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Abstract

The purpose of this paper is to study the realization theory of quantum linear systems. It is shown that for a general quantum
linear system its controllability and observability are equivalent and they can be checked by means of a simple matrix rank
condition. Based on controllability and observability a specific realization is proposed for general quantum linear systems
in which an uncontrollable and unobservable subspace is identified. When restricted to the passive case, it is found that a
realization is minimal if and only if it is Hurwitz stable. Computational methods are proposed to find the cardinality of minimal
realizations of a quantum linear passive system. It is found that the transfer function G(s) of a quantum linear passive system
can be written as a fractional form in terms of a matrix function Σ(s); moreover, G(s) is lossless bounded real if and only
if Σ(s) is lossless positive real. A type of realization for multi-input-multi-output quantum linear passive systems is derived,
which is related to its controllability and observability decomposition. Two realizations, namely the independent-oscillator
realization and the chain-mode realization, are proposed for single-input-single-output quantum linear passive systems, and
it is shown that under the assumption of minimal realization, the independent-oscillator realization is unique, and these two
realizations are related to the lossless positive real matrix function Σ(s).
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1 Introduction

Linear systems and signals theory has been very use-
ful in the analysis and engineering of dynamical sys-
tems. Many fundamental notions have been proposed to
characterize dynamical systems from a control-theoretic
point of view. For example, controllability describes the
ability of steering internal system states by external in-
put, observability refers to the possibility of reconstruct-
ing the state-space trajectory of a dynamical system
based on its external input-output data. Based on con-
trollability and observability, Kalman canonical decom-
position reveals the internal structure of a linear sys-
tem. This, in particular minimal realization as a very
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convenient and yet quite natural assumption, is the ba-
sis of widely used model reduction methods such as
balanced truncation and optimal Hankel norm approx-
imation. Moreover, fundamental dissipation theory has
been well established and has been proven very effec-
tive in control systems design. All of these have been
well documented, see, e.g., Anderson & Vongpanitlerd,
1973;Kailath, 1980;Zhou, Doyle & Glover, 1996.

In recent years there has been a rapid growth in the study
of quantum linear systems. Quantum linear systems and
signals theory has been proven to be very effective in
the study of many quantum systems including quantum
optical systems, opto-mechanical systems, cavity quan-
tum electro-magnetic dynamical systems, and atomic
ensembles, see, e.g., Wiseman & Milburn, 2010; Zhang,
Chen, Bhattacharya, & Meystre, 2010; Massel, et al.,
2011; Matyas, et al., 2011. We mention especially that
highly-nontrivial quantum passive systems have been
proposed as quantum memory devices (Hush, Carvalho,
Hedges & James, 2013;Yamamoto & James, 2014), and
our results in Section 4 may be useful for designing such
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memory components. Because of its analytical and com-
putational advantages, the linear setting always serves
as an essential starting point for development of a more
general theory.

Controllability and observability of quantum linear pas-
sive systems have been discussed inMaalouf & Petersen,
2011a; these two properties are used to establish the
complex-domain bounded real lemma ( Maalouf & Pe-
tersen, 2011a, Theorem 6.5) for quantum linear passive
systems, which is the basis of quantum H∞ coherent
feedback control of quantum linear passive systems. For
a quantum linear passive system it is shown in Guta
& Yamamoto, 2013, Lemma 3.1 that controllability is
equivalent to observability; moreover, a minimal realiza-
tion is necessarily Hurwitz stable, Guta & Yamamoto,
2013, Lemma 3.2. In this paper we explore further con-
trollability and observability of quantum linear systems.
For general quantum linear systems (not necessarily pas-
sive), we show that controllability and observability are
equivalent (Proposition 1). Moreover, a simple matrix
rank condition is established for checking controllabil-
ity and observability. Base on this result, a realization of
general quantum linear systems is proposed, in which the
uncontrollable and unobservable subsystem is identified
(Theorem 1). Theorem 1 can be viewed as the complex-
domain counterpart of Theorem 3.1 inYamamoto, 2014
in the real domain. However, it is can be easily seen from
the proof of Lemma 1 that the structure of the unitary
transformation involved is better revealed in the com-
plex domain. Restricted to the passive case, we show that
controllability, observability and Hurwitz stability are
equivalent to each other (Lemma 2). Thus, a realization
of a quantum linear passive system is minimal if and only
if it is Hurwitz stable (Theorem 2). We also derive formu-
las for calculating the cardinality of minimal realizations
of a given quantum linear passive system (Proposition 4
for the single-input-single-output case and Proposition 5
for the multi-input-multi-output case). Finally we show
how a given quantum linear system can be written as a
fractional form in term of a matrix function Σ (Propo-
sition 3), and for the passive case show that a quan-
tum linear passive system G is lossless bounded real if
and only if the corresponding Σ is lossless positive real
(Theorem 3). Finally, we also mention that it is possible
to perform continuous non-demolition measurements on
the output fields, in which case one deals with the prob-
lem of quantum filtering (or quantum trajectories as it
is sometimes referred to in the physics community); for
a discussion on this see e.g., Wiseman & Doherty, 2005,
which also includes some early results on stabilizability
and detectability of quantum linear systems.

The realization problem of quantum linear systems has
been investigated in Nurdin, James & Doherty, 2009,
where they showed that a quantum linear system can al-
ways be realized by a cascade of one-degree-of-freedom
harmonic oscillators with possible direct Hamiltonian
couplings among them if necessary. Then in Nurdin,

2010b a necessary and sufficient condition is derived
for realizing quantum linear systems via pure cascading
only. For the passive case, it is shown in Petersen, 2011
that, under certain conditions on the system matrices, a
minimal quantum linear passive system can be realized
by a cascade of one-degree-of-freedom harmonic oscilla-
tors. These restrictions were removed in Nurdin, 2010b
which proves that all quantum linear passive systems
can be realised by pure cascading of one-degree-of-
freedom harmonic oscillators. Model reduction of quan-
tum linear systems has been studied in, e.g., Petersen,
2013, and Nurdin, 2014. In this paper we propose sev-
eral realizations of quantum linear passive systems. For
the multi-input-multi-output (MIMO) case we show
that the proposed realization has a close relationship
with controllability and observability of the quantum
linear passive system (Theorem 4). In the single-input-
single-output (SISO) case, we propose two realizations,
namely the independent-oscillator realization and the
chain-mode realization (Theorem 5 and Theorem 6),
and finally we show that if the system is Hurwitz sta-
ble, these two realizations are related to the lossless
positive real Σ mentioned in the previous paragraph
(Theorem 7). Finally, it is worthwhile to point out that
the issue of realization of quantum linear systems is a
bit subtle. According to classical linear systems the-
ory, see e.g., Anderson & Vongpanitlerd, 1973, Zhou,
Doyle & Glover, 1996, a state-space model with matri-
ces (A,B,C,D) for a classical linear system can always
be implemented physically at least approximately, for
example by means of mechanical and electrical devices.
So a classical state-space model is always realizable. In
the quantum regime, a mathematical model for a quan-
tum linear system may have parameters such as internal
Hamiltonian and the coupling L between the system
and the external field. However, it might be difficult to
physically implement this model directly in terms of
these system parameters. Instead, some symplectic or
unitary transformation may be applied to the mathe-
matical model so that a new set of system parameters is
obtained, on the basis of which the system is physically
realized. However, the transformed system is not physi-
cally equivalent to the original system but has the same
transfer function as the original. That is, the trans-
formed system is a transfer function realization of the
original, in same spirit as classical linear realization the-
ory. Therefore in the quantum setting, there can be two
distinct quantum linear realization problems, a “strict”
problem of realizing the physical operators describing a
given linear quantum system (e.g., the Hamiltonian and
coupling operators) Nurdin, James & Doherty, 2009,
and a “soft” problem of realizing the transfer function
of the system Nurdin, 2010b, Petersen, 2011. More dis-
cussions can be found in, e.g.,Nurdin, James & Doherty,
2009,Nurdin, 2010a,Nurdin, 2010b,Petersen, 2011.

The rest of the paper is organized as follows. Section
2 studies general quantum linear systems; specifically,
Subsection 2.1 briefly reviews quantum linear systems,
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Subsection 2.2 investigates their controllability and ob-
servability, and Subsection 2.3 presents a fractional form
for transfer functions of quantum linear systems. Sec-
tion 3 studies quantum linear passive systems, specifi-
cally, Subsection 3.1 introduces quantum linear passive
systems, Subsection 3.2 investigates their Hurwitz sta-
bility, controllability and observability, Subsection 3.3
studies minimal realizations of quantum linear passive
systems, and Subsection 3.4 discusses a relation between
the transfer functions G and Σ in the passive case. Sec-
tion 4 investigates realizations of quantum linear passive
systems; specifically, Subsection 4.1 proposes a realiza-
tion for MIMO quantum linear passive systems, Subsec-
tions 4.2.1 and 4.2.2 propose an independent-oscillator
realization and a chain-mode realization for SISO quan-
tum linear systems respectively, and Subsection 4.2.3
discusses the uniqueness of the independent-oscillator
realization. Section 5 concludes this paper.

