2(t) + V3(t) (A4)

where

V1(t) =x(t)TP1x(t) (A5)

V2(t) =

0∫
−h

t∫
t+σ

y(ϕ)TRy(ϕ)dϕ dσ (A6)

V3(t) =h

t∫
−h

x(ϕ)TSx(ϕ)dϕ (A7)

where P1, R, and S ∈ �n×n are symmetric positive defi-
nite matrices. It will be shown that V̇ (t) ≤ 0 (equality holds
when x(t) = y(t) = 0), which implies the system stability.
From (A1)–(A3), (A5), and with the property that

∑p
i=1 wi =∑nh

j=1 mj =
∑p

i=1

∑nh

j=1 wimj = 1, we have

V̇1(t) = ẋ(t)TP1x(t) + x(t)TP1ẋ(t)

=
p∑

i=1

nh∑
j=1

wimj

[
x(t)
y(t)

]T

×
(
PT

[
0 I

Ai + BiGj −I

]

+
[
0 (Ai + BiGj)

T

I −I

]
P
)[

x(t)
y(t)

]

− 2
p∑

i=1

nh∑
j=1

wimj

[
x(t)
y(t)

]T

PT

[
0

BiGj

] t∫
t−τ(t)

y(ϕ)dϕ

(A8)

where P =
[
P1 0
P2 P3

]
∈ �2n×2n, P2 ∈ �n×n, and P3 ∈

�n×n. From [14], based on the property that

− 2y(ϕ)TNT
ija(t)

= −2a(t)TNijy(ϕ)

≤
[
y(ϕ)
a(t)

]T [ R YT
ij − NT

ij

Yij − Nij Rij

] [
y(ϕ)
a(t)

]

where

a(t) =
[
x(t)
y(t)

]

Nij = Yij = PT

[
0

BiGj

]

Rij = RT
ij =

[
R(11)

ij R(21)T

ij

R(21)
ij R(22)

ij

]
∈ �2n×2n

R(11)
ij = R(11)T

ij ∈ �n×nR(21)
ij ∈ �n×n

R(22)
ij = R(22)T

ij ∈ �n×n

[
R YT

ij

Yij Rij

]
≥ 0, and 0 < τ(t) ≤ h

we have

V̇1(t) ≤
p∑

i=1

nh∑
j=1

wimj

[
x(t)
y(t)

]T

×
(
PT

[
0 I

Ai + BiGj −I

]

+
[
0 (Ai + BiGj)

T

I −I

]
P
)[

x(t)
y(t)

]

+
p∑

i=1

nh∑
j=1

wimj

t∫
t−τ(t)

[
x(t)
y(t)

]T

Rij

[
x(t)
y(t)

]
ds

+
p∑

i=1

nh∑
j=1

wimj

t∫
t−τ(t)

y(ϕ)TRy(ϕ)dϕ

≤
p∑

i=1

nh∑
j=1

wimj

[
x(t)
y(t)

]T

×
(
PT

[
0 I

Ai + BiGj −I

]

+
[
0 (Ai + BiGj)

T

I −I

]
P + hRij

)[
x(t)
y(t)

]

+

t∫
t−τ(t)

y(ϕ)TRy(ϕ)dϕ. (A9)

ẋ(t) =y(t) (A1)

y(t) =




p∑
i=1

nh∑
j=1

wimj (Aix(t) + BiGjx (t− τ(t))) , if t ∈ [0 h)

p∑
i=1

nh∑
j=1

wimj (Ai + BiGj)x(t) −
p∑

i=1

nh∑
j=1

wimjBiGj

t∫
t−τ(t)

y(ϕ)dϕ, if t ≥ h
(A2)
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From (A1)–(A3), and (A6) we have

V̇2(t) =hy(t)TRy(t) −
t∫

t−h

y(ϕ)TRy(ϕ)dϕ

=
[
x(t)
y(t)

]T [0 0
0 hR

] [
x(t)
y(t)

]
−

t∫
t−h

y(ϕ)TRy(ϕ)dϕ.

