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Abstract—Electric load forecasting is essential to improve the

reliability of the ac power line data network and provide optimal Initial Population | Subpopulation
load scheduling in an intelligent home system. In this paper, a (Chromosomes) (Offspring)
short-term load forecasting realized by a neural fuzzy network L

(NFN) and a modified genetic algorithm (GA) is proposed. It
can forecast the hourly load accurately with respect to different

A

day types and weather information. By introducing new genetic -
operators, the modified GA performs better than the traditional Evaluation »  Selection Genetic
GA under some benchmark test functions. The optimal network Operations

structure can be found by the modified GA when switches in the
links of the network are introduced. The membership functions
and the number of rules of the NFN can be obtained automatically.
Results for a short-term load forecasting will be given.

Fig. 1. Traditional GA.

Index Terms—Genetic algorithm (GA), home networking, load of the data signal in a_“ ac pow‘?r l!r.]e IS prOportlona.I o
forecasting, neural fuzzy network (NFN). the load connected to it. The reliability of the power line

data network can be enhanced if the load is kept at an
optimal level through forecasting and power backup. We
can also adaptively set a suitable data transmission rate
OWADAYS, homes should have smart features to ensure  based on the forecasted load condition in order to reduce
a high degree of security, entertainment, and comfort. To  the overhead of data retransmission.
realize these features, reliable channels for the communicatior2) Optimal load scheduling-At present, the peak demand
among electrical appliances and users should be present. More- 0f electricity is met by operating costly auxiliary gener-
over, with a home network, electrical appliances can be used ators, or by purchasing power from other utility compa-
in an efficient way and the wastage of energy can be reduced. nies. The cost for supplying peak power is therefore much
This paper is based on an intelligent home system [15]. In this  higher than that for supplying the average power. A re-
system, the ac power line network is used not only for supplying ~ duction in the peak value of electricity demand can be
electrical power, but also serving as the data communication —achieved if we can realize load forecasting, and schedule
channel for electrical appliances. Once an electrical appliance the demands on the utility company accordingly. This has
is plugged into a power socket, digital data can be transferred to be supported by batteries installed in the intelligent
through the socket. With this ac power line data network, a home to share the load demand.
short-term load forecasting can be realized. An accurate loadcomputational intelligence techniques have been applied in
forecasting can bring the following benefits to the intelligerdaily load forecasting. Neural networks have been considered as
home. a very promising tool to short-term load forecasting [18]—[25],
1) Increasing the reliability of the AC power line databut their slow convergence time and poor ability of processing
network—On using the ac power line as the networkingnguistic information may cause some problems. In recent
medium, we may suffer from the possible low impedanc&ars, fu_zzy_ logic has been_used to deal with variablt_a linguistic
of the power line in the operating bandwidth [16], [17]nformat|on in load forecasting [26], [27]. By processing fuzzy
for data transmission. When this occurs, the maximutformation, reasoning with respect to a linguistic knowledge
transmission rate, the reliability and the throughput of tfe@se can be done. In [18]-{25], the gradient-descent (GD)
ac power line data network will decrease. The attenuatiGigorithm was used to train the neural network parameters.
However, the common problems of convergence to local
minima and sensitivity to initial values persist. Global search
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greenhouse climate control [11], modeling and classification
[12], etc.
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7'y

A 4

. Yes New Genetic
Evaluation Selection Operations

No 1

Use previous
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Fig. 2. Modified GA.

In this paper, we develop a neural fuzzy system with a modified Initial Population

GA for short-term load forecasting in an intelligent home. New ¢ initial population is a potential solution sBt The first
genetic operators are introduced in the modified GA. It will bgat of population is usually generated randomly

shown that the modified GA performs better than the traditional

GA[1], [2], [5] based on some benchmark test functions [3], [4], I = {P1, P2, Ppop_size } 1)
[6], [14]. The modified GA needs only one user-inputparameter Pi = [pi, Pis  *** Pi; """ Dino_varels