Notation. m is the number of input channels, and n is
the number of degrees of freedom of a given quantum
linear system, namely, the number of system oscillators.
Given a column vector of complex numbers or operators

x = [ x1 · · · xk ]T , define x# = [ x∗1 · · · x∗k ]T , where

the asterisk ∗ indicates complex conjugation or Hilbert
space adjoint. Denote x† = (x#)T . Furthermore, define

a column vector x̆ to be x̆ = [ xT (x#)T ]T . Let Ik be an

identity matrix and 0k a zero square matrix, both of di-
mension k. Define Jk = diag(Ik,−Ik). Then for a matrix
X ∈ C2j×2k, define X[ = JkX

†Jj . Given two constant
matrices U , V ∈ Cr×k, define ∆(U, V ) = [U V ;V # U#].
Given two operators A and B, their commutator is de-
fined to be [A,B] = AB − BA. “⇐⇒” means if and
only if. Finally, Spec(X) denotes the set of all distinct
eigenvalues of the matrix X, σ(X) denotes the diago-
nal matrix with diagonal entries being the non-zero sin-
gular values of the matrix X, Ker (X) denotes the null
space of the matrix X, and Range (X) denotes the space
spanned by the columns of the matrix X.

2 Quantum linear systems

In this section, we first introduce quantum linear systems
in Subsection 2.1, after that we discuss their controlla-
bility and observability in Subsection 2.2, and finally we
study their transfer functions in Subsection 2.3.

2.1 Quantum linear systems

In this subsection quantum linear systems are briefly
described in terms of the (S,L,H) language, Gough &
James, 2009. More discussions on quantum linear sys-
tems can be found in, e.g., Wiseman & Milburn, 2010;
Doherty & Jacobs, 1999; Zhang & James, 2012; Tezak,
et al., 2012.

The open quantum linear systemG studied in this paper
consists of n interacting quantum harmonic oscillators
driven by m input boson fields. Each oscillator j has an
annihilation operator aj and a creation operator a∗j ; aj
and a∗j are operators on the system space h which is an
infinite-dimensional Hilbert space. The operators aj , a

∗
k

satisfy the canonical commutation relations: [aj , a
∗
k] =

δjk. Denote a ≡ [a1 · · · an]T . Then the initial (that is,
before the interaction between the system and the input
boson fields) system Hamiltonian H can be written as
H = (1/2)ă†Ωă, where ă = [aT (a#)T ]T as introduced
in the Notation part, and Ω = ∆(Ω−,Ω+) ∈ C2n×2n

is a Hermitian matrix with Ω−,Ω+ ∈ Cn×n. L in the
(S,L,H) language describes the coupling of the system
harmonic oscillators to the input boson fields. The cou-
pling is linear and can be written as L = [C− C+]ă with
C−, C+ ∈ Cm×n. Finally, in the linear setting S in the
(S,L,H) language is taken to be a constant unitary ma-
trix in Cm×m.

Each input boson field j has an annihilation operator
bj(t) and a creation operator b∗j (t), which are operators
on an infinite-dimensional Hilbert space F. Let b(t) ≡
[b1(t) · · · bm(t)]T . The operators bj(t) and their ad-
joint operators b∗j (t) satisfy the commutation relations
[bj(t), b

∗
k(r)] = δjkδ(t−r) for all j, k = 1, . . . ,m, ∀t, r ∈

R. For each j = 1, . . . ,m, the j-th input field can also

be represented in the integral form Bj(t) ≡
∫ t

0
bj(r)dr,

whose Ito increment is dBj(t) ≡ Bj(t + dt) − Bj(t).
Denote B(t) ≡ [B1(t) · · · Bm(t)]T . The gauge pro-

cess can be defined by Λjk(t) =
∫ t

0
b∗j (r)bk(r)dr, (j, k =

1, . . . ,m). The field studied in this paper is assumed to be
canonical, that is, the field operators Bj(t), B

∗
k(t),Λrl(t)

satisfy the following Ito table:

× dBk dΛkl dB∗l dt

dBi 0 δikdBl δildt 0

dΛij 0 δjkdΛil δjldB
∗
i 0

dB∗j 0 0 0 0

dt 0 0 0 0

Under mild assumptions, the temporal evolution of the
open quantum linear system G can be described in by
means of the following quantum stochastic differential
equation (QSDE):

dU(t) =
{
−
(
L†L/2 + iH

)
dt+ dB†(t)L− L†SdB(t)

+ Tr[(S − I)dΛT (t)]
}
U(t), t > 0,

with U(0) = I being the identity operator. Let X be
an operator on the system space h. Then the temporal
evolution of X, denoted X(t) ≡ U(t)∗(X ⊗ I)U(t), is
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governed by the following QSDE:

dX(t) = LL,H(X(t))dt+ dB†(t)S†[X(t), L(t)] (1)

+ [L†(t), X(t)]SdB(t) + Tr[(S†X(t)S −X(t))dΛT (t)],

where the Lindblad operator LL,H(X(t)) is

LL,H(X(t))≡−i[X(t), H(t)] +
1

2
L†(t)[X(t), L(t)]

+
1

2
[L†(t), X(t)]L(t).

Note that X(t) is an operator on the joint space h⊗ F.

Let bout,j(t) denote the j-th field after interacting with

the system, and Bout,j(t) ≡
∫ t

0
bout,j(r)dr. We have

Bout,j(t) = U∗(t) (I ⊗Bj(t))U(t). Denote Bout(t) ≡
[Bout,1(t), · · · Bout,m(t)]T . Then in compact form the
output field equation is dBout(t) = L(t)dt + SdB(t).
Substituting H = (1/2)ă†Ωă and L = [C− C+]ă into
(1) we have a quantum linear system:

dă(t) =Aă(t)dt+ BdB̆(t), (2)

dB̌out(t) = Că(t)dt+DdB̆(t), (3)

in which

A = −1

2
C[C − iJnΩ, B = −C[∆(S, 0m×m),

C = ∆(C−, C+) ≡ C, D = ∆(S, 0m×m). (4)

Clearly, the quantum linear system (2)-(3) is parame-
terized by constant matrices S,C,Ω. In the sequel, we
use the notation G ∼ (S,C,Ω) for the quantum linear
system (2)-(3) with parameters given in (4).

The constant matricesA,B, C,D in (4) satisfy the funda-

mental relations A+A[ + C[C = 0, B = −C[D, D[D =
I2m. These equations are often called physical realiz-
ability conditions of quantum linear systems. More dis-
cussions on physical realizability of quantum linear sys-
tems can be found in, e.g., James, Nurdin & Petersen,
2008;Zhang & James, 2011;Zhang & James, 2012.

2.2 Controllability and observability

In this subsection we study controllability and observ-
ability of quantum linear systems above introduced.

Let X be an operator on the system space h. Denote by
〈X(t)〉 the expected value of X(t) with respect to the
initial joint system-field state (which is a unit vector in
the Hilbert space h ⊗ F). Then (2)-(3) gives rise to the

following classical linear system

d 〈ă(t)〉
dt

=A〈ă(t)〉+ B〈b̆(t)〉, (5)

d〈b̆out(t)〉
dt

= C 〈ă(t)〉+D〈b̆(t〉). (6)

Definition 1 The quantum linear system G ∼ (S,C,Ω)
is said to be Hurwitz stable (resp. controllable, observ-
able) if the corresponding classical linear system (5)-(6)
is Hurwitz stable (resp. controllable, observable).

Due to the special structure of quantum linear systems,
we have the following result concerning their controlla-
bility and observability.

Proposition 1 For the quantum linear system G ∼
(S,C,Ω), the following statements are equivalent:

(i) G is controllable;
(ii) G is observable;
(iii) rank(Os) = 2n, where

Os ≡


C

CJnΩ
...

C (JnΩ)
2n−1

 . (7)

Proof. Firstly, we show that (i) and (ii) are equiva-
lent by a contradiction argument, that is, we establish
that uncontrollability is equivalent to unobservability.
Assume G is not observable. In what follows we show
that G is not controllable. Indeed, if G is not observ-
able, then by the classical control theory (see. e.g.,Zhou,
Doyle & Glover, 1996, Theorems 3.3) there exist a scalar
λ and a non-zero vector v ∈ C2n such that Av = λv
and Cv = 0. So JnΩv = iλv and Cv = 0. Let u = Jnv
and µ = −λ∗. Then u†B = −v†C†Jm = 0, and u†A =
−(Jnv)†

(
C[C/2 + iJnΩ

)
= −(Jnv)†iJnΩ = µu†. By

a standard result in classical control theory, (see. e.g.,
Zhou, Doyle & Glover, 1996, Theorems 3.1), G is not
controllable. Similarly, if G is not controllable, then it
can be shown that it is not observable.

