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Abstract— This paper presents the stability analysis and
performance design of the continuous-time fuzzy-model-based
control systems. A nonlinear controller will be proposed to
stabilize the nonlinear systems in Takagi-Sugeno’s form. LMI-
based stability conditions will be derived the parameter-
dependent Lyapunov function to guarantee the system stability.
Furthermore, based on the commonly-used performance index,
LMI-based performance conditions will be derived to achieve
the system performance. A numerical example will be given to
illustrate the effectiveness of the proposed approach.

I. INTRODUCTION

uzzy-model-based control approach offers a systematic
and effective framework to investigate the system
stability. In general, the stability analysis is carried out
based on the TS-fuzzy models which represent the system
dynamics of the nonlinear plants. In the last two decade,
fruitful stability analysis results [3]-[13] were obtained to
guarantee the system stability of the continuous-time or
discrete-time fuzzy-model-based control systems. Basic
LMI (linear matrix inequality)-based stability conditions
were developed in [3]-[4] using Lyapunov-based approach
for the fuzzy-model-based control systems. In [4], an
efficient design technique, namely parallel distributed
compensation (PDC) technique, was proposed to design the
fuzzy controllers. Further relaxed stability conditions were
then obtained in [5]-[11] based on the PDC-design
technique. In [3]-[11], the stability analysis of the fuzzy-
model-based control systems was investigated based on a
parameter-independent Lyapunov function (PILF). The
stability analysis was extended to parameter-dependent
Lyapunov function (PDLF) for continuous-time [11] and
discrete-time system [12]-[13]. Furthermore, in [12]-[13], a
non-PDC nonlinear controller was proposed to stabilize the
discrete-time nonlinear systems represented by TS-fuzzy
models. It has been shown that the non-PDC control laws
with PDLF-based approach can further relax the stability
result.
In the continuous-time PDC approach with PDLY, two
difficulties have to face during the system analysis: 1) unlike
the discrete-time case, the continuous-time case using PDLF
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will generate bi-polar time derivative information of the
membership functions which increases the difficulty on
stability analysis, 2) the resultant stability conditions cannot
be simply expressed in LMI forms. In [11], to deal with the
problem 1, the bi-polar time derivative information is
represented by some weighted functions. However, the
number of stability condition will be increased by the
multiplication property of the fuzzy-model-based approach.
To deal with the problem 2, some positive-definitive terms
were added to generate terms in quadratic form. Stability
conditions in LMI form can be generated by using the Schur
complement technique. However, stability results will be
degraded by the additional positive-definitive terms added.
Furthermore, the dimension of the matrices in the stability
conditions will be increased by the Schur complement
technique.

In this paper, the non-PDC design approach using the
PDLF proposed in [12]-[13] will be extended to the
continuous-time nonlinear systems. To deal with the
problem 1, the property of the membership functions, which
allows introducing some free matrices, will be employed
during the stability analysis. Unlike the weighted-sum
representation of the time derivative information in [11]
which will increase the order of the multiplication, our
approach converts the time derivative information into
additive terms only. The difficulty in problem 1 can thus be
alleviated. To deal with the problem 2, the non-PDC control
laws will be employed. As some of the nonlinear terms can
be compensated by the non-PDC control laws during the
system analysis, the order of the multiplication can be
further reduced and, more importantly, the stability
conditions can be expressed in LMI forms without
introducing extra positive-definite terms.  LMI-based
stability conditions will be derived using the PDLF-based
approach to guarantee the stability of the fuzzy-model-based
systems. In order to design the system performance, a
commonly-used performance index will be employed to
measure quantitatively the system performance. Based on
this performance index, LMI-based performance conditions
will be derived to aid the design of the system performance.

This paper is organized as follows. In section II, the fuzzy
model and the non-PDC nonlinear controller will be

presented. In section III, LMI-based stability and
performance conditions will be derived. In section IV, a
numerical example will be presented to illustrate

effectiveness of the proposed approach. A conclusion will
be drawn in section V.

II. Fuzzy MODEL AND NON-PDC NONLINEAR CONTROLLER

A multivariable fuzzy-model-based control system
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comprising a nonlinear plant represented by a fuzzy model
and a non-PDC nonlinear controller connected in closed-
loop will be considered.

A. Fuzzy Model
Let p be the number of fuzzy rules describing the
nonlinear plant. The i-th rule is of the following format:

Rule i: IF f,(x(¢)) is M| AND ... AND f,, (x(¢)) is M},
THEN x(¢) = Ax(¢)+B,u(?)

where M/ is a fuzzy term of rule i corresponding to the

known function f,(x(¢)), o=1,2, .., ¥i=1,2, ..