(population size')z instead .of three, for its implementatiop. This i=1,2,...,pop_size; j=1,2,...,novars (2)
makes the modified GA simple and easy to use, especially for pa’ra’{nin <p; < paral. i=1.2,... pop.size:

those users who do not have too much knowledge on tuning.
A neural fuzzy network (NFN) with rule switches is proposed.
For a common NFN, the number of possible rules may be tathere pop_size denotes the population sizepo_vars
high. This makes the network complex while some rules may denotes the number of variables to be tuned; i =
unnecessary. Thus, the rule switches are proposed to facilitht, . . ., pop_size; j = 1,2,...,no_vars, are the parameters
the tuning for the optimal number of rules using the modifietb be tuned; andbaral; and paral . are the minimum
GA. This implies that the cost of implementing the proposegnd maximum values of the parameter. It can be seen
NFN can be reduced. from (1)—(3) that the potential solution sét contains some
This paper is organized as follows. The modified GA wilFandidate solutiong; (chromosomes). The chromosorpe
be introduced in Section Il. The performance of the modifiegPntains some variables, (genes).
GA with respect to some test functions will be discussed | .
Section Ill. The proposed NFN is presented in Section I\g." Evaluation
A short-term load forecasting realized by the proposed NFN Each chromosome in the population will be evaluated by a
tuned by the modified GA will be presented in Section \defined fitness function. The better chromosomes will return

Simulation results will be given. A conclusion will be drawrhigher values in this process. The fitness function to evaluate
in Section VI. a chromosome in the population can be written as

fitness= f(pi). 4)
Il. MODIFIED GA ) . o
- ] o The form of the fitness function depends on the application.
The traditional GA process [1], [2], [5] is shown in Fig. 1.

First, a population of chromosomes is created. Second, the chp-Selection

mosomes are evaluated by a defined fitness function. Th'rd_'Two chromosomes in the population will be selected to un-

some (.)f the chromosom_es are se_lected for performing gen%té(fgo genetic operations for reproduction. It is believed that the
qperauons. Forth, genetic operations of.crossover and. m”ﬁ?@h potential parents will produce better offspring (survival of
tion are per.fo'r.med. The producgd offspring replace their P3fie best ones). The chromosome having a higher fitness value
ents in the initial population. This GA process repeats unt"éﬁould have a higher chance to be selected. The selection is done

user-defined criterion is reached. In this paper, the traditiongl . - o
! irst assigning a probability; to the chromosomp;
GA is modified and new genetic operations are introducedr@ gningap ¥ P

improve the performance. Such a modified GA processis shown . _ f(pi) i=1,2,...,popsize. (5)

in Fig. 2. Its details are given as follows. Z;‘?":”l‘“”‘ fp;)’

ji=1,2,...,nowars (3)
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Fig. 3. Simulation results of the modified and traditional GAs. Average fitness values of the test furfetigiisfs(x) obtained by the modified (solid lines)
and traditional (dotted lines) GAs. (#)(x). (b) f2(x). (c) fa(x). (d) f1(x). (€) f5(x).

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 00:35 from IEEE Xplore. Restrictions apply.



1308 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 6, DECEMBER 2003

The cumulative probability; for the chromosome; is defined TABLE |
SIMULATION RESULTS OF THEMODIFIED AND THE TRADITIONAL GAS
as
BASED ON THEDE JONG’S TEST FUNCTIONS
7
o . . Modified GA Traditional GA
qi = Z 45, ©=1,2,..., pop_size. (6) Test Functions Fitness Value Fitness Value
j=1 fi(x) 0.999955 0.999382

Based on a randomly generated nonzero floating-point numbe: f2(x) 0.984039 0.810813
d € [0 1] for each chromosome, the chromosopieis se- f:(x) 0.583333 0.520833
lected if(ji_l <d< (jLL =1,2,... 7pOp_SiZ(’,, and(jo = 0. f.(x) 0.737526 0.14211
Thus, a chromosome having a largéip;) will have a higher 7. 0.995509 0582915

chance to be selected. Consequently, the best chromosomes wi-
get more copies, the average will stay and the worst will die off.
In the selection process, two chromosomes will be selected tn
undergo the genetic operations.

D. Genetic Operations

The genetic operations are to generate some new chrom
somes (offspring) from their parents after the selection proces
They include the averaging and the mutation operations. Th
averaging operation is mainly for exchanging information from
the two parents obtained in the selection process. The operatit
is realized by taking the average of the parents. For instance, ,
the two selected chromosomes ptieandp., the offspring gen-
erated by the averaging process is given by

y

P1 + P2
0s =[08] OS2 -+ OSno_vars| = — @)

This offspring (7) will then undergo the mutation operation
that changes the genes of the chromosomes. Consequently, -
features of the chromosomes inherited from their parents can't
changed. Three new offspring will be generated by the mutatio
operation as defined by

Fig. 4. Proposed neural fuzzy network.