Secondly, we show that (ii) and (iii) are equivalent. As-
sume G is observable. In the following we show that
for an arbitrary v ∈ C2n such that Osv = 0, we have
v = 0, thus establishing (iii). Indeed, if Osv = 0, we
have Cv = Cv = 0 and C(JnΩ)kv = 0, k = 1, . . . , 2n−1.
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Moreover,

CAv =−C
(
C[C/2 + iJnΩ

)
v = −iCJnΩv = 0,

CA2v =−C
(
C[C/2 + iJnΩ

)2

v = C(JnΩ)2v = 0,

...

CA2n−1v =C(JnΩ)2n−1v = 0.

Because G is observable, v = 0. (iii) is established. In
a similar way, it can be shown that, if rank(Os) = 2n,
then G is observable. �

Proposition 1 tells us that the controllability and observ-
ability of the quantum linear system G ∼ (S,C,Ω) are
equivalent; moreover they can be determined by check-
ing the rank of the matrix Os.

On the basis of Proposition 1, we have the following re-
sult about the uncontrollable and unobservable subspace
of the quantum linear system G ∼ (S,C,Ω).

Proposition 2 Let C ≡ [ B AB · · · A2n−1B ] and

O ≡ [ CT (CA)
T · · · (CA2n−1)

T ]T be the controllability

and observability matrices of the quantum linear system
G ∼ (S,C,Ω) respectively. Then (in the terminology
of modern control theory, Anderson & Vongpanitlerd,
1973; Kailath, 1980; Zhou, Doyle & Glover, 1996) the
following statements hold:

(i) The unobservable subspace is Ker (O) = Ker (Os),
where Ker (X) denotes the null space of the matrix X,
as introduced in the Notation part.

(ii) The uncontrollable subspace is Ker
(
C†
)

=
Ker (OsJn).

(iii) The uncontrollable and unobservable subspace is
Ker (Os) ∩Ker (OsJn).

Proposition 2 can be established in the similar way as
Proposition 1.

Propositions 1 and 2 appear purely algebraic. Neverthe-
less, they have interesting and important physical con-
sequences. We begin with the following lemma.

Lemma 1 The dimension of the space Ker (Os)∩Ker (OsJn)
is even. Let the dimension of Ker (Os)∩Ker (OsJn) be
2l for some nonnegative integer l. There exists a matrix

V = [ V1 V2 ] with V1 ∈ C2n×2l and V2 ∈ C2n×2(n−l)

such that

Range(V1) = Ker (Os) ∩Ker (OsJn) , (8)

V V † = V †V = I2n, (9)

V †JnV =

[
Jl 0

0 Jn−l

]
. (10)

The proof is given in the Appendix.

We are ready to state the main result of this section.

Theorem 1 Let V be the matrix defined in Lemma 1. If
Range(V1) is an invariant space under the linear trans-

formation of Ω, then the transformed system

[
ăDF

ăD

]
≡

V †ă has the following dynamics:

dăDF (t) =−iJlV †1 ΩV1ăDF (t)dt, (11)

dăD(t) =−
(

(CV2)[(CV2)/2 + iJn−lV
†
2 ΩV2

)
ăD(t)dt

−(CV2)[DdB̌(t), (12)

dB̌out(t) = (CV2)ăD(t)dt+DdB̌(t). (13)

Proof. Because Range(V1) = Ker (Os) ∩ Ker (OsJn),
the coupling operator of the transformed mode

[ ăTDF ăTD ]T is CV = [ 0 CV2 ]. Moreover, because

Range(V1) is an invariant space under the linear trans-
formation of Ω, there exists a matrix Y such that

ΩV1 = V1Y . We have V †1 ΩV2 = Y †V †1 V2 = 0 where (9)
is used. This, together with (10), gives

V †JnΩV = V †JnV V
†ΩV =

[
JlV

†
1 ΩV1 0

0 Jn−lV
†
2 ΩV2

]
.

That is, the transformed system with mode [ ăTDF ăTD ]T

has the dynamics (11)-(13). �

Remark 1. By (11), the modes ăDF evolve unitarily as
an isolated system. In literature such isolated modes
embedded in an open quantum system is often called
decoherence-free modes, see, e.g.,Ticozzi & Viola, 2008,
Ticozzi & Viola, 2009,Yamamoto, 2014. Theorem 1 can
be viewed as the complex-domain counterpart of Theo-
rem 3.1 inYamamoto, 2014 in the real domain. However,
with the help of the matrix Os, matters are simplified;
moreover, it can be seen from the proof of Lemma 1 in
the Appendix that the structure of the linear transfor-
mation matrix V is better revealed with the help of Os

and in the complex domain.

Finally, from the proof of Lemma 1 it can be seen that
the dimension of the space Ker(C) is also even. More-
over we have the following corollary which shows that
under some conditions the unobservable and uncontrol-
lable subspace is exactly Ker(C).

Corollary 1 Let the dimension of the space Ker(C) be
2r. Let a matrix T ∈ C2n×2r be such that Range(T ) =
Ker(C). If JnT = TJr and Range(T ) is an invari-
ant space under the linear transformation of Ω, then
Ker(C) = Ker(Os) ∩Ker(OsJn).
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Proof. Clearly, Ker (Os)∩Ker (OsJn) ⊂ Ker(Os) ⊂
Ker (C). Thus it is sufficient to show that Ker (C) ⊂
Ker (Os)∩Ker (OsJn). However Range(T ) = Ker (C),
therefore we show that Range(T ) ⊂ Ker (Os)∩Ker (OsJn).
Because Range(T ) is invariant with respect to a lin-
ear transformation Ω, there exist matrix Y such
that ΩT = TY . This, together with JnT = TJr,
gives C(JnΩ)T = CTJrY = 0. Similarly, for all
k ≥ 1, C(JnΩ)kT = 0. That is, OsT = 0. More-
over, OsJnT = OsTJr = 0. Consequently Ker(C) =
Range(T ) ⊂ Ker (Os)∩Ker (OsJn). This together with
Ker (Os)∩Ker (OsJn) ⊂ Ker (C) yields Ker (C) =
Ker (Os)∩Ker (OsJn). �

Corollary 1 can be regarded as the complex-domain
counterpart of Proposition 3.1 in Yamamoto, 2014 in
the real domain.

2.3 Transfer functions

In this subsection the concept of transfer functions is
introduced and some properties of transfer functions for
quantum linear systems are presented.

In classical linear systems theory, a transfer function
H(s) is a function which specifies the input-output re-
lation in the frequency domain. Given a transfer func-
tion H(s), if there exist matrices A,B,C,D such that
H(s) = D + C(sI − A)−1B, then we say the transfer
function H(s) can be realized by a state-space model

dx(t) =Ax(t)dt+Bdu(t), (14)

dy(t) =Cx(t)dt+Ddu(t). (15)

Transfer functions for quantum linear systems have been
defined in a similar way, see e.g.,Yanagisawa & Kimura,
2003,Gough, James & Nurdin, 2010,Shaiju & Petersen,
2012. Clearly, the linear dynamical system (2)-(3) with
system matrices A,B, C,D in (4) is a realization of the
transfer function

G(s) ≡ D + C(sI −A)−1B. (16)

It should be noticed that, although the dynamics (14)-
(15) and (2)-(3) look formally similar, they are essen-
tially different in nature. The linear dynamics (14)-(15)
describe a classical system where x(t), u(t), y(t) are time-
domain functions. In contrast, the linear dynamics (2)-

(3) describe a quantum system where ă(t), B̆(t), B̆out(t)
are operators on Hilbert spaces, cf. Subsection 2.1.

As in the classical setting, a transfer function may have
many different forms of realisations, we introduce the
following concept.

Definition 2 Two realizations are said to be equivalent
if there determine the same transfer function.

Next we study properties of the transfer function G(s)
defined in (16).G(s) has the following fundamental prop-
erty, see, e.g.,Zhang & James, 2013, Eq. (24):

G(iω)[G(iω) = G(iω)G(iω)[ = I2m, ∀ω ∈ R. (17)

Interestingly, the transfer function G(s) defined in (16)
can be written into a fractional form.

Proposition 3 The transfer function G(s) determined
by a Hurwitz stable quantum linear system G ∼ (S,C,Ω)
can be written in the following fractional form

G(s) = (I − Σ(s))(I + Σ(s))−1∆(S, 0), (18)

where

Σ(s) ≡ 1

2
C(sI + iJnΩ)−1C[, ∀Re[s] > 0. (19)

Proof. Because the system G ∼ (S,C,Ω) is Hurwitz
stable, all the eigenvalues of the matrix A have strictly
negative real part, therefore the matrix sI −A is invert-
ible for all Re[s] > 0. Moreover, for all Re[s] > 0, by the
Woodbury matrix inversion formula,

(sI −A)−1

= (sI + iJnΩ)
−1 − 1

2
(sI + iJnΩ)

−1
C[

×
(
I +

1

2
C (sI + iJnΩ)

−1
C[
)−1

C (sI + iJnΩ)
−1
.