(A10)

From (A1)–(A3), and (A7), we have

V̇3(t) =hx(t)TSx(t)

=
[
x(t)
y(t)

]T [
hS 0
0 0

] [
x(t)
y(t)

]
. (A11)

From (A9)–(A11) and with the fact that
∫ t

t−h y(ϕ)TRy ×
(ϕ)dϕ ≥ ∫ t

t−τ(t) y(ϕ)TRy(ϕ)dϕ subject to 0 < τ(t) ≤ h and
R > 0, we have

V̇ (t) ≤
p∑

i=1

nh∑
j=1

wimj

[
x(t)
y(t)

]T

Qij

[
x(t)
y(t)

]
(A12)

where

Qij = PT

[
0 I

Ai + BiGj −I

]
+
[
0 (Ai + BiGj)

T

I −I

]
P

+ hRij +
[
hS 0
0 hR

]
. (A13)

It can be seen that V̇ (t) ≤ 0 (equality holds when x(t) =

y(t) = 0) if Qij < 0 and

[
R YT

ij

Yij Rij

]
≥ 0 for all i and j.

This implies that the sampled-data TLFCFFNN-based control
system is asymptotically stable, i.e., x(t) → 0 as t → ∞. Let

X =
[
X1 0
X2 X3

]
= P−1

where X1 = XT
1 , Gj = NjX−1

1 , and

XTRijX = Mij = MT
ij =

[
M(11)

ij M(21)T

ij

M(21)
ij M(22)

ij

]
∈ �2n×2n

where M(11)
ij = M(11)T

ij ∈ �n×n, M(21)
ij ∈ �n×n, M(22)

ij =

M(22)T

ij ∈ �n×n, M = R−1, and Y = S−1, from (A13),
we have (A14), shown at the bottom of the page. By
Schur complement, the inequality of (A14) is equivalent
to the LMIs in (A15), shown at the bottom of the

page. From (A13), it is required that

[
R YT

ij

Yij Rij

]
≥ 0.

Premultiply diag{X1,XT} and postmultiply diag{X1,X} to[
R YT

ij

Yij Rij

]
≥ 0, we have

[
X1 0
0 X

]T [ R YT
ij

Yij Rij

] [
X1 0
0 X

]
≥ 0

=




X1M−1X1 0 NT
j BT

i

0 M(11)
ij M(21)T

ij

BiNj M(21)
ij M(22)

ij


 ≥ 0. (A16)

It should be noted that (A16) is not an LMI due to the
existence of the term X1M−1X1. However, based on the fol-
lowing property, (A16) can be represented as an LMI. With the
property that M = MT, we consider the following inequality:

(X1−M)TM−1(X1−M)=XT
1 M−1X1−XT

1 −X1+M > 0

⇒ X1M−1X1 > 2X1 − M. (A17)

XT

(
PT

[
0 I

Ai + BiGj −I

]
+
[
0 (Ai + BiGj)

T

I −I

]
P + hRij +

[
hS 0
0 hR

])
X < 0

=
[

0 I
Ai + BiGj −I

][
X1 0
X2 X3

]
+
[
X1 XT

2

0 XT
3

][
0 (Ai + BiGj)

T

I −I

]
+ hXTRijX + XT

[
hS 0
0 hR

]
X < 0

=

[
X2 + XT

2 + hM(11)
ij X1AT

i + NT
j BT

i − XT
2 + X3 + hM(21)T

ij

AiX1 + BiNj − X2 + XT
3 + hM(21)

ij −X3 − XT
3 + hM(22)

ij

]
+ XT

[
hS 0
0 hR

]
X < 0 (A14)




X2 + XT
2 + hM(11)

ij X1AT
i + NT

j BT
i − XT

2 + X3 + hM(21)T

ij hX1 hXT
2

AiX1 + BiNj − X2 + XT
3 + hM(21)

ij −X3 − XT
3 + hM(22)

ij 0 hXT
3

hX1 0 −hY 0
hX2 hX3 0 −hM


 < 0,

i = 1, 2, . . . , p; j = 1, 2, . . . , nh (A15)
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From (A16) and (A17), it can be seen that the holding of the
following LMIs implies the holding of (A16):




2X1 − M 0 NT
j BT

i

0 M(11)
ij M(21)T

ij

BiNj M(21)
ij M(22)

ij


 ≥ 0,

i = 1, 2, . . . , p, j = 1, 2, . . . , nh. (A18)