nos] = [Osjl Osé e OSZLO_’UCLTS}
+ [blAnosl b2AnOSQ ot bno_varsAnOSno_vars]7

) =1,2,3 (8

J 23 (8) “(d-1,h-1) ———»
whereb;, i = 1,2, ..., no_vars canonly take the value of 0 or 1, L d-1h |
Anos;,i =1,2,...,novars are randomly generaf[ed floating Purposed Neural
numbers such thapara’ ; < os] + Anos; < para’ ... The L'(d-1h+1) —— Fuzzy Network
first new offspring(j = 1) is obtained according to (8) With . temp. at previous day for load -1 (d.h)
that only oneb; (: being randomly generated within the range’ forécastlﬂg
is allowed to be 1 and all the others are 0. The second né ave. temp. at present day ————— (7 inputs-
offspring is obtained according to (8) where somechosen . . ciindex at previous 1 output)
randomly are set to be 1 and others are zeros. The third ni day ’
offspring is obtained according to (8) with dlj = 1. These  av rainfall(iindex atpresent
three new offspring will then be evaluated using the fitnes ~

function of (4). The one with the largest fitness valfjewill
replace the chromosome with the smallest fithess véluim
the population iff; > fs.

After the operation of selection, averaging, and mutation, a
new population is generated. This new population will repeaffspring generated may not be better than their parents. This
the same process. Such an iterative process can be terminatgaies that the searched target is not necessarily approached
when the result reaches a defined condition, e.g., the changenainotonically after each iteration. Under the proposed modified
the fitness values between the current and the previous iterat{®A process, however, jf; < f5, the previous population is used
is less than 0.001, or a defined number of iteration has besgain in the next genetic cycle. A more efficient search may then
reached. For the traditional GA process depicted in Fig. 2, the obtained.

Fig. 5. Proposed neural fuzzy network for load forecasting.
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TABLE I
LOAD FORECASTINGRESULTS FORWEDNESDAY USING THE PROPOSEDNFN WITH MODIFIED AND TRADITIONAL GAS AFTER LEARNING

Trained with modified GA Trained with traditional GA
Hour Fitness value No. of rules Fitness value No. of rules
1 0.988313 66 0.987183 61
2 0.991696 08 0.990321 67
3 0.994460 63 0.992122 58
4 0.988092 67 0.987987 69
5 0.991691 74 0.990212 71
6 0.991463 67 0.989102 63
7 0.992417 75 0.990124 70
8 0.981700 71 0.977821 68
9 0.986421 57 0.982099 62
10 0.983249 74 0.978106 73
11 0.988425 066 0.984239 65
12 0.987979 63 0.982205 63
13 0.982555 69 0.978265 70
14 0.984378 70 0.980639 68
15 0.984158 74 0.980243 77
16 0.981027 63 0.975093 69
17 0.983318 67 0.979036 65
18 0.987679 70 0.985643 06
19 0.979401 57 0.977232 62
20 0.982569 66 0.979023 65
21 0.984503 68 0.982637 63
22 0.988063 70 0.985302 04
23 0.978526 67 0.974009 70
24 0.980531 64 0.977875 68
Average: 0.985942 67.3 0.982772 66.5
TABLE Il
LoAD FORECASTINGRESULTS FORWEDNESDAY USING THE TRADITIONAL NFN WITH MODIFIED AND TRADITIONAL GAS AFTER LEARNING
Trained with modified GA Trained with traditional GA
Hour Fitness value No. of rules Fitness value No. of rules
1 0.985742 128 0.979566 128
2 0.989217 128 0.987982 128
3 0.982123 128 0.981278 128
4 0.977821 128 0.973886 128
5 0.984974 128 0.982847 128
6 0.984820 128 0.982845 128
7 0.980012 128 0.978329 128
8 0.984933 128 0.989166 128
9 0.977932 128 0.977387 128
10 0.980231 128 0.979038 128
11 0.988219 128 0.986572 128
12 0.979236 128 0.977390 128
13 0.975237 128 0.972502 128
14 0.982367 128 0.984302 128
15 0.974743 128 0.976310 128
16 0.973432 128 0.970608 128
17 0.980023 128 0.976288 128
18 0.981623 128 0.980906 128
19 0.977834 128 0.975917 128
20 0.980323 128 0.977832 128
21 0.983234 128 0.986197 128
22 0.988346 128 0.988051 128
23 0.984437 128 0.986947 128
24 0.977732 128 0.977180 128
Average: 0.981441 128 0.980389 128
Ill. BENCHMARK TEST FUNCTIONS probably the most widely used test function. It is smooth, uni-

modal, and symmetric. The performance on this function is a
De Jong'’s Test Functions [3], [4], [6], [17] are used as the testeasure of the general efficiency of an algorithfinis a Rosen-
functions to examine the applicability and efficiency of the modsrock function of which the optimum is located in a very narrow
ified GA. A brief description of each function and the problem itidge. The tip of the ridge is very sharp, and it runs around a
represents are given as followfs.is a sphere function, which is parabola. Algorithms that cannot discover good directions will
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TABLE IV
LOAD FORECASTINGRESULTS FORSUNDAY USING THE PROPOSEDNFN WITH MODIFIED AND TRADITIONAL GAS AFTER LEARNING