As a result, for all Re[s] > 0, I − C(sI − A)−1C[ =
(I − Σ(s))(I + Σ(s))−1 with Σ(s) as defined in (19).
Consequently, G(s) = (I −Σ(s))(I + Σ(s))−1∆(S, 0). �

3 Quantum linear passive systems

In this section quantum linear passive systems are stud-
ied. This type of systems is introduced in Subsection
3.1. Stability, controllability and observability are inves-
tigated in Subsection 3.2, while minimal realizations of
quantum linear passive systems are studied in Subsec-
tion 3.3. The relation between G(s) and Σ(s) in the pas-
sive setting is discussed in Subsection 3.4.

3.1 Quantum linear passive systems

If the matrices C+ = 0 and Ω+ = 0, the resulting sys-
tem, parameterized by matrices S, C−, Ω−, is often said
to be a quantum linear passive system. In this case, it
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can be described entirely in terms of annihilation oper-
ators. Actually a quantum linear passive system has the
following form:

da(t) =Aa(t)dt− C†−SdB(t), (20)

dBout(t) =C−a(t)dt+ SdB(t). (21)

in which A ≡ − 1
2C
†
−C− − iΩ−. Clearly, the transfer

function determined from G ∼ (S,C−,Ω−) is

G(s) ≡ S − C−(sI −A)−1C†−S. (22)

Define

Σ(s) ≡ 1

2
C−(sI + iΩ−)−1C†−. (23)

Then, in analog to Proposition 3, we have

G(s) = (I − Σ(s))(I + Σ(s))−1S. (24)

In the passive case, Eq. (17) reduces to

G(iω)†G(iω) = G(iω)G(iω)† = Im, ∀ω ∈ R. (25)

3.2 Stability, controllability, and observability

In this subsection we study stability of quantum linear
passive systems. In particular, we show that a quantum
linear passive system G ∼ (S,C−,Ω−) is Hurwitz stable
if and only if it is observable and controllable.

Lemma 2 The following statements for a quantum lin-
ear passive system G ∼ (S,C−,Ω−) are equivalent:

(i) G is Hurwitz stable;
(ii) G is observable;
(iii) G is controllable.

Proof. (i) → (ii). Clearly, X = In > 0 is the unique
solution to the following Lyapunov equation

A†X +XA+ C†−C− = 0. (26)

According toZhou, Doyle & Glover, 1996, Lemma 3.18,

(C†−C−, A) is observable, so (C−, A) is observable. That
is, G is observable.

(ii)→ (i). Because X = In > 0 is a solution to Eq. (26),

C†−C− ≥ 0 and (C†−C−, A) is observable, byZhou, Doyle
& Glover, 1996, Lemma 3.19, A is Hurwitz stable.

The equivalence between (ii) and (iii) has been estab-
lished in Proposition 1. �

Remark 2. An alternative proof of the equivalence be-
tween (ii) and (iii) is given inGuta & Yamamoto, 2013,
Lemma 3.1. An alternative proof of (ii) → (i) is given
inGuta & Yamamoto, 2013, Lemma 3.2.

3.3 Minimal realization

In this subsection we study minimal realization of a given
quantum linear passive system. We first introduce the
concept of minimal realization.

Definition 3 Given a transfer function, let G ∼
(S,C−,Ω−), or equivalently (20)-(21), be a quantum lin-
ear passive system which realizes the transfer function.
If G ∼ (S,C−,Ω−) is both controllable and observable,
then it is said to be a minimal realization for the transfer
function.

The following result is an immediate consequence of
Lemma 2.

Theorem 2 (20)-(21) is a minimal realization of the
transfer function G(s) defined in Eq. (22) if and only if
it is Hurwitz stable.

In what follows we study the following problem concern-
ing minimal realization.

Problem 1 Given a quantum linear passive systemG ∼
(S,C−,Ω−) which may not be Hurwitz stable, it may have
a subsystem (S,Cmin,Ωmin) which is Hurwitz stable. In
this case, let nmin be the number of system oscillators in
the minimal realization of (S,Cmin,Ωmin). How to com-
pute nmin?

3.3.1 The single-input-single-output (SISO) case

Given a SISO quantum linear passive system G ∼
(S,C−,Ω−), let the spectral decomposition of Ω− be
Ω− =

∑
ω∈spec(Ω−) ωPω, where Pω denotes the pro-

jection onto the eigenspace of the eigenvalue ω of Ω−.
Define

σ(Ω−, C−) ≡ {ω ∈ spec(Ω−) : C−PωC
†
− 6= 0}. (27)

The following result shows that the size of the set
σ(Ω−, C−) is nothing but nmin.

Proposition 4 Given a SISO quantum linear passive
system G ∼ (S,C−,Ω−), the number nmin of oscillators
of a minimal realization (S,Cmin,Ωmin) is equal to the
size of the set σ(Ω−, C−) defined in (27).

The proof is given in the Appendix.

3.3.2 The multi-input-multi-output (MIMO) case

The following result is the MIMO version of Proposition
4.
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Proposition 5 For a MIMO quantum linear passive
system G ∼ (S,C−,Ω−), let the distinctive eigenvalues
of Ω− be ω1, . . . , ωr, each with algebraic multiplicity τi
respectively, i = 1, . . . , r. Define Λi = ωiIτi , i = 1, . . . , r.
Assume

Ω− =


Λ1 0

. . .

0 Λr

 .
Accordingly partition C− = [C1 C2 · · · Cr] with
Ci having τi columns, i = 1, . . . , r. Then nmin =∑r
i=1 column rank[Ci]. In particular, if τi = 1 for all

i = 1, . . . , r, that is, all poles of Ω− are simple poles,

then nmin = {ωi ∈ spec(Ω−) : Tr[C−Pωi
C†−] 6= 0}, as

given in Proposition 4.

The construction in Proposition 5 is essentially the
Gilbert’s realization. Its proof follows the discussions
in Kailath, 1980, Sec. 6.1 or Zhou, Doyle & Glover,
1996, Sec. 3.7. The details are omitted.

3.4 G(s) and Σ(s)

In this subsection we explore a further relation between
G(s) and Σ(s) defined in Eqs. (22) and (23) respectively.

We first review the notions of lossless bounded real
and lossless positive real. The bounded real lemma for
quantum linear passive systems has been established
in Maalouf & Petersen, 2011a. Dissipation theory for
more general quantum linear systems has been studied
in James, Nurdin & Petersen, 2008, Zhang & James,
2011, while the nonlinear case has been studied inJames
& Gough, 2010.

Definition 4 (Lossless Bounded Real, Maalouf & Pe-
tersen, 2011a, Definition 6.3.) A quantum linear passive
system G = (S,C−,Ω−) is said to be lossless bounded
real if it is Hurwitz stable and Eq. (25) holds.

According to Definition 4, a Hurwitz stable quantum
linear passive system is naturally lossless bounded real,
as derived inMaalouf & Petersen, 2011a.

Positive real functions have been studied extensively
in classical (namely, non-quantum) control theory, see,
e.g., Anderson & Vongpanitlerd, 1973. Here we state a
complex-domain version of positive real functions.

Definition 5 (Lossless Positive Real.) A function Ξ(s)
is said to be positive real if it is analytic and satisfies
Ξ(s) + Ξ(s)† ≥ 0, ∀Re[s] > 0. Moreover, Ξ(s) is called
lossless positive real if is positive real and satisfies Ξ(iω)+
Ξ(iω)† = 0, where iω is not a pole of Ξ(s).

The following result relates the lossless bounded realness
of a quantum linear passive system G ∼ (S,C−,Ω−) to
the lossless positive realness of Σ(s) defined in Eq. (23).

Theorem 3 If a quantum linear passive system G ∼
(S,C−,Ω−) is minimal, then

(i) G(s) is lossless bounded real.
(ii) Σ(s) defined in Eq. (23) is lossless positive real.

In fact, properties (i) and (ii) are equivalent.

Proof. (i). Without loss of generality, assume S = Im.
Because G ∼ (I, C−,Ω−) is minimal, by Theorem 2,
it is Hurwitz stable. Moreover, G ∼ (I, C−,Ω−) satis-
fies Eq. (25). Therefore, according to Definition 4, G ∼
(I, C−,Ω−) is lossless bonded real.

(ii). Assume iω is not a pole of Σ(s). Then the matrix
iωI + iΩ− is invertible. Note that for all Re[s] > 0,

Σ(s) + Σ(s)† (28)

= Re [s]C−(sI + iΩ−)−1
(
C−(sI + iΩ−)−1

)†
.

