
 
 

  

Abstract— This paper presents the stability analysis and 
performance design of the continuous-time fuzzy-model-based 
control systems.  A nonlinear controller will be proposed to 
stabilize the nonlinear systems in Takagi-Sugeno’s form.  LMI-
based stability conditions will be derived the parameter-
dependent Lyapunov function to guarantee the system stability.  
Furthermore, based on the commonly-used performance index, 
LMI-based performance conditions will be derived to achieve 
the system performance.  A numerical example will be given to 
illustrate the effectiveness of the proposed approach. 

I. INTRODUCTION 
uzzy-model-based control approach offers a systematic 
and effective framework to investigate the system 
stability.  In general, the stability analysis is carried out 

based on the TS-fuzzy models which represent the system 
dynamics of the nonlinear plants.  In the last two decade, 
fruitful stability analysis results [3]-[13] were obtained to 
guarantee the system stability of the continuous-time or 
discrete-time fuzzy-model-based control systems.  Basic 
LMI (linear matrix inequality)-based stability conditions 
were developed in [3]-[4] using Lyapunov-based approach 
for the fuzzy-model-based control systems.  In [4], an 
efficient design technique, namely parallel distributed 
compensation (PDC) technique, was proposed to design the 
fuzzy controllers.  Further relaxed stability conditions were 
then obtained in [5]-[11] based on the PDC-design 
technique.  In [3]-[11], the stability analysis of the fuzzy-
model-based control systems was investigated based on a 
parameter-independent Lyapunov function (PILF).  The 
stability analysis was extended to parameter-dependent 
Lyapunov function (PDLF) for continuous-time [11] and 
discrete-time system [12]-[13].  Furthermore, in [12]-[13], a 
non-PDC nonlinear controller was proposed to stabilize the 
discrete-time nonlinear systems represented by TS-fuzzy 
models.  It has been shown that the non-PDC control laws 
with PDLF-based approach can further relax the stability 
result. 
 In the continuous-time PDC approach with PDLY, two 
difficulties have to face during the system analysis: 1) unlike 
the discrete-time case, the continuous-time case using PDLF 
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will generate bi-polar time derivative information of the 
membership functions which increases the difficulty on 
stability analysis, 2) the resultant stability conditions cannot 
be simply expressed in LMI forms.  In [11], to deal with the 
problem 1, the bi-polar time derivative information is 
represented by some weighted functions.  However, the 
number of stability condition will be increased by the 
multiplication property of the fuzzy-model-based approach.  
To deal with the problem 2, some positive-definitive terms 
were added to generate terms in quadratic form.  Stability 
conditions in LMI form can be generated by using the Schur 
complement technique.  However, stability results will be 
degraded by the additional positive-definitive terms added.  
Furthermore, the dimension of the matrices in the stability 
conditions will be increased by the Schur complement 
technique. 
 In this paper, the non-PDC design approach using the 
PDLF proposed in [12]-[13] will be extended to the 
continuous-time nonlinear systems.  To deal with the 
problem 1, the property of the membership functions, which 
allows introducing some free matrices, will be employed 
during the stability analysis.  Unlike the weighted-sum 
representation of the time derivative information in [11] 
which will increase the order of the multiplication, our 
approach converts the time derivative information into 
additive terms only.  The difficulty in problem 1 can thus be 
alleviated.  To deal with the problem 2, the non-PDC control 
laws will be employed.  As some of the nonlinear terms can 
be compensated by the non-PDC control laws during the 
system analysis, the order of the multiplication can be 
further reduced and, more importantly, the stability 
conditions can be expressed in LMI forms without 
introducing extra positive-definite terms.  LMI-based 
stability conditions will be derived using the PDLF-based 
approach to guarantee the stability of the fuzzy-model-based 
systems.  In order to design the system performance, a 
commonly-used performance index will be employed to 
measure quantitatively the system performance.  Based on 
this performance index, LMI-based performance conditions 
will be derived to aid the design of the system performance. 
 This paper is organized as follows.  In section II, the fuzzy 
model and the non-PDC nonlinear controller will be 
presented.  In section III, LMI-based stability and 
performance conditions will be derived.  In section IV, a 
numerical example will be presented to illustrate 
effectiveness of the proposed approach.  A conclusion will 
be drawn in section V. 

II.  FUZZY MODEL AND NON-PDC NONLINEAR CONTROLLER 
 A multivariable fuzzy-model-based control system 
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comprising a nonlinear plant represented by a fuzzy model 
and a non-PDC nonlinear controller connected in closed-
loop will be considered. 
 