Trained with modified GA Trained with traditional GA
Hour Fitness value No. of rules Fitness value No. of rules
1 0.993858 64 0.992123 66
2 0.989306 64 0.988364 63
3 0.987975 80 0.983323 77
4 0.994966 80 0.992310 79
5 0.991833 74 0.987832 79
6 0.989173 67 0.985623 65
7 0.989657 66 0.987345 69
8 0.981039 76 0.977438 70
9 0.987334 75 0.985434 76
10 0.980280 70 0.977435 74
11 0.982896 66 0.983484 68
12 0.987385 00 0.985435 65
13 0.978656 80 0.976546 5
14 0.976452 68 0.974504 74
15 0.983945 75 0.985645 79
16 0.978974 69 0.979450 64
17 0.975966 74 0.974771 69
18 0.982075 56 0.983054 60
19 0.977009 68 0.976859 04
20 0.983535 62 0.984095 67
21 0.989151 70 0.986780 65
22 0.986421 64 0.982067 68
23 0.978060 68 0.978103 63
24 0.985058 74 0.983088 75
Average: 0.984625 69.6 0.982963 69.7
TABLE V

LOAD FORECASTINGRESULTS FORSUNDAY USING THE TRADITIONAL NFN WITH MODIFIED AND TRADITIONAL GAS AFTER LEARNING

Trained with modified GA Trained with traditional GA
Hour Fitness value No. of rules Fitness value No. of rules

1 0.991876 128 0.991465 128
2 0.989032 128 0.990133 128
3 0.982231 128 0.979135 128
4 0.985364 128 0.981797 128
5 0.989093 128 0.988750 128
6 0.985749 128 0.983563 128
i 0.988763 128 0.988964 128
8 0.979126 128 0.978053 128
9 0.987328 128 0.987016 128
10 0.976432 128 0.975352 128
11 0.982983 128 0.982571 128
12 0.980234 128 0.975890 128
13 0.972349 128 0.971394 128
14 0.975095 128 0.974831 128
15 0.981370 128 0.978184 128
16 0.976061 128 0.972019 128
17 0.973525 128 0.971706 128
18 0.970192 128 0.961152 128
19 0.975578 128 0.974105 128
20 0.977232 128 0.976875 128
21 0.981096 128 0.978810 128
22 0.984092 128 0.981486 128
23 0.984536 128 0.986915 128
24 0.982311 128 0.981015 128
Average: 0.981319 128 0.979633 128

perform poorly in this problemfs is a step function, which is with noise. The Gaussian noise causes the algorithm to never
a representative of flat surfaces. Flat surfaces are obstaclesgietrrthe same value at the same point. Algorithms that do not do
optimization algorithms because they do not give any informaell in this function will perform poorly on noisy datg; is a

tion about the search direction. Unless the algorithm has a vddxholes function that has many local minima (25 in this case).
able step size, it can be stuck on one of the flat surfaftes Many standard algorithms can be stuck in the first maximum
a quartic function, which is a simple unimodal function paddettiey find.
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TABLE VI
TRAINING ERROR AND FORECASTINGERROR (IN MAPE) FOR WEDNESDAY UNDER THE PROPOSEDNFN TRAINED BY THE MODIFIED AND TRADITIONAL GAS
Trained with modified GA Trained with traditional GA
Hour Ave. training error Ave. forecasting error Ave. training error Ave. forecasting error
(Week 1-12) (Week13-14) (Week 1-12) (Week13-14)

1 1.1826 0.7216 1.2983 0.8802

2 0.8374 0.3664 0.9774 0.4636
3 0.5564 0.0665 0.7941 0.0996
4 1.2072 0.6502 1.2159 0.8007
3 0.8379 1.5986 0.9885 1.9593
6 0.8611 1.2652 1.1018 1.5427
7 0.7641 0.5917 0.9975 0.7219
8 1.8641 1.7350 2.2682 2.1156