By (28), Σ(iω) + Σ(iω)† = 0. Therefore, by Definition
5, Σ(s) is lossless positive real.

Finally, as a consequence of Eq. (24) between G(s) and
Σ(s), in the minimal realization case the properties (i)
and (ii) are equivalent. �

Remark 3. In fact, the relation between lossless bounded
realness and lossless positive realness is well-known in
electric networks theory, see. e.g.,Anderson & Vongpan-
itlerd, 1973.

Remark 4. Here we have used the annihilation-operator
form to study dissipative properties of quantum linear
passive systems. Because the resulting matrices may be
complex-valued, they can be viewed as the complex ver-
sions of lossless bounded real and lossless positive real in
terms of the quadrature form,James, Nurdin & Petersen,
2008. In fact, if the quantum system is represented in the
quadrature form, it is exactly the same lossless bounded
real form as that in Anderson & Vongpanitlerd, 1973,
Secs. 2.6 and 2.7 for classical linear systems.

4 Realizations for quantum linear passive sys-
tems

Several realizations of quantum linear passive sys-
tems are proposed in this section. The multi-input-
multi-output (MIMO) case is studied in Subsection
4.1. For the single-input-single-output (SISO) case, an
independent-oscillator realization is proposed in Sub-
section 4.2.1, Fig. 2; a chain-mode realization is pre-
sented in Subsections 4.2.2, Fig. 3; and the uniqueness
of the independent-oscillator realization is discussed in
Subsection 4.2.3.
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4.1 Realizations for multi-input-multi-output models

In this subsection a new realization for MIMO quantum
linear passive systems is proposed.

Before presenting our realizations for quantum linear
passive systems, we describe for completeness a realiza-
tion proposed in Nurdin, 2010b and Petersen, 2011 us-
ing the series product to produce a realization of an n-
oscillator system as a cascade of n one-oscillator systems.

We begin with the observation that every matrix n× n
matrix A admits a Schur decomposition A = U†A′U
withU unitary andA′ lower triangular. For a given quan-
tum linear passive system G ∼ (S,C−,Ω−), we define
a unitary transform a′ ≡ Ua, such that A′ = UAU† is
lower triangular. Accordingly denote C ′ = C− U

† and
Ω′ = UΩ−U

†. The new system is thus G′ ∼ (S,C ′,Ω′).
A standard result from linear systems theory shows that
the two systems G and G′ have the same transfer func-
tion. In what follows we show the system G′ has a cas-
cade realization, Fig. 4.1. Because A′ = − 1

2C
′†C ′ − iΩ′

is lower triangular, for j < k we have A′jk = − 1
2C
′†
j C
′
k−

iΩ′jk = 0, so Ω′jk = i
2C
′†
j C
′
k. Therefore the lower triangu-

lar components areA′kj = − 1
2C
′†
k C
′
j−iΩ′kj = − 1

2C
′†
k C
′
j−

iΩ′∗jk ≡ −C
′†
k C
′
j .

Let us now set G0 ∼ (S, 0, 0) and Gk ∼ (I, C ′k,Ω
′
kk)

then the new system G′ has a the cascaded realization
G′ = Gn C · · · C G1 C G0, Fig. 4.1.

Fig. 1. A quantum linear passive system with n system os-
cillators is realised as a sequence of n components in series,
each one having a one-mode oscillator.

Next we present a new realization for MIMO quantum
linear passive systems, which may have: 1) a set of inter-
connected principal oscillators ãpr that interact with the

(possibly part of) environment b̃pr(t); 2) auxiliary oscil-
lators ãaux,1 and ãaux,2) which only couple to the prin-
cipal oscillators while otherwise being independent; 3)

input-out channels b̃aux(t) that do not couple to the sys-
tem oscillators.

Theorem 4 A quantum linear passive system G =
(I, C−,Ω−) can be unitarily transformed to another one

with the corresponding realization

dãpr(t) =−(
σ(C−)2

2
+ iΩ̃1)ãpr(t)dt− iΩ̃21ãaux,1(t)dt

−iΩ̃22ãaux,2(t)dt− σ(C−)dB̃in,pr(t), (29)

dãaux,1(t) =−iσ(Ω̃3)ãaux,1(t)dt− iΩ̃†21ãpr(t)dt, (30)

dãaux,2(t) =−iΩ̃†22ãpr(t)dt, (31)

dBout,pr(t) = σ(C−)ãpr(t)dt+ dBin,pr(t), (32)

dBout,aux(t) = dBin,aux(t), (33)

where Ω̃1 = Ω̃†1, Ω̃3 = Ω̃†3, and σ(X) denotes the diagonal
matrix with diagonal entries being the non-zero singular
values of the matrix X. Clearly, this new realization cor-
responds the a quantum linear passive system

(
I, C̄, Ω̄

)
with

C̄ ≡

[
σ(C−) 0 0

0 0 0

]
, Ω̄ ≡


Ω̃1 Ω̃21 Ω̃22

Ω̃†21 σ(Ω̃3) 0

Ω̃†22 0 0

 . (34)

The proof is given in the Appendix.

By Proposition 1 and Theorems 1 and 4, we have the
following result.

Corollary 2 For the realization (29)-(33),

(1) the mode ãpr is both controllable and observable;
(2) if the system G = (I, C−,Ω−) is Hurwitz stable,

then Ω̃21 6= 0 and Ω̃22 6= 0.

Remark 5. The realization (29)-(33) is in some sense
like controllability and observability decomposition of
quantum linear passive systems. For example, if the sys-
tem is Hurwitz stable, then by Lemma 2, all the modes
ãpr, ãaux,1 and ãaux,2 are both controllable and observ-

able. On the other hand, if Ω̃21 = 0 and Ω̃22 = 0, then
the modes ãaux,1 and ãaux,2 are neither controllable nor
observable; in this case, the modes ãpr span the control-
lable and observable subspace, while the modes ãaux,1

and ãaux,2 span the uncontrollable and unobservable
subspace.

Remark 6. When m = 1, assuming minimal realization,
from the proof given in the Appendix it can be seen that
Theorem 4 reduces to Theorem 5 for the independent-
oscillator realization of SISO systems to be discussed in
Subsection 4.2.1.

4.2 Realizations for single-input-single-output models

In this subsection, two realizations, namely the
independent-oscillator realization and the chain-mode
realization, of SISO linear passive systems are proposed.
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4.2.1 Independent-oscillator realization

. . . 

Principle Mode  

Fig. 2. The independent-oscillator realization: the principal
mode is coupled to n− 1 independent auxiliary modes. The
principal mode couples to the field, while the auxiliary modes
are independent other than that they couple to the principal
mode.

Given a SISO quantum linear passive system G ∼
(I, C−,Ω−) where

C− = [
√
γ1 . . .

√
γn], Ω− = (ωjk)n×n, (35)

we show how to find a unitarily equivalent realization
in terms of a single oscillator (the coupling mode c0, we
also call it the principle mode) which is then coupled to
n−1 auxiliary modes c1, · · · , cn−1. The auxiliary modes
are themselves otherwise independent oscillators, Fig. 2.

Theorem 5 There exists a unitary matrix T such that
the transformed modes

c =


c0

c1
...

cn−1

 ≡ T a (36)

have the following realizations

dc0(t) =−(γ/2 + iω0)c0(t)dt

−
n−1∑
j=1

i
√
κjcj(t)−

√
γdB(t), (37)

dcj(t) =−iωjcj(t)dt− i
√
κjc0(t)dt, (38)

dBout(t) =
√
γc0(t) + dB(t), (39)

where

γ ≡
n∑
j=1

γj , ω0 ≡
1

γ

n∑
j,k=1

√
γjγkωjk, (40)

and the other parameters ωj , κj (j = 1, . . . , n − 1) are
given in the proof.

Proof. Let R be a unitary matrix whose first row is
R1j =

√
γj/γ, (j = 1, . . . n). Set b′j ≡

∑n
k=1Rjkak,

j = 1, . . . n. We have [b′j , b
′∗
k ] = δjk. Clearly L = C−a =√

γb′1 and [L, b′∗j ] = 0 for j = 2, . . . n. Let us apply
a further unitary transformation V of the form V =

[
1 0>n−1

0n−1 Ṽ

]
with 0n−1 the column vector of length

n−1 with all zero entries and Ṽ unitary in C(n−1)×(n−1)

to be specified later. We set c = [c0 c1 · · · cn−1]T ≡
V b′ = V R a. We have L =

√
γc0. The Hamiltonian

takes the form H = c†V RΩR†V †c = c†Ω′c, where

Ω′ ≡

[
1 0>n−1

0n−1 Ṽ

]
RΩ−R

†

[
1 0>n−1

0n−1 Ṽ †

]
. As the ma-

trix Ṽ is still arbitrary except being unitary, we may
choose it to diagonalize the lower right (n− 1)× (n− 1)
block of RΩR†, and with this choice we obtain Ω′ of

the form ΩIO ≡


ω0 ε∗1 · · · ε∗n−1

ε1 ω1 0
...

