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Abstract ~ This paper presents the stability analysis of fuzzy
model based nonlinear control systems, and the design of
nonlinear gains and feedback gains of the nonlinear controller
using genetic algorithm with arithmetic crossover and non-
uniform mutation. A stability condition will be derived based
on Lyapunov's stability theory with a smaller number of
Lyapunov conditions. The solution of the stability conditions
are also determined using GA. An application example of
stabilizing a cart-pole type inverted pendulum system will he
given to show the stabilizability of the nonlinear controller.

1. INTRODUCTION

Fuzzy control has been a hot research topic. Despite the
lack of a concrete theoretical basis, many successful
applications on fuzzy control were reported in various areas
such as, sludge wastewater treatment [1], control of cement
kiln [2], etc. However, without an in-depth analysis, the
design may come with no guarantees of system stability and
good system performance. Recently, stability analysis of
fuzzy control systems based on a TSK (Takagi-Sugeno-Kang)
fuzzy plant model [3, 7] was reported. The advantage of
using the fuzzy model is that a nonlinear plant can be
represented as a weighted sum of linear sub-systems, so that
some linear or nonlinear control theories can possibly be
applied to design the controller. Different stability conditions
for this class of fuzzy control systems were derived. In [4, 5-
7, 16, 19], the Lyapunov stability theory was employed to
analyze the system stability. Sliding mode theory was
employed in [8] to help the analysis. In [13-15], the stability
conditions were derived in terms of some matrix measures of
the system matrices. An LMI-based design of fuzzy
controllers can be found in [10-12]. A switching controller
[17] and other controller {16, 18] were also proposed to
tackle nonlinear systems based on the TSK fuzzy plant model.

Genetic Algorithm (GA) is a powerful random search
technique to handle optimization problems [1-6, 17]. This is
especially useful for complex optimization problems with a
large nrumber of parameters that make global analytical
solutions difficult to obtain. It has been widely applied in
different areas such as fuzzy control [20], tuning of
parameters of neural networks [21], eBook applications [22],
load forecasting [23), etc.

In this paper, we focus on the system stability and present
a stability analysis of fuzzy model based nonlinear control
systems. A nonlinear controller is proposed to control a
system represented by a TSK fuzzy plant model [3]. The
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proposed controller has a similar structure of the fuzzy
controller reported in [6]. The main difference is that the
weights in the nonlinear controller are signed but those in the
fuzzy controller {6] must be positive (because they are the
membership function values). Wang et. al. derived a stability
condition for a TSK fuzzy model based systems using
Lyapunov stability theory [6]. A sufficient condition for the
system stability is obtained by finding a common Lyapunov
function for all the fuzzy sub-control systems. For a TSK
fuzzy plant model with p rules, a fuzzy controller with p rules
{p sub-controllers) is used to close the feedback loop, and
p(p+1)/2 Lyapunov conditions are required. In this paper, the
numbers of sub-controllers of the nonlinear controller need
not be the same as that of the TSK fuzzy plant model. By
allowing both positive and negative weighting values in the
proposed controller, the number of Lyapunov conditions can
be reduced to p. We also provide a way of designing the
nonlinear gains and the feedback gains of the nonlinear
controller.  The task of finding the common Lyapunov
function can readily be formulated into a linear matrix
inequality (LMI) problem [9]. The GA with arithmetic
cressover and non-uniform mutation [27] will be used to help
finding the solution of the derived stability conditions, and
determine the feedback gains of the sub-controllers.

II. Fuzzy PLANT MODEL AND NONLINEAR CONTROLLER
We consider a multivariable nonlinear control system

comprising a TSK fuzzy plant model and a nonlinear
controller connected in closed-loop.