A.  Fuzzy Model  
 Let p be the number of fuzzy rules describing the 
nonlinear plant.  The i-th rule is of the following format: 
Rule i: IF ))((1 tf x  is i

1M  AND … AND ))(( tf xΨ  is i
ΨM  

            THEN )()()(  ttt ii uBxAx +=  (1) 
where i

αM  is a fuzzy term of rule i corresponding to the 
known function ))(( tf xα , α = 1, 2, ..., Ψ; i = 1, 2, ..., p; Ψ is 
a positive integer; nn

i
×ℜ∈A  and mn

i
×ℜ∈B  are known 

constant system and input matrices respectively; 1)( ×ℜ∈ ntx  
is the system state vector and 1)( ×ℜ∈ mtu  is the input vector.  
The system dynamics are described by, 
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is a nonlinear function of x(t) and )))(((

M
tfi xα

α
µ , α = 1, 2, 

…, Ψ, are the grade of membership corresponding to the 
fuzzy term of i

αM . 
 
B.  Non-PDC Nonlinear Controller 
 The non-PDC nonlinear controller for the nonlinear plant 
represented by the fuzzy model of (2) is proposed as follows. 
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where nm

j
×ℜ∈G  and nm

j
×ℜ∈G  are the feedback gains to 

be designed; 
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Remark 1:  As Pk, k = 1, 2, ..., p, is a positive definite matrix 

and with the property of wk(x(t)) shown in (3), k
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III.  STABILITY ANALYSIS AND PERFORMANCE DESIGN 

 In this section, the system stability and performance 
design of the fuzzy-model-based control system will be 
presented.  In the following analysis, wi(x(t)), ))(( twj x  and 

Γ(x(t)) are denoted by wi, jw  and Γ respectively for 

simplicity, and the properties that ∑
p
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iw

1

 = ∑∑
=

p
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p

j
jiww

1 1

 = 1 

and ))((
1

tw
p

i=
i x∑  = 0 will be used.  From (2) and (5), the 

fuzzy-model-based control system is defined as follows. 
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A.  Stability Analysis 
 The stability of the fuzzy-model-based control system of 
(6) will be investigated.  Considering the following 
Lyapunov function candidate, 

)()()( 1T tttV xΓx −=  (7) 
 From (6) and (7), we have, 
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×ℜ∈= TΛΛ , i = 1, 2, ..., p, is an arbitrary matrix, into 
(8), we have, 
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where ρ is a non-zero positive scalar.  It should be noted that 
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..., p; i < j.  Let the value of ρ be designed such that 
0>+ kk ww ρ , k = 1, 2, ..., p.  It can be seen from (11) that if 

0<kS , k = 1, 2, ..., p and 0>S , we obtain 0)( ≤tV  
(equality holds when )(tx  = x(t) = 0) which implies the 
asymptotically stability of the fuzzy-mode-based control 
system of (6). 
 
B.  Performance Design 
 In this section, LMI-based performance conditions will be 
derived to guarantee the system performance of the fuzzy-
model-based control systems.  The system performance is 
quantitatively measured by the following performance index 
which is commonly used in the optimal control techniques 
[14]. 
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where η is a non-zero positive scalar.  By minimizing the 
value of η, the performance index J can be minimized.  
From (13) and (14), we have, 
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 It can be seen that the inequality of (17) holds when W < 
0.  From (17), by Schur complement, W < 0 is equivalent to 
the following conditions. 
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where nm×ℜ∈F  is an arbitrary matrix, 
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1.  From (18), it can be seen that 0<W  if 0<ijT , i, j = 1, 

2, ..., p and 0>iT , i = 1, 2, ..., p which are the performance 
conditions.  The LMI-based stability and performance 
conditions are summarized in the following theorem. 
 
Theorem 1:  The fuzzy model-based control system of (6) 
formed by the nonlinear system in form of (2) and the non-
PDC nonlinear controller of (5) is guaranteed to be 
asymptotically stable if there exist non-zero positive scalars 
ρ, η and σ > 1 such that 0))(())(( >+ twtw kk xx ρ , k = 1, 2, 

..., p, and matrices nm×ℜ∈F , nm
j

×ℜ∈G , nm
j

×ℜ∈G , 
nn×ℜ∈= T

11 JJ , mn×ℜ∈2J , mm×ℜ∈= T
33 JJ , T

kk PP = , 
nn

jikijk
×ℜ∈= TRR , 0T ≤+ ijij RR  and nn

ii
×ℜ∈= TΛΛ  

such that the following LMI-based stability and performance 
conditions are satisfied. 
LMI-Based Stability Conditions: 