. . .

εn−1 0 ωn−1

. It can be readily

verified that ω0 = 1
γ

∑n
jk=1

√
γjγkωjk. Set T = V R and

the overall unitary transform is thus c = T a. Finally
we may absorb the phases of the εk into the modes, so
without loss of generality we may assume that they are
real and non-negative, say εk ≡

√
κk. �

By Proposition 1 and Theorem 1, we have

Corollary 3 For the realization (36)-(39) constructed
in Proposition 5, if κj = 0, (j = 1, . . . , n − 1,) then the
mode cj is neither controllable nor observable.

Because the two realizations, G ∼ (I, C−,Ω−) with
C−,Ω− defined in (35) and that in (36)-(39), are uni-
tarily equivalent, they have the same transfer function.
In what follows we derive their transfer function.

The following lemma turns out to be useful.

Lemma 3 We have the algebraic identity that


a0 b1 · · · bn

b1 a1
. . . 0

...
. . .

bn 0 an



−1


row 1,column 1

=
1

a0 −
∑n
k=1

b2k
ak

,

where (X)row 1,column 1 means the entry on the intersec-
tion of the first row and first column of a constant matrix
X.

The proof is given in the Appendix.

We are now ready to present the transfer function.
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Corollary 4 The SISO quantum linear passive system
G ∼ (I, C−,Ω−) withC−,Ω− defined in (35) has a trans-
fer function of the form

G (s) = 1− γ

s+ 1
2γ + iω0 +

∑n−1
k=1

κk

s+iωk

. (41)

The proof follows Theorem 5 and Lemma 3.

Remark 7. Theorem 5 gives an independent-oscillator
realization of a quantum linear passive system, Fig. 2.
Unfortunately, because the unitary matrices V and R
used in the proof of Theorem 5 are by no means unique,
it is unclear whether this realization is unique or not,
that is, whether the parameters ωi and κj are uniquely
determined by the system parameters γi and ωjk in (35)
or not. In Theorem 7 to be given in Subsection 4.2.3,
we show that the independent-oscillator realization is
unique under the assumption of minimal realization.

4.2.2 Chain-mode realization

In the subsection we present the chain-mode realization
of SISO quantum linear passive systems.

Let G ∼ (I, Cmin,Ωmin) be a Hurwitz stable SISO quan-
tum linear system with nmin the number of system oscil-
lators. We assume that Ωmin is diagonal and the entries
of Cmin are non-negative; specifically,

ā =


ā1

...

ānmin

 , Ωmin = diag (ω̄1, · · · , ω̄nmin
) ,

Cmin =
[√
γ̄1, · · · ,

√
γ̄nmin

]
. (42)

Remark 8. Because the matrix Ωmin is Hermitian, it can
always be diagonalized. Similarly by absorbing phases
into system oscillators if necessary, the entries of the ma-
trix Cmin can be taken to be non-negative. Thus, given a
Hurwitz stable quantum linear passive system, one can
always unitarily transform it to another one correspond-
ing to (42). Moreover, by Proposition 4, minimality re-
quires that ω̄j 6= ω̄k if j 6= k, and γ̄j 6= 0, j = 1, . . . , nmin.

In what follows we unitarily transform the system G ∼
(I,Ωmin, Cmin) to a chain-mode realization of an assem-
bly of interacting oscillators, Fig. 3.

Theorem 6 For the systemG ∼ (I, Cmin,Ωmin) defined
by (42), there exists a unitary transform W such that the

Principal Mode  

Fig. 3. The Chain-mode realization: the principal mode is
coupled to a non-damped mode which in turn is coupled to
a finite chain of modes.

transformed modes
c̃0

c̃1
...

c̃nmin−1

 ≡W ā

have the following realization:

dc̃0(t) =−(γ̄/2 + iω̃0)c̃0(t)dt

−i
√
κ̃1c̃1(t)dt−

√
γ̄dB(t), (43)

dc̃j(t) =−iω̃j c̃j(t)dt− i
√
κ̃j c̃j−1(t)dt

−i
√
κ̃j+1c̃j+1(t)dt, (44)

dc̃nmin−1(t) =−iω̃nmin−1c̃nmin−1(t)dt

−i
√
κ̃nmin−1c̃nmin−2(t)dt, (45)

dBout(t) =
√
γ̄c̃0(t)dt+ dB(t), (46)

where j = 1, . . . , nmin− 2, and the parameters ω̃j and κ̃j
are given respectively in (65) and (66) in the proof.

The proof is given in the Appendix.

Remark 9. In the literature of continued fraction,
Gautschi, 2004; Hughes, Christ & Burghardt, 2009;
Woods, et al., 2014, etc., the matrix

J ≡



ω̃0

√
κ̃1 0 · · · 0 0

√
κ̃1 ω̃1

√
κ̃2 0 0

0
√
κ̃2 ω̃2

. . .
...

...
. . .

. . .
√
κ̃nmin−2 0

0 0
√
κ̃nmin−2 ω̃nmin−2

√
κ̃nmin−1

0 0 · · · 0
√
κ̃nmin−1 ω̃nmin−1


is often called a Jacobi matrix. Clearly, J is actually the
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Hamiltonian matrix for the new system corresponding
to the realization (43)-(46).

Because the two realizations, G ∼ (I, Cmin,Ωmin) de-
fined by (42) and that in (43)-(46), are unitarily equiv-
alent, they share the same transfer function. Next we
study their transfer function.

We begin with the following lemma.

Lemma 4 We have the algebraic identity that
a0 b1 0

b1 a1
. . .

. . .
. . . bn

0 bn an



−1

row 1,column 1

=
1

a0 −
b21

a1 −
b22

a2−
. . .

−
b2n−1

an−1 −
b2n
an

,

where (X)row 1,column 1 means the entry on the intersec-
tion of the first row and first column of a matrix X.

The proof is given in the Appendix.

Based on Theorem 6 and Lemma 4, we may derive the
transfer function.

Corollary 5 The SISO quantum linear passive system
G ∼ (I, Cmin,Ωmin) has a transfer function in the form
of the continued fraction expansion in Eq. (47).

4.2.3 Uniqueness of the independent-oscillator realiza-
tion

In Subsection 4.2.1 an independent-oscillator realization
for SISO quantum linear passive systems is proposed.
From the construction it is unclear whether the parame-
ters in this independent-oscillator realization are unique,
Remark 7. In this subsection we show that they are in-
deed unique if minimality is assumed.

Theorem 7 Given a minimal quantum linear passive
system G ∼ (I, Cmin,Ωmin) in (42), its unitarily equiva-
lent independent-oscillator realization is unique.

Proof. Firstly, for the minimal realization G ∼
(I, Cmin,Ωmin) in (42), by (40) and (67), ω0 = ω̃0. Sec-
ondly, by (41) and (47) we see the transfer function

takes the form

G(s) = 1− γ

s+ γ
2 + iω0 + ∆(s)

, (48)

where

∆(s)

≡
nmin−1∑
k=1

κk
s+ iωk

(49)

=
κ̃1

s+ iω̃1 +
κ̃2

s+ iω̃2+
.. .

+
κ̃nmin−2

s+ iω̃nmin−2 +
κ̃nmin−1

s+ ω̃nmin−1

(50)

in the independent-oscillator and chain-mode realiza-
tions respectively. Replacing s with iω in (48), (49) and
(50) we have

G (iω) = 1 +
iγ

ω + ω0 −
γ

2
i− ∆̂ (ω)

,

where

∆̂ (ω) ≡ i∆(iω) =

nmin−1∑
k=1

κk
ω + ωk

(51)

=
κ̃1

ω + ω̃1 −
κ̃2

ω + ω̃2−
. . .

− κ̃nmin−2

ω + ω̃nmin−2 −
κ̃nmin−1

ω + ω̃nmin−1

(52)

in the independent-oscillator and chain-mode realiza-
tions respectively. By Theorem 6, ω̃j and κ̃j in (52) are

uniquely determined by Cmin and Ωmin, that is, ∆̂ (ω) is
unique. On the other hand, because G = (I, Cmin,Ωmin)
is minimal, in (51) ωj 6= ωk if j 6= k, and κi 6= 0. Clearly,

for this single pole fraction form of ∆̂ (ω) in (51), κk and
ωk are unique. �

We notice that (48) implies that

Σ (s) =
1

2

γ

s+ iω0 + ∆ (s)
(53)

with ∆(s) given by (50).
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G (s) = I − γ̄

s+
1

2
γ̄ + iω0 +

κ̃1

s+ iω̃1+
.. .