9 1.3765 1.6626 1.8227 2.0226
10 1.7037 1.7857 2.2384 2.1871
11 1.1710 2.8853 1.6013 3.5075
12 1.2167 0.3422 1.8117 0.4246
13 17755 1.6810 2.2218 2.0492
14 1.5870 0.5044 1.9743 0.6243
15 1.6097 1.8949 2.0155 2.3165
16 1.9340 0.7740 2.5543 0.9512
17 1.6965 2.5373 2.1413 3.0840
18 1.2475 2.0180 1.4566 2.4696
19 2.1033 1.8034 2.3298 2.2057
20 1.7740 0.8074 2.1426 0.9876
21 1.5741 1.6664 1.7670 2.0261
22 1.2082 1.2375 1.4917 1.5115
23 2.1945 1.1769 2.6685 1.4408
24 1.9856 2.7392 2.2626 3.3325
Average: 1.4279 1.3546 1.7559 1.6552

The test functions are denoted Wy(x),7 = 1,2,3,4,5, wherea;; is shown atthe bottom of the next pages 500, and

wherex = [z1 2 -+ ZTno_s|. no_z iS an integer denoting the minimum point is affs(—32, —32) ~ 1.
the dimension of the vectot It should be noted that the minimum values of all functions
n in the defined domain are zero except ff(x). The fitness
fi(x) = fo, =512 <w; <5.12 (9) function for f; to f, is defined as
i=1 . 1 .
wheren = 3 and the minimum point is af; (0,0,0) = 0 fitness = 1+ fi(x)’ (=L ()
n—l 5 and the fitness function fof; is defined as
fax) =3 (100 x (wig1 — 32)° + (i — 1)2) 7 ]
i=1 fitness= ——. (15)
—2.048 < z; < 2.048 (10) f5(x)
o o The modified GA goes through these five test functions.
wheren = 2 and the minimum point is af,(1,1) = 0. The results are compared with those obtained by the tradi-
n tional GA [5]. For each test function, the population size is
fa(x)=> floor((z; +0.5)%),  —512<x; <5.12 20. Each parameter of the traditional GA is encoded into
i=1 a 40-bit number in the chromosome, and the probabilities

(11)
wheren = 5 and the minimum pointis a(0,...,0) = 0. The

value of the floor functionfloor( - ), is obtained by rounding
down the argument to the nearest smaller integer.

of crossover and mutation are 0.25 and 0.03, respectively.
The initial values ofx in the population for a test function
are set to be the same. For tests 1-5, the initial values are
[1 1 1],[0.5 0.5],[1 --- 1],[0.5 --- 0.5] and [10 10],
respectively. The results of the average fitness values over 30
simulations of the modified and traditional GAs are shown in
(12) Fig. 3 and tabulated in Table I. It can be seen from Fig. 3 that
the performance of the modified GA is better than that of the
wheren = 30 and the minimum point is af;(0,...,0) = 0. traditional GA.
Gauss(0, 1) is obtained by randomly generating a floating-point

fa(x) = Zz x &} + Gauss(0, 1), —-1.28 <x; <1.28
i=1

number between 0 and 1. IV. TUNING OF NFN USING THE MODIFIED GA
-1
1 25 1 In this section, tuning of the membership functions and the
f5(x) = 500 + Z - 3 o ) number of rules of an NFN using the modified GA will be pre-
=10+ i (@i — aij) sented. The optimal number of rules can be found by introducing

—65.356 < x; < 65.356 (13) switches in some links of the NFN.
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TABLE VII
TRAINING ERROR AND FORECASTINGERROR (IN MAPE) FOR WEDNESDAY UNDER THE TRADITIONAL NFN TRAINED BY THE MODIFIED AND TRADITIONAL GAS

Trained with modified GA Trained with traditional GA
Hour Ave. training error Ave. forecasting error Ave. training error Ave. forecasting error
(Week 1-12) (Weekl13-14) (Week 1-12) (Week13-14)
1 1.4464 1.3342 2.0860 1.4611
2 1.0901 2.6273 1.2164 2.9000
3 1.8202 1.2012 1.9079 1.3257
4 2.2682 0.7619 2.6814 0.8206
5 1.5255 1.6326 1.7452 1.8025
6 1.5414 1.0802 1.7454 1.1866
7 2.0396 0.7136 2.2151 0.7691
8 1.5297 0.9747 1.0953 1.0584
9 2.2566 1.5496 2.3136 1.6954
10 2.0168 1.8352 2.1411 2.0148
11 1.1921 4.2288 1.3611 4.6699
12 2.1204 0.8581 2.3132 0.9426
13 2.5392 0.5808 2.8275 0.6353
14 1.7950 2.7824 1.5948 3.0533
15 2.5911 3.2574 2.4265 3.5760
16 2.7293 4.6023 3.0282 5.0777
17 2.0384 2.4358 2.4288 2.6843
18 1.8721 4.6344 1.9466 5.1140
19 2.2668 2.2953 2.4677 2.5192
20 2.0072 1.0399 2.2671 1.1266
21 1.7052 0.9028 1.3996 0.9833
22 1.1791 3.5312 1.2094 3.8948
23 1.5809 0.8890 1.3226 0.9808
24 2.2775 2.6093 2.2828 2.8691
Average: 1.8910 2.0149 2.0010 2.2150
A. NFN With Rule Switches of input variables. The behavior of the NFN is governedpby