A, eR™ and B,e R™

constant system and input matrices respectively; x(¢) e R™

M

,p; Yis
a positive integer; are known

is the system state vector and u()e R™ is the input vector.
The system dynamics are described by,

K() = 3w (x)(A X(0) + Bu() @
where,
Zp:w,.(x(t))=1, w(x()elo 1] foralli (3)

i=1

Hy OOy, (Lo (RONX 1, (fop (X))
W, (x(1)) = -2 : -

3t (ROt SO+t (K0

4)
1,2,

is a nonlinear function of x(7) and x,, (f,(x(?))), &=
..., ¥, are the grade of membership corresponding to the

fuzzy term of M.,

B. Non-PDC Nonlinear Controller
The non-PDC nonlinear controller for the nonlinear plant
represented by the fuzzy model of (2) is proposed as follows.

u(t) = 3w, ()G TO) X0+ 30, (KO)G, T O) ' x(0)

(%)
where G; € R™ and 6,. e R™ are the feedback gains to

be designed; I'(x(t) =T(x@)" = (i wk(x(t))PkJ ;

P =P eR™>0,k=1,2,...p.

Remark I: AsPi, k=1,2, .., p,is apositive definite matrix
P

and with the property of wi(x(¢)) shown in (3), Z w, (x())P,
k=1

is thus a non-singular matrix which implies the existence of

P = [Z wk(xm)Pk] .

III. STABILITY ANALYSIS AND PERFORMANCE DESIGN

In this section, the system stability and performance
design of the fuzzy-model-based control system will be
presented. In the following analysis, w,(x(2)), w;(x(#)) and

W,

[(x(#)) are denoted by w;, W,

and T respectively for
P

2ww, =
=1

P

and zwi(x(t)) = 0 will be used. From (2) and (5), the
i=1

fuzzy-model-based control system is defined as follows.

(1) = Zp:w,.[A,x(t) + B{i w,G T7'x(1)+ ZP:WJ.EIF'IX(I)J]

w (A, +BG r*l)x(t)+ZZW,W.BiEjr*1x(z) (6)

=1 j=1

)4
simplicity, and the properties that Zw, =

i=1 i

I\ M*:

A. Stability Analysis

The stability of the fuzzy-model-based control system of
(6) will be investigated. Considering the following
Lyapunov function candidate,

V(t)=x(t)"T'x(2)
From (6) and (7), we have,
V(t)=x()" T7'x(0) +x(0) ' T7'x() - x(t) ' T'TT'x(r)

- [iiwﬂ% (4, +B,G I k(1) +ZP:ZFIW,W/B[.GJ.F]X(1‘)] r'x()

=l j=1 =l j=1

)

+x(t)TF1[iiwiwf (A,+BG I )x(t)+i2ww,BlGjl“lx(t)J

i=1 j=1 i=l j=1

—x()'T'IT'x(r)

_i‘iwwx(t) AT +T7A, +T7(G, "B +B.G, /" (1)

+izp:wlw x(1)' T~
=1 j=

Zp:zp:wwx(zfr 'ra," + AL +G,'B, +B,G,JI'x(1)

+ szzp:wlw x(t)'r

'G,"B, +B,G, )r'x()) - x()) T TT'x(z)

(G,"B," +B,G, )l 'x(t) - x(t) T"TT"'x(1)
3

. p
,and put I'= Zw/ i r:ijPj

ww

i

Mm:

\

i
J=1 i=l

P
P, and zwjl
j=1

P

2 WA

j=1

. =0 where

Mnl

I

7

,i=1,2, ..., p,is an arbitrary matrix, into

(8), we have,
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Po)=3 3 ww g0 (FA +AT+G "B +BG K@)

i=1 j=1

I~

P

+ ZZ W X

=1 j=1

- Zp: z]: ww X(1)' P X(1)

i=1 j=1

=3 S ww i) (P,AT+AP +G, "B +B G, (1)

=l j=1

+ Zp: Zp: Wb X' (Af +G,'B, +BG,—P, )i(f)

i=1 j=1

iiw,wx(t) PA'+AP +G, "B +BG,K()

(o,+G "B +BG, k()

3 S, (v, + piv, —w, KA, + G, "B +BG, — P JK()

P
=zzp:wwx(t) (PA"+AP,+G, B +BG ()

i

;)(A +G,'B/+BG,—P () (9

wx'(A,+G, "B +BG,~P ()

where p is a non-zero positive scalar. It should be noted that

P ) P p
Z;(wj+pwj) = Z;wj+pz;wj =
j= j= J=

property, from (9), we have,
. r. PP
V)= ZZZWiW/(Wk +ka)
=1 j=1 k=1
PA'+AP +G, B +BG,
) X(1)

Based on this

xX(6)" _ _
+ l(Ai + GkTBiT + Bin - Pk
1%

S ww s (A, +G, "B +BG, - P k()

o

|_‘
'M""

Jj=1

sz (Wk + pw, )i(l)T Q.. x(?)

1l
M <
i

" Ziww (i + pis KOT(Q + QK@) (10)

ii X(Z)__ZZWWX ( ii+6/'i)i(t)

b

where
T T T
Q,.=PA +AP +G, B, +BG,

_ _ , L, k=1,2, .., p;
+1(A,+G, B +B,G, -P,)
P

Q,=A,+G,B/+BG,-P,, i, j =1, 2, ., p. Let

R, +R, 20,/ k=12, . ,p;i<