+
κ̃nmin−2

s+ iω̃nmin−2 +
κ̃nmin−1

s+ iω̃nmin−1

. (47)

Remark 10. Given ∆(s) in (49) and (50), by (53) an
explicit form of Σ(s) can be constructed, subsequently a
quantum linear passive system G(s) = (I − Σ(s))((I +
Σ(s)))−1 can be constructed. According to (48), G(s)
constructed in this way is always a genuine quantum
system.

5 Conclusion

In this paper we have studied the realization theory of
quantum linear systems. We have shown the equiva-
lence between controllability and observability of general
quantum linear systems, and in particular in the pas-
sive case they are equivalent to Hurwitz stability. Based
on controllability and observability, a special form of re-
alization has been proposed for general quantum linear
systems which can be regarded as the complex-domain
counterpart of the so-called decoherence-free subsystem
decomposition studied in Yamamoto, 2014. Specific to
quantum linear passive systems, formulas for calculating
the cardinality of minimal realizaitons are proposed. A
specific realization is proposed for the multi-input-multi-
output case which is related to controllability and ob-
servability decomposition. Finally, two realizations, the
independent-oscillator realization and the chain-mode
realization, have been derived for the single-input-single-
output case. It is expected that these results will find
applications in quantum systems design.
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Appendix.

Proof of Lemma 1. We first show that the dimension
of the space Ker (Os)∩Ker (OsJn) is even. If a nonzero
vector

v =

[
v1

v2

]
∈ Ker (Os)∩Ker (OsJn) (54)

with v1, v2 ∈ Cn, then C

[
v1

v2

]
= CJn

[
v1

v2

]
= 0. Actu-

ally,

C

[
v1

v2

]
= CJn

[
v1

v2

]
= 0⇐⇒ C

[
v1 0

0 v2

]
= 0. (55)

On the other other hand, by (54) we also have

CJnΩ

[
v1

v2

]
= 0, CJnΩJn

[
v1

v2

]
= 0, which are equiv-

alent to CJnΩ

[
v1 0

0 v2

]
= 0. So we have

CJnΩ

[
v1

v2

]
= 0, CJnΩJn

[
v1

v2

]
= 0

⇐⇒CJnΩ

[
v1

0

]
= 0, CJnΩ

[
0

v2

]
= 0. (56)

Analogously it can be shown that

C(JnΩ)k

[
v1

v2

]
= 0, CJn(JnΩ)k

[
v1

v2

]
= 0 (57)

⇐⇒C(JnΩ)k

[
v1

0

]
= 0, C(JnΩ)k

[
0

v2

]
= 0, k ≥ 1.

(55), (56) and (57) indicate that

v =

[
v1

v2

]
∈ Ker (Os)∩Ker (OsJn)

⇐⇒

[
v1

0

]
,

[
0

v2

]
∈ Ker (Os)∩Ker (OsJn) .

As a result, one can choose an orthonormal ba-
sis of Ker (Os)∩Ker (OsJn) to be one of the form[
v1

0

]
,

[
0

v#
1

]
, · · · ,

[
vl

0

]
,

[
0

v#
l

]
. Therefore, the di-
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mension of the space Ker (Os)∩Ker (OsJn) is even.
Here we take it to be 2l.

Secondly, we construct V1 ∈ C2n×2l. Noticing

Ker
(
OsJn[ In 0n ]T

)
= Ker

(
Os[ In 0n ]T

)
,

we have[
vi

0

]
∈ Ker (Os)∩Ker (OsJn)⇐⇒ vi ∈ Ker

(
Os

[
In

0n

])
.

Thus it is sufficient to construct the orthonormal ba-

sis vectors v1, . . . , vl for the space Ker
(
Os[ In 0n ]T

)
.

This can be done by the Gram-Schmidt orthogonalisa-

tion procedure. Define V1 ≡

[
v1 · · · vl 0 · · · 0

0 · · · 0 v#
1 · · · v

#
l

]
∈

C2n×2l. For the above construction, Range(V1) =
Ker (Os) ∩Ker (OsJn). (8) is established.

Thirdly, we construct the matrix V2. If a normal-
ized vector vl+1 ∈ Cn such that for all k = 1, . . . , l,

v†l+1vk = 0, then (v#
l+1)†v#

k = 0. That is, the normal-

ized vectors

[
vl+1

0

]
and

[
0

v#
l+1

]
are orthogonal to the

space Range(V1). Of course

[
vl+1

0

]
and

[
0

v#
l+1

]
are

orthogonal to each other too. By the Gram-Schmidt
orthogonalisation procedure an orthonormal basis
{vl+1, . . . , vn} can be found for the orthogonal space of
the space spanned by the vectors {v1, . . . , vl} . The an
orthonormal matrix V2 can be constructed to be

V2 ≡

[
vl+1 · · · vn 0 · · · 0

0 · · · 0 v#
l+1 · · · v#

n

]
∈ C2n×2(n−l).

Fourthly, define V ≡ [ V1 V2 ]. Clearly, V †V = I2n which

establishes (9).

Finally, because V †1 Jn = JlV
†
1 , we have

V †JnV =

[
V †1 JnV1 V

†
1 JnV2

V †2 JnV1 V
†
2 JnV2

]
=

[
Jl 0

0 Jn−l

]
,

which is (10). �

Proof of Proposition 4. Without loss of generality, as-
sume that Ω− is diagonal. (Otherwise, there exists a uni-
tary matrix T such that Ω̄ = TΩ−T

† is diagonal. Corre-
spondingly, denote P̄ω = TPωT

† and C̄ = C−T
†. Then

C̄P̄ωC̄
† = C−PωC

†.) Let there be r non-zero entries in
the row vector C−. Because Ω− is diagonal, if the ith
element of C− is zero, then the ith column of the ma-
trix in (7) is a zero column. As a result, for minimality
we need only consider non-zero elements of C−. With-
out loss of generality, assume C− = [C1 0], where C1 =
[c1 c2 · · · cr] with ci 6= 0, (i = 1, . . . , r). Correspond-

ingly, partition Ω− as Ω− =

[
Ω1 0

0 Ω2

]
, where Ω1 is a r×

r square diagonal matrix with ω1, . . . , ωr being diagonal

entries. Clearly, rank


C−

C−Ω−
...

C−Ωn−1
−

 = rank


C1

C1Ω1

...

C1Ωr−1
1

.

Notice that
C1

C1Ω1

...

C1Ωr−1
1

 =


1 1 · · · 1

ω1 ω2 · · · ωr
...

...
...

...

ωr−1
1 ωr−1

2 · · · ωr−1
r




c1

c2
. . .

cr

 .

According to Lemma 2 and noticing ci 6= 0 for i =
1, . . . , r,

nmin = rank


C1

C1Ω1

...

C1Ωr−1
1

 = rank


1 1 · · · 1

ω1 ω2 · · · ωr
...

...
...

...

ωr−1
1 ωr−1

2 · · · ωr−1
r

 .

Let ` be the total number of distinct diagonal entries of
the matrix Ω1. By a property of the Vandermonde ma-
trices, ` = nmin. Finally, denote the distinct eigenval-
ues of Ω1 by ω̂1, . . . , ω̂`. For each i = 1, . . . , `, because

ci 6= 0, C−Pω̂i
C†− 6= 0. So we have shown that the num-

ber nmin of system oscillators of a minimal realization
(S,Cmin,Ωmin) equals the total number of elements of
the set σ(Ω−, C−) defined in (27). �

Proof of Theorem 4. The proof can be done by con-
struction. Let rank(C−) = r > 0. Firstly, according
toBernstein, 2009, Theorem 5.6.4 there exist unitary ma-
trices R1 ∈ Cm×m and R2 ∈ Cn×n such that R1C−R2 =[
σ(C−)r×r 0

0 0

]
where σ(C−) is a diagonal matrix with

diagonal entries being singular values of the matrix C−.