We use a fuzzy associative memory (FAM) [28] type of ruld/22Y rules in the following format:

base for the NFN. An FAM is formed by partitioning the uni- R, :IF 21 (t) is A1, (21(t)) AND mo(¢) is Aay, (22(t))
verse of discourse of each fuzzy variable according to the level AND --- AND 2,,(1) i$ Ang, (20 (1))

of fuzzy resolution chosen for the antecedents, thereby gener- . J

ating a grid of FAM elements. The entry at each grid element in THEN y(t) iswy, t=1,2,...,u a7
the FAM corresponds to a fuzzy premise. An FAM may, thenvhereu denotes the number of input—output data pajrs:

be interpreted as a geometric or tabular representation of afuzzg, . . ., p is the rule number; and, is the output singleton of
logic rule base. For an NFN, the number of possible rules mayle g. From Fig. 4, it can be seen that

be too large. This makes the network complex while some rules n

may be not necessary. The implementation cost is also unneces- p= H m; (18)
sarily high. Thus, a multiple-input—single-output NFN (Fig. 4) is i=1

proposed which can have an optimal number of rules and mewherem; is the number of membership functions of input vari-
bership functions. The main difference between the proposgdlex; andg; € [1,...,m;],i = 1,...,n.

network and the traditional network is that a unit step function In this network, the membership function is a bell-shaped
is introduced to some links of the NFN. The unit step functiorfeinction as given by

is defined as —(ai(0)=31,,)?
0 fc <0 Aig(z:(t) =e 27, (29)
5(§):{1’ T;—O, cER. (16) o (2i(1))
’ e > where parameter;,, ando;,, are the mean value and the stan-

F,\cliard deviation of the membership function, respectively. The

This is equivalent to adding a switch to each rule in the N Sgrade of the membership of each rule is defined as

Referring to Fig. 4, we define the input and output variables a:
andy, respectively, wheré = 1,2,...,n andn is the number i () = A1g, (21(¢)) - Aog, (z2(t)) - --- - Apg. (za(t)). (20)

a={ay} = -32 —-16 0 16 32 -32 -16 O 16 32

oUW 32 32 32 32 32 -16 —-16 —-16 —-16 -—16
-32 -16 0 16 32 -—-32 -16 O 16 32 -32 -—-16 0 16 32
0 0O 0 0 0 16 16 16 16 16 32 32 32 32 32
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TABLE VIII
TRAINING ERROR AND FORECASTINGERROR (IN MAPE) FOR SUNDAY UNDER THE PROPOSEDNFN TRAINED BY THE MODIFIED AND TRADITIONAL GAS

Trained with modified GA Trained with traditional GA
Hour Ave. training error Ave. forecasting Ave. training error Ave. forecasting
(Week 1-12) error (Week13-14) (Week 1-12) error (Week13-14)
1 0.6180 1.5162 0.7940 1.7460
2 1.1081 1.7387 1.1773 1.9986
3 1.2171 2.3829 1.6960 2.7326
4 0.5060 0.5548 0.7750 0.6384
5 0.8235 0.7548 1.2318 0.8785
6 1.0945 2.0746 1.4587 2.3817
7 1.0451 2.1525 1.2817 2.4751
8 1.9327 1.4970 2.3083 1.7193
9 1.2828 0.2303 1.4781 0.2696
10 2.0117 0.0847 2.3086 0.1037
11 1.7402 1.1305 1.6793 1.3086
12 1.2776 0.4350 1.4780 0.5023
13 2.1809 1.9984 2.4017 2.2984
14 2.4116 1.3677 2.6163 1.5667
15 1.6317 2.3624 1.4564 2.7121
16 2.1478 0.5613 2.0981 0.6569
17 2.4626 2.6652 2.5882 3.0579
18 1.8252 1.1180 1.7238 1.2810
19 2.3532 2.1587 2.3689 2.4838
20 1.6741 0.6842 1.6162 0.7937
21 1.0969 1.2435 1.3397 1.4267
22 1.3766 2.1614 1.8260 2.4830
23 2.0194 1.7320 2.2387 1.9944
24 1.5169 3.4776 1.7203 3.9980
Average: 1.5564 1.5034 1.7332 1.7294
The output of the neural fuzzy netwogkt) is defined as V. SHORT-TERM LOAD FORECASTING SYSTEM
§:1 pg(t)wgd(sy) 01 It is desired to forecast the load demand in a home with
y(t) = S (1) (21) respect to the week’s day number and the hour number. The
7 load forecasting system involves 168 multi-input—single-output
whereg, denotes the rule switch parameter of g rule. NFNs, one for a given week’s day number and an hour number
(7 x 24 = 168). The most important task in the short-term
B. Tuning load-forecasting problem is to select the input variables. The