A. TSK Fuzzy Plant Model
Let p be the number of fuzzy rules describing the nonlinear
plant. The i-th rule is of the following format,

Rulei:IF f£(x(f)) is M; and ... and f, (x(#)) is M,
THEN x(1) = A,x(t)+B, u(t) (1)
where M, is a fuzzy term of rule i comresponding to the
function f (x(¢)), a=1,2,.., ¥i=12, ., p, Fisa
A, eR™ and B, eR™

constant system and input matrices respectively; x(f) e ™

positive integer; are known

is the system state vector and u{r) € R™" is the input vector.
The system dynamics is described by,

x(t)= i w,(x{())A,x(t) + B.u(r)), @)
where,
S @)= 1, wseneo 1] forall &
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Hogg ()% g1, (o, (1)) %

g(um (6,0 g ey )X (5, )

is a known nonlinear function and My (x, (), =12, ..

X o (2, (1))
W, (x(1)) = :

4)

n, are known membership functions corresponding to the
fuzzy terms M’ . (Thus, we assume that the TSK fuzzy plant
model is known.)

B. Nonlinear Controller

A nonlinear controller consisting of ¢ sub-controllers is
proposed to close the feedback loop. The control output of
the nonlinear controller is defined as,

u() = Xm, (xE)G X0 ()

where G, eR™ , j=1,12, ..

vectors that are to be designed, and

., ¢, are the feedback gain

>om,x() =1 ©)
J=l
m. (x(t)) M (7)
Zu,,. (x(1))
k=1

is a nonlinear function of x(#), and u,,(x(#)),j= 1,2, ... ¢,
are nonlinear gains to be designed. It should be noted that
the nonlinear controller does not require m (x(t)) e [0 1]

forallj.

III. STABILITY ANALYSIS
A closed-loop system can be cbtained by combining
{(2) and (5). Writing w,(x(¢}) as w, and m (x({)) as m,,
the fuzzy model based nonlinear control system then
becomes,

5(1)=3"3 wom, H,x() 8)
where ’
H,=A,+BG, &

To investigate the stability of the fuzzy model based
nonlinear control system of {8), we consider the following
Lyapunov function in quadratic form,

V(x(1)) = %x(r)T Px(f) (10)

where Pe®™ is a symmetric positive definite matrix.
Then,

V(x(t)) = %(X(t)T Px(t) +x(1)}" Pk(t)) (11)
From (8), (11) and the property that
Zw —Zm —ZZwm =1, we have,
=1 j=1
0-7803-7280-8/02/810.00 ©2002 IEEE
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V(x()
I:[i \ w,.ij,.jx(t)] Px(t)+x(t)TPzp:iwimjﬂyx(t)}

i=1 j=1 i=1 j=1

<

T
{ wm (H, +H, —H )x(t)] Px(r)
i=} j=1

+x(t)TPZZw,.mj(H

i=l j=1

=%X(I)T(HMTP+ PH, )x(t)

M'“

,+H, —H, k()

+%iiwim1x(t)T[(Hu -H, ) P+P(H, —Hm)]x(t)

il gt
——1x(z) Q, x(r)-—ZZw-m,-x(r)T(Q,-,-—Q,,)x(r)
l‘=| §=1

where H, € ™" is a stable symmetric matrix, which will

(12)

be discussed later. Q, € R™ is a symmetric positive
definite matrix and Q, € R™ is a symmetric matrix. They

are defined as,

Q, =—{H,"P+PH,) (13)

Q,=—H,"P+PH,),i=1,2, . pj=1,2,, ¢ (14)

From (12),

V(x(0) = -2 x() Qx(0) ~—;~im,X(t)T[iw,Q., : Q,,)X(t)
(15

and we set,

x(r)T(iw,Q.,~Q,, x(t)
m, = = forj=1,2,.,. ¢ (16)

> 1["(‘) (iwod m]xm]

By comparing (16) to (7), (16) gives the design of m , j =

1,2, .. ¢ such that g, (x(r))= x(t)T(i w,Q, —Qme(t)

and satisfies the condition of (6). Considering the
denominator at the right hand side of (16), we have,