Partition the matrix R†2Ω−R2 accordingly, and denote

Ω̄ =

[
Ω̃1 Ω̃2

Ω̃†2 Ω̃3

]
≡ R†2Ω−R2. Define the unitary trans-
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formations

[
b̃in,pr(t)

b̃in,aux(t)

]
≡ R1b(t),

[
b̃out,pr(t)

b̃out,aux(t)

]
≡

R1bout(t),

[
ãpr(t)

aaux(t)

]
≡ R†2a(t), where all the first blocks

on the left-hand side are a row vector of dimension r.
Then G is unitarily equivalent to the following system

˙̃apr =−(σ(C−)2/2 + iΩ̃1)ãpr − iΩ̃2aaux

−σ(C−)b̃in,pr(t), (58)

ȧaux =−iΩ̃†2ãpr − iΩ̃3aaux, (59)

b̃out,pr = σ(C−)ãpr + b̃in,pr(t), (60)

b̃out,aux = b̃in,aux(t). (61)

By Schur decomposition there exists a unitary matrix

T ∈ C(n−r)×(n−r) such that Ω̃3 = T

[
σ(Ω̃3) 0

0 0

]
T †. Ac-

cordingly, denote [Ω̃21 Ω̃22] ≡ Ω̃2T
†. As a result, apply-

ing the unitary transformation
ãpr

ãaux,1

ãaux,2

 ≡
[
Ir×r 0

0 T

][
ãpr

aaux

]
(62)

to (58)-(59) yields the final realization (29)-(33). Clearly
the realization (29)-(33) corresponds to a quantum linear
passive system with parameters given in (34). �

Proof of Lemma 3. We show this by induction. It is clear
true for n = 1, so we the assume it is true for a given n
and establish for n+1. Let us write E11 (M) for the first
entry (row 1, column 1) of a matrix M . Let us consider
a sequence

Mn =


a0 b1 · · · bn

b1 a1
. . . 0

...
. . .

bn 0 an


of matrices, then Mn+1 ≡

[
Mn bn+1en

bn+1e
>
n an+1

]
, where

en = [1 0 · · · 0]T ∈ Cn+1. We recall the Schur-Feshbach
inversion formula for a matrix in block form[

A11 A12

A21 A22

]−1

=

[
Y −1 −Y −1A12A

−1
22

−A−1
22 A21Y

−1 A−1
22 +A−1

22 A21Y
−1A12A

−2
22

]
(63)

where Y = A11 − A21A
−1
22 A21. From the Schur-

Feshbach formula we deduce that E11

(
M−1
n+1

)
=

E11

(
(Mn −

b2n+1

an+1
ene
>
n )−1

)
. However, the matrix

Mn − (b2n+1/an+1)ene
>
n is identical to Mn except that

we replace the first row first column entry a0 with
a0 − (b2n+1/an+1), and by assumption we should then
have

E11

(
(Mn −

b2n+1

an+1
ene
>
n )−1

)
=

1(
a0 −

b2n+1

an+1

)
−
∑n
k=1

b2k
ak

.

This establishes the formula for n+1, and so the formula
is true by induction. �

Proof of Proposition 6. The spectral distribution Φ as-
sociated with a SISO system G ∼ (S,C−,Ω−) is defined
through the Stieltjes’ integral, i.e.,

∫∞
−∞ eitωdΦ (ω) =

1

C−C
†
−
C−e

itΩ−C†−, where the normalization coefficient

C−C
†
− > 0. In particular, in terms of the specific min-

imal realization G ∼ (S,Cmin,Ωmin) given in (42), we
have

dΦ (ω) =

nmin∑
j=1

γ̄j
γ̄
δ (ω − ω̄j) dω ≡ µ̄(ω)dω, (64)

where γ̄ ≡
∑nmin

j=1 γ̄j . That is, the cardinality of the sup-
port of dΦ is exactly the number of oscillators nmin in the
minimal realization ofG ∼ (S,Cmin,Ωmin). The spectral
distribution defined in (64) has only finitely many point
supports. We define an inner product for polynomials in
the field of real numbers in terms of this discrete spec-
tral distribution. More specifically, given two real poly-
nomials P (ω) and Q(ω), define their inner product with
respect to µ̄ to be

〈P,Q〉µ̄ ≡
∫ ∞
−∞

P (ω)Q(ω)µ̄(ω)dω =

nmin∑
j=1

γ̄j
γ̄
P (ω̄j)Q(ω̄j).

The norm of a polynomial P (ω) is of course ‖P‖ ≡√
〈P, P 〉µ̄. Next we introduce a sequence of nmin orthog-

onal polynomials {Pi}, which are defined via the Gram-
Schmidt orthogonalization:

P0(ω) ≡ 1, Pj(ω) = ωj −
j−1∑
k=0

〈ωj , Pk〉µ̄
〈Pk, Pk〉µ̄

Pk(ω),

where j = 1, . . . , nmin − 1, 〈ωj , Pk〉µ̄ is to be under-
stood as 〈ωj , Pk〉µ̄ =

∫∞
−∞ ωjPk(ω)µ̄(ω)dω. It is easy to

verify that the above orthogonal polynomial sequence
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{Pj}nmin
j=0 satisfies the following three-term recurrence re-

lation,Gautschi, 2004, Theorem 1.27

Pk+1(ω) = (ω − ω̃k)Pk(ω)−
√
κ̃kPk−1(ω),

where k = 0, . . . , nmin−1, κ̃0 ≡ ‖P0‖ and the convention
P−1 ≡ 0 is assumed. Clearly,

ω̃k =
〈ωPk, Pk〉µ̄
〈Pk, Pk〉µ̄

, k = 0, . . . , nmin − 1, (65)

and

κ̃k =

√
〈Pk, Pk〉µ̄

〈Pk−1, Pk−1〉µ̄
, k = 1, . . . , nmin − 1. (66)

(Note that κ̃k 6= 0, k = 0, . . . , nmin − 1.) According to
(65), we have

ω̃0 =
1

γ̄

nmin∑
j=1

γ̄jω̄j . (67)

By normalizing {Pj}nmin
j=0 , that is define P̃j ≡ 1

‖Pj‖Pj ,

we can get a set of orthonormal polynomial sequence
{P̃j}nmin

j=0 . We define a new set of oscillators to be

c̃0 ≡
nmin∑
j=1

√
γ̄j
γ̄
P̃0(ω̄j)āj , (68)

c̃k ≡
nmin∑
j=1

√
γ̄j
γ̄
P̃k(ω̄j)āj , k = 1, . . . , nmin − 1. (69)

It can be verified that the transformation (68)-(69) is
unitary. Moreover,

c̃0 =
1√
γ̄

nmin∑
j=1

√
γ̄j āj , (70)

and the canonical commutation relations [c̃0, c̃k] =
[c̃0, c̃

∗
k] = 0, [c̃j , c̃

∗
k] = δjk for j, k = 1, . . . , nmin − 1. By

(70),

L̃ =
√
γ̄c̃0. (71)

Define matrices

Q =


P̃0(ω̄1) · · · P̃0(ω̄nmin)

...
. . .

...

P̃nmin−1(ω̄1) · · · P̃nmin−1(ω̄nmin
)

 ≡


P̃0(ω̄)
...

P̃nmin−1(ω̄)


(72)

and Γ ≡ diag
(√

γ̄1
γ̄ , · · · ,

√
γ̄nmin

γ̄

)
. It can be shown that

nmin−1∑
k=0

γ̄i
γ̄
P̃k(ω̄i)P̃k(ω̄j) = δij , i, j = 1, . . . , nmin, (73)

see, e.g.,Gautschi, 2004, Eq. (1.1.14). By (73), it can be
verified that the inverse matrix of the matrix Q turns
out to be Q−1 = Γ2[P̃0(ω̄)† . . . , P̃nmin−1(ω̄)†]. Thus
we have 

c̃0

c̃1
...

c̃nmin−1

 = QΓ


ā1

ā2

...

ānmin

 .
With this, the Hamiltonian of the minimal realization
can be re-written as

nmin∑
j=1

ω̄j ā
∗
j āj =


c̃0

c̃1
...

c̃nmin−1



†

H̃


c̃0

c̃1
...

c̃nmin−1

 .

where, according to (72) and (73), the new Hamiltonian
matrix is

H̃ =



ω̃0

√
κ̃1 0 · · · 0 0

√
κ̃1 ω̃1

√
κ̃2 0 0

0
√
κ̃2 ω̃2

. . .
...

...
. . .

. . .
√
κ̃nmin−2 0

0 0
√
κ̃nmin−2 ω̃nmin−2

√
κ̃nmin−1

0 0 · · · 0
√
κ̃nmin−1 ω̃nmin−1


.

With the new coupling operator J̃ defined (71) and new

Hamiltonian matrix H̃ defined above, the realization
(43)-(46) can be obtained. �

Proof of Lemma 4. We again use induction. The for-
mula is clearly true for n = 1. Let us set Nn =
a0 b1 0

b1 a1
. . .

. . .
. . . bn

0 bn an

 and so Nn+1 =

[
Nn bn+1fn

bn+1f
>
n an+1

]
,

where fn = [0 · · · 0 1]T ∈ Cn+1. Let us write E11 (M)
for the first entry (row 1, column 1) of a matrix M .
We deduce from the Schur-Feshbach formula (63) that

E11

(
N−1
n+1

)
= E11

(
(Nn −

b2n+1

an+1
fnf

>
n )−1

)
. However,

the matrix Nn − (b2n+1/an+1)fnf
>
n is identical to Nn

except that we replace the last row, last column entry
an with an − (b2n+1/an+1), and if by assumption the
relation is true for n we deduce the formula for n + 1.
The formula is true by induction. �
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