The proposed NFN can be empk)yed to learn an input_outrfg[ecasting result is affected by two main kinds of information.
relationship of an application using the modified GA. The déne is the historical load data and the other is the uncertain

sired input—output relationship is described by information such as the average temperature and rainfall index
(weather condition) [21], [29], [30].
yi(t) = q(x%(t)), t=1,2,...,u (22) 1) Historical Load Data: The hourly load values for
p ) ) 4 yesterday were used as historical load inputs. These historical
wr;ere y (t) s . the desired output, x°(t) = hourly loads provides the shape and magnitude reference for
[#5(#) 5(t) --- xp(1)] s the desired input vector, amfl -)  the forecasted load. They reflect the habits of the family on
is an unknown nonlinear function. The fitness function ISower consumption.
defined as 2) Temperature:The average temperature at the previous
. day and the present day are used as inputs in this forecasting
Jitness = 1+err (23) system. The value of the average temperature of the present
where day is gotten from the temperature forecast of the weather
1 |yd(t) — y(t observatory.
= ; % (24) 3) Rainfall Index: The average rainfall indexes of the pre-

vious day and the present day are used as two inputs in this fore-
The objective is to minimize the mean absolute percentage ereasting system. The range of the rainfall index is from 0 and 1.
(MAPE) of (24) using the modified GA by setting the chromo® represents no rain and 1 represents heavy rain.

some to bdz;,, i, ¢,]foralli,g;,g. The range ofithessin One of the 168 proposed NFNs for daily load forecasting
(23) is [0, 1]. A larger value ofitnessindicates a smalleerr. is shown in Fig. 5. It is a 7-input—1-output network with
By using the proposed neural fuzzy network and the modifiedle switches. The inputs; of the proposed NFN are:
GA, an optimal neural fuzzy network in terms of the number of, = L%(d — 1,h — 1) which represents the load value at
rules and the membership functions can be obtained. the previous hour of the previous dagy = L(d —1,h)
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TABLE IX
TRAINING ERROR AND FORECASTINGERROR (IN MAPE) FOR SUNDAY UNDER THE TRADITIONAL NFN TRAINED BY THE MODIFIED AND TRADITIONAL GAS

Trained with modified GA Trained with traditional GA
Hour Ave. training error Ave. forecasting Ave. training error Ave. forecasting
(Week 1-12) error (Week13-14) (Week 1-12) error (Week13-14)

1 0.8191 0.2025 0.8606 0.2011
2 1.1090 2.1124 0.9965 2.2285
3 1.8090 5.6686 2.1310 5.9949
4 1.4853 1.3020 1.8541 1.3666
5 1.1027 0.7114 1.1378 0.7444
6 1.4457 4.9620 1.6711 5.2338
7 1.1365 2.2162 1.1159 2.3351
8 2.1319 0.3739 2.2439 0.3854
9 1.2835 0.7060 1.3155 0.7347
10 2.4137 1.8500 2.5271 1.9451
11 1.7312 0.6123 1.7738 0.6324
12 2.0165 0.1286 2.4705 0.1246
13 2.8437 2.9658 2.9448 3.1241
14 2.5541 1.3580 2.5819 1.4254
15 1.8984 3.0919 2.2302 3.2611
16 2.4526 0.4710 2.8787 0.4975
17 2.7195 3.2347 29118 3.4216
18 3.0724 1.4232 4.0418 1.4938
19 2.5033 2.5159 2.6583 2.6583
20 2.3298 2.6656 2.3672 2.8132
21 1.9268 1.6891 2.1649 1.7761
22 1.6165 2.1979 1.8863 2.3166
23 1.5707 2.1157 1.3258 2.2288
24 1.8008 3.3468 1.9352 3.5402
Average: 1.9037 1.9967 2.0844 2.1035