Z[x(ﬂ (Zwod )xm]

k=1

: an
=3 wi[x(r)T[g Q, -<Q, ]x(z)}
We choose Q,, and Q,, such that,
3°Qu -cQ, >0 fori=1,2,., p (18)

k=1
As w (x(1) e [0 1] for all 7, and at least one of the w, =0

(a property of the TSK fuzzy plant model), (18) implies that
(17) will be always greater than or equal to zero. It is equai
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to zero only when x(z) = 0. Under this condition, the output
of the nonlinear controller of (5) should be zero and we

choose m, :% for satisfying the condition of (6). From (15)

and (16),

i[x(r)‘(i wQ, —QMJX(I)]z

V(K(E)) = —%X(I)Tme([) - j=: i=l
ZZ[X(f)T(ﬁ: wQ, _QM)X(,)]

: (19
As the second term at the right side of (19) is semi-positive
definite, we have,

Px) < —% x(t)' Q. x(t) <0

Hence, we can conclude that the fuzzy model based nonlinear
control system is asymptotically stable. The problem left is

how to determine Q,, . Considering (18), if > Q, >0 for i
k=1

(20)

=1, 2, .,. p, it can be shown that there exists a Q,, such

that 3°Q, —cQ, >0 fori=1,2, ... p using the following
k=1

theorem.

Theorem 1 (Spectral Shift) [24]: Let 4,, 45, -, A,, be the
eigenvalues of a matrix Ae®R"™ . The eigenvalues of
A-d are iy - g A4 — ¢, - A, — £ where £1s a scalar.

Proof:
Let Q, = ZQ"* >0,i=1,2,., p. By using the spectral
k=t

shift property of Theorem 1, it can be seen that

yQ,-d= Z(Q,} -51) >0 if mini,(Q,)}>£>0 ,

(=) k=1 < !

where min A_, (Q,,) denotes the smallest eigenvalues among

Q;, I is the identity matrix. By comparing ZQijk -cQ, >0
k=]

of (18) with  Q,-dA>0 term by term, we have

k=l

Q,=4d = Q, =£1s>0 . Consequently, we can
c

conclude that if » Q, >0, there must exist a positive
=1

definite matrix Q,, such that ZQ,,‘ —-¢Q,>0. In the
k=1

stability analysis, we need a stable matrix H,, to guarantee the
system stability. The existence of H,, will be shown as the
follows. By multiplying P~ to both side of (i3), we have

-P7'Q, P =P"H," +H_P"

0-7803-7280-8/02/$10.00 ©2002 IEEE

-1p-l

As Q=21 |, =- =P7H," +H, P~
¢ c
~1p-l
i :(—P"X——HMT)+(—HMX—P") Let
¢
— £7'p"
Q= which is symmetric positive definite matrix,

and P=P" =P~ which is a symmetric negative definite
matrixand H, =H, " =-H_,, we have a Lyapunov equation
-Q=P"H, +H_P. Once P is known, a stable matrix H,,

can be solved. QED

From above, we obtain Q, =£1>0 and prove the
¢

existence of H. The stable matrix H, in (13) is not
necessary to be known as the nonlinear controller of (16)
depends on Q,, but not H,,..

A sufficient condition for the stability of the fuzzy model
based nonlinear control system can be summarised by the
following lemma,

Lemma 1: A fuzzy model based nonlinear control system of
(8) is guaranteed to be stable if we choose the nonlinear
gains of the nonlinear controller of (5) as,

i (x(0)) = x(t)T[zp: wQ, —fl)x(r) when x(t) = 0
= ¢ Jorj =
Hy, (x(1)) = % when x(t) = 0

L2, ...¢

k=
P for the following p linear matrix inequalities,

3 Q,>0frali=12.,p
k=1

[y
min /lmm(z Q, ) >&>0 and there is a common solution of
t

where,
Q, =—(H,"P+PH, ) fori=1.2, .pj= 1.2 ..c
H, = A, +BG,

Lemma 1 states the way of choosing the nonlinear gains of
the nonlinear controller, The number of sub-controllers is not
necessarily the same as that of the TSK fuzzy plant model.
This gives a flexibility of designing the nonlinear controller.
With a smaller number of sub-controliers, the nonlinear
controller is simpler in structure and lower in cost. The
number of linear matrix inequalities is p, instead of p(p+1)/2
as stated in [6].