0>kP , k = 1, 2, ..., p; 

0T ≥+ ijkijk RR , j, k = 1, 2, ..., p; i < j; 

0T ≤+ ijij RR , j = 1, 2, ..., p; i < j; 
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IV.  NUMERICAL EXAMPLE 
 A numerical example will be given to demonstrate the 
effectiveness of the LMI-based stability and performance 
conditions.  Considering the fuzzy model with the following 
rules [11], 
Rule i: IF )(1 tx  is i

1M  
           THEN )()()( tutt ii BxAx += , i = 1, 2 (19) 
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of the membership functions are obtained as 
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The system dynamics are described as, 
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where [ ]T21 )()( txtx=x .  We follow the assumptions in 
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also assumed that [ ]22)(1 −∈tx  which leads to 
( ))(cos))(( 111 txtxw −≥  and ( ))(cos))(( 112 txtxw −≥ .  By 

choosing 
100

1=ρ , referring to Fig. 1, it can be seen that the 

conditions 0))(())(( 11 >+ txwtxw ii ρ , i = 1, 2, are satisfied. 

 Based on Theorem 1, with η = 10−5 and 
ρ

σ 1= , Gi, iG  

and Pi, i = 1, 2 are obtained under different weighting 
matrices J1, J2 and J3 and tabulated in Table 1.  The 
nonlinear controller is in the following form, 
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 Referring to Table 1, it can be seen that different 
weighting matrices place different weights on x1(t) and u(t) 
to specify the system performance.  Fig. 2 shows the system 
state responses and control signals of the nonlinear plant 
with the nonlinear controller of (21) under different feedback 
gains.  It can be seen that all nonlinear controllers can 
stabilize the nonlinear system.  The nonlinear controller with 









=

10
0100

1J , 







=

0
0

2J , J3 = 100 offers the fastest rising 

time on x1(t) and the minimum magnitude on u(t) as the 
heaviest weights are placed on x1(t) and u(t) among the four 
sets of weighting matrices.  In general, the nonlinear 
controllers with the heaviest weights on x1(t) offer faster 
rising time on x1(t) while those with the heaviest weights on 
u(t) offer smaller range of u(t).  Hence, it can be seen that 
the LMI-based stability and performance conditions can be 
served as an effective tool to design a stable and well-
performed nonlinear controller for nonlinear systems. 

V.  CONCLUSION 
 A nonlinear controller has been proposed to control 
nonlinear plants represented by fuzzy models.  LMI-based 
stability conditions have been derived based on the 
parameter-dependent Lyapunov function.  Based on the 
commonly-used performance index, LMI-based performance 
conditions have been derived to design the system 
performance.  A numerical example has been given to 
illustrate the effectiveness of the proposed approach. 
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Fig. 1(a).  ))(( 11 txw  (solid line) and ( ))(cos
100

1
1 tx−  (dotted line). 
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Fig. 1(b).  ))(( 12 txw  (solid line) and ( ))(cos
100

1
1 tx−  (dotted line). 

Fig. 1.  Membership function ))(( 1 txwi  and its lower bound of the time 

derivative ))((
100

1
1 txwi , i =1, 2. 
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Fig. 2(a).  x1(t). 
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Fig. 2(b).  x2(t).                     Fig. 2(c).  u(t). 
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



=

0
0

2J , J3 = 100 

G1 = [1.7648×10−4   −2.0651×10−4]; G2 = [−1.7264×10−4   −1.9972e-004] 

1G  = [4.7857×10−8   3.2661×10−6]; 2G  = [2.1268×10−7   1.2876×10−6] 













××
××

=
−−

−−

35

53

1 101025.3104079.2
104079.2100388.1

P ; 












××−
×−×

=
−−

−−

35

53

2 101275.3100105.1
100105.1100048.1

P  

 

−0.7095 0.0094 









=

10
0100

1J , 







=

0
0

2J , J3 = 100 

G1 = [4.7815×10−4   −5.8949×10−4]; G2 = [2.8717×10−4   −4.9685×10−4] 

1G  = [8.8067×10−6   3.6847×10−6]; 2G  = [1.3074×10−5   −2.6565×10−6] 













××
××

=
−−

−−

35

54

1 104030.5100196.1
100196.1103715.9

P ; 












××−
×−×

=
−−

−−

36

64

2 103106.5103483.5
103483.5102778.9

P  
−0.1245 0.0472 

Performance index parameters, Gi, iG  and Pi, and the minimum and maximum control signals. 
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