which represents the load value at the forecasting hour of thieparameters are set at< z,,, < 1,0 < 05,5, < 0.4 and
previous day,zzs = L%(d—1,h+ 1) which represents the —1 < ¢, < 1. The chromosomes used for the modified GA
load value at the next hour of the previous day,= average are[zi4,0i4,5,],7 =1,...,7;9; = 1,2;¢9 = 1,...,128. Initial
temperature at the previous day, = average temperature atvalues ofz;,, , 04,,<, 0f 0.5, 0.2, and 1, respectively, are used.
the present day;s = average rainfall index at the previousThe number of the iterations to train the NFN is 2000. For com-
day, andz; = average rainfall index at the present day. Thearison, another proposed NFN trained by the traditional GA,
outputy(t) = L(d,h), whered = 1,2,...,7, is the week's and a 7-inputs—1-output NFN without rule switches trained by
day number (e.gd = 1 for Monday,d = 7 for Sunday), the modified GA and traditional GA, are also applied for the
andh = 1,2,...,24 is the hour number. One should note théoad forecasting. The common network parameters are kept un-
special case thatif = 1, (d — 1) should be 7L(d, h) is the changed. In addition, a bitlength of 9 is used for each parameter
forecasted load for day; hour+. coding. The probabilities of crossover and mutation for the tra-
Data of 12 weeks (week 1 to week 12) for learning and dathtional GA are 0.65 and 0.05, respectively.

of two weeks (week 13 to week 14) for testing are prepared.The load forecasting results are tabulated in Tables 11-V.
The number of membership function for each input variable Table 1l shows the load forecasting results for Wednesday using
2 (i.e.,m; = 2,1 = 1,2,...,7) such that the number of rulesthe proposed NFNs trained by the modified GA and traditional
isp = 27 = 128. Referring to (21), the proposed NFN used foGA, respectively. Table Il shows the load forecasting results

the load forecasting of a particular hour is governed by for Wednesday using traditional NFNs without rule switches
128 trained by the modified GA and traditional GA, respectively.

y(t) = 2g=1 /1‘298@)”96(%). (25) Table IV shows the load forecasting results for Sunday using

Zgzl g(t) the proposed NFNs trained by the modified GA and traditional

GA, respectively. Table V shows the load forecasting results for

The fitness function for training is defined as follows Sunday using traditional NFNs without rule switches trained by

Fitness = 1 (26) the modified GA and traditional GA, respectively. From these
14 err four tables, we observe that the proposed NFN provides better

1 &2 ly(t) — y(t)] results than the traditional NFN in term of the fitness value and

e =15 2 T(t) (27)  number of rules. In addition, the proposed GA also produces

better results than the traditional GA. The average numbers of
Equation (25) is one of the 168 NFNs in the proposed loadles of the proposed NFNs trained by the modified GA for
forecaster. load forecasting on Wednesday and Sunday are 67.3 and 69.6,
The modified GA is employed to tune the parameters amdspectively. These imply a 47.4% and 45.64% reduction of the
structure of the NFNs. The population size is 10. The boundsmber of rules after learning.
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rules can be optimized by applying the modified GA. The cost
of implementing the NFN can be reduced. A short-term load
forecasting in an intelligent home has been realized using the
proposed network. The optimal number of rules and the network
parameters are tuned by the modified GA. The performance of
the proposed network is satisfactory, as the average errors are
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Fig. 6. Actual load (solid line) and forecast results for Wednesday (Week 13) (3]
from the proposed forecasting system (dashed line) and the traditional

forecasting system. (6]
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Fig. 7. Actual load (solid line) and forecast results for Sunday (Week 13) from
the proposed forecasting system (dashed line) and the traditional forecasting

system. [16]

Tables VI-IX show the average training error (MAPE) based17]
on data of week 1 to week 12 and the average forecasting error
(MAPE) based on data of week 13 to week 14 for Wednesdaj1 8]
and Sunday, respectively. From these tables, we can see that
the proposed NFN trained by the modified GA gives the beshg]
results. Figs. 6 and 7 show the forecasted daily load curve on
Wednesday and Sunday of Week 13, respectively. We can con-
clude that the proposed NFN offers satisfactory performance iQO]
load forecasting.

VI. CONCLUSION 24

In this paper, a modified GA with new genetic operations hag,,,
been proposed. Based on the benchmark De Jong’s Test Func-
tions, it has been shown that the modified GA performs better,
than the traditional GA. An NFN has been proposed in whicst]
a switch is introduced in each fuzzy rule. Thus, the number of

lower than 2%.
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