IV. SOLVING THE STABILITY CONDITIONS AND OBTAINING
THE FEEDBACK GAINS

In this section, the problems of solving the stability

conditions derived in the previous section and obtaining the

feedback gains of the proposed nonlinear controller wili be

tackled using the GA with arithmetic crossover and non-
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uniform mutation [27]. From Lemma I, the clesed-loop
control system formed by (2) and (5) is stable if there exist a
transformation matrix P and G, j =1, 2, .,. p, satisfying the
following condition,

-yfa,+BG Fr+p(a, +BG |50 fori=1,2, ., p

i=1

@0
A R, - P,
Py P, - P
Using GA, we can find P= :21 = f" and
'Pnl IJnl Pnn
G}y G]j] GI{.

G:

i

Gi G -« Gl
n Ym» o T such that the conditions of (21)

G;N
are satisfied. The fitness function is defined as follows,

fimess =3 n A, (ZC:[(A,. +B,G,) P+P(a, +BiGj)]J
i=] =

G/ G/,

ml

22)
where 1, =0,i=1,2, .,. p,isa variable to be tuned, 4., (")
denotes the maximum eigenvalue of the argument. The

problems of finding P and G; are now formulated into a
minimization problem. The aim is to minimize the fitness
function of (22) with P, G; and »; using the GA with
arithmetic crossover and non-uniform mutation [27]. As P,
G; and n; are the variables of the fitness function of (22), they
are used to form the genes of the chromosomes. The finding
of the solution to this minimization problem, however, does
not imply that the conditions of (21) are satisfied. Hence,
different n,,i=1,2, ... p, may need to be used to weight the

terms of (22) in order to change the significance of different
terms on the right hand side of (22). For instance, one of the
terms in (22) is very positive, which returns a very large
fitness value. Under this case, the conditions of (21) are not
satisfied. A large value of n, corresponding to that term can

be used to attenuate the effect of that term in the fitness
function.

The procedure for finding the nonlinear controiler can be
summarised as follows.
StepI)  Obtain the mathematical model of the nonlinear
plant to be controlled.
Obtain the TSK fuzzy plant model for the system
stated in step I) by means of a fuzzy modeling
method. For example, the method proposed in [3,
7]-
Determine the number of sub-controllers of the
nonlinear controller. Solve P, G; and n;, j = 1,
2, ., ¢;i=1,2, ., p, with the fitness function
defined in (22) using GA.
Design the nonlinear gains of the nonlinear
controller based on Lemma 1.

Step II)

Step I11)

Step IV)

0-7803-7280-8/02/$10.00 ©2002 IEEE
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V. APPLICATION EXAMPLE
An application example on stabilising a cart-pole type
inverted pendulum system [6] is given in this section. A
nonlinear controller will be used to control the plant,
Simulation results will be given. We shall see that the
number of LMIs involved is p. The nonlinear controllers will
be designed based on the procedure given in section IV.

StepI) Fig. 1 shows the diagram of the cart-pole type

inverted pendulum system. The dynamic equation of the

cart-pole type inverted pendulum system is given by,

be) = gsin(6(0) - aml6(2)* sin(28(£))/ 2 - acos(G())u(t)
4113 — aml cos’ (8(1))

(23)
where # is the angular displacement of the pendulum, g =
9.8m/s” is the acceleration due to gravity, m = 2kg is the mass
of the pendulum, @ = 1/(m + M), M = 8kg is the mass of the
cart, 2/ = lm is the length of the pendutum, and # is the force
applied to the cart. The objective of this application example
is to design a fuzzy controller to close the feedback loop of
(23) such that &= 0 at steady state.

Step I} The nonlinear plant can be represented by a fuzzy
model with four fuzzy rules. The i-th rule is given by,

Rule i IF 7,(x(1)) is Mi AND f,(x(r)) is M}

THEN x(¢)= A x(r}+Bu(r) fori=1,2,3,4 (24)
so that the system dynamics is described by,
4
1(1) = 3w, (A x(0) + Bu()) (25)
i=l

where

x() =[x xO =[6@¢) 60 ,

227 22m
onels.. o0..]- [—? 4—5] and
o) e[l 6,,1=1-5 5] ;
f (x(t)) — g~ a””.xz (02 COS(II (t)) Sil’l().’l (t)) and
: #/3—agmlcos’(x, (1)) | x ()
_ acos(x, (1)) ) U
S = 41/3—amlcos®(x,(r)) ~ A=A ”Lﬁm 0]
d A=A 01 B, =B 0 d
= = M = s = Tk
an 3 4 .flm 0 ’ 1 3 fzm a
0
B2=B4=[f ] ; fi.o=9 and f_ =18
£, =-0.1765 and S ==0.0052 ;
. (i (x@ODx pt,,, (fr(x()) .
i U 6O 1 50}
Hygs (1 (X(D)) = —_f}%(_r% for g = 1, 2
M SO =1-p, (fi(x(0)) for & = 3, 4
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=L@y + fzm
)=

and g, (L (@) = 1= p, (f(x())) for ¢ = 2, 4 are the

membership functions as shown in Fig. 2. (Details about the
derivation of the TSK fuzzy plant model for the cart-pole
type inverted pendulum system can be found in [5].)

for &£ = 1, 3

Step III) When a nonlinear controller having 4 sub-
controllers is designed for the plant of (25), we have,

4
u(t) = Z m,(x(0)G ;x(¢) (26)

=1

In order to guarantee the closed-loop system stability and
obtain the feedback gains of the nonlinear controller of (26),
from (22), we have to solve the P, Gyand n;, j=1,2,3,4;i =
1,2, 3, 4, using GA with the following fitness function,

fitness = in‘.ﬁ.m[i[(A, +BiGj)TP + P(AI. + B,.Gj)]jl ()]

The minimum and maximum values of each element P are
chosen to be —1 and 1 respectively. The minimum and
maximum values of each element of G, to G4 are chosen to
be 0 and 4500 respectively. The minimum and maximum
values of #; are chosen to be 0 and 10 respectively. The
population size is 10 and the initial values of P, G; and n, are
randomly generated. After applying the GA process, we

. 150698 —2.2784
obtain P= and
-17.9689 -3.3757
G, =[4176.4868 4438.2388] ,
G, =[4200.1314 37102710} ,
G, =[4223.6645 3631.4680] and
G, =[4308.6079 4053.5941].

Step V) According to Lemma 1, the nonlinear gains are
designed as,

ty (X)) = x(r)T[iw,.Q ;- 51};(;) when x(¢) # 0
= 4 for j =
#,(x(1) = -LII when x(#) =0

1,2,3,4 (28)

As mini_, (Z Qf,) =1.3982> £> 0, we choose £=0.1.
! =1

Fig. 3 and Fig. 4 show the responses of the system states

T
under the initial conditions of x(O):[% 0:} R

L 0] : x(0)=[—l~1£ 0]

x(0)=|—
© {45
2z 7
x(0)=1-— 0] .
© [ 45 ]
From this example, it can be seen that the number of LMIs

is fixed to be 4 (the number of rules of the TSK fuzzy plant
model), which will not be affected, by the number of sub-

and
45

0-7803-7280-8/02/$10.00 ©2002 IEEE

comtrollers of the nonlinear controller.

V1. CONCLUSION

The stability analysis and design of TSK fuzzy model
based nonlinear control systems have been discussed. A
stability criterion has been derived. This criterion involves p
linear matrix inequalities irrespective of the number of the
sub-controllers, where p is the number of rules of the TSK
fuzzy plant model. The number of sub-controllers of the
nonlinear controller need not be the same as that of the TSK
fuzzy plant model. A design on the nonlinear gains of the
nonlinear controller has been presented. Genetic algorithm
has been used to find the solution to the stability conditions
and determine the feedback gains of the sub-controllers. An
application example has been used to illustrate the
stabilizability of the proposed nonlinear controllers and the
design procedure.
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Fig. 1. Cart-pole type inverted pendulum system.
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Fig. 2. Membership functions of the cart-pole type inverted pendulum.
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Fig. 3. Responses of x,(f) of the cart-pole type inverted pendulum system.
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Fig. 4. Responses of x{f) of the cart-pole type inverted pendulum system.
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