The sampled-data TLFCFFNN-based control system of (9)
is guaranteed to be stable if the LMIs of (A15) and (A18)
are satisfied. The largest sampling period can be obtained by
maximizing the value of h subject to the stability conditions of
(A15) and (A18). �

APPENDIX B

The proof of Theorem 2 will be given as follows. From (6)
and (10), we have

J =

τ1∫
τ0


x(tγ)T


 nh∑

j=1

mjGjx(tγ)




T



×
[

J1 J2

JT
2 J3

] x(tγ)
nh∑
l=1

mlGlx(tγ)


 dtγ

=

τ1∫
τ0

nh∑
j=1

nh∑
l=1

mjmlx(tγ)T

×(J1+ GT
j JT

2 + J2Gl+ GT
j J3Gl

)
x(tγ)dtγ . (B1)

The system performance can be optimized by minimizing the
performance index J . Let J < η

∫ τ1

τ0
x(tγ)TX−1

1 X−1
1 x(tγ)dtγ ,

where η is a nonzero positive scalar. By minimizing the value
of η, the performance index J can be minimized. Hence, from
(B1), we have

t1∫
to

nh∑
j=1

nh∑
j=1

mjmlx(tγ)TX−1
1

(
X1J1X1 + X1GT

j JT
2 X1

+ X1J2GjX1+X1GT
j J3GlX1−ηI

)
X−1

1 x(tγ) dtγ < 0.

(B2)

From (B2) and let Gj = NjX−1
1 , we have

τ1∫
τ0

nh∑
j=1

nh∑
j=1

mjmlx(tγ)TX−1
1

(
X1J1X1 + NT

j JT
2 X1

+ X1J2Nj + NT
j J3Nl − ηI

)
X−1

1 x(tγ)dtγ < 0. (B3)

Based on the facts that J3 > 0 and (Nj − Nl)TJ3(Nj−

Nl) ≥ 0, we have NT
j J3Nj ≥ NT

j J3Nl. The holding of the
following inequality implies the holding of (B3):

t1∫
to

nh∑
j=1

mjx(tγ)TX−1
1

(
X1J1X1 + NT

j JT
2 X1 + X1J2Nj

+ NT
j J3Nj − ηI

)
X−1

1 x(tγ)dtγ < 0. (B4)

It can further be seen that (B4) holds if the following inequal-
ities holds:

X1J1X1 + NT
j JT

2 X1 + X1J2Nj + NT
j J3Nj − ηI < 0,
j = 1, 2, . . . , nh. (B5)

By Schur complement, (B5) is equivalent to the following
LMIs, respectively:


−ηI X1 NT

j

X1

Nj
−
[

J1 J2

JT
2 J3

]−1


 < 0, j = 1, 2, . . . , nh. (B6)

�

APPENDIX C

The parameters of the system model of (13) are listed as
follows:

A1 = A2 =
[

0 1
f1min 0

]
A3 = A4 =

[
0 1

f1max 0

]

B1 = B3 =
[

0
f2min

]
B2 = B4 =

[
0

f2max

]

where f1min = 11.3533, f1max = 16.4640, f2min = −0.0192,
and f2max = −0.0492

wi (x(t)) =
µMi

1
(f1 (x(t))) × µMi

2
(f2 (x(t)))

4∑
l=1

(
µMl

1
(f1 (x(t))) × µMl

2
(f2 (x(t)))

)

µMβ
1

(f1 (x(t))) =
−f1 (x(t)) + f1max)

f1max − f1min

for β = 1, 2;

µMδ
1
(f1 (x(t))) = 1 − µM1

1
(f1 (x(t)))

for δ = 3, 4;

µMκ
2

(f2 (x(t))) =
−f2 (x(t)) + f2max

f2max − f2min

for κ = 1, 3 and

µMφ
2

(f2 (x(t))) = 1 − µM1
2
(f2 (x(t)))
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for φ = 2, 4;

f1 (x(t)) =
g − ampLx2(t)2 cos (x1(t)))

4L
3 − ampL cos2 (x1(t))

(
sin(x1(t))
x1(t)

)

and

f2 (x(t)) = − a cos (x1(t))
4L
3 − ampL cos2 (x1(t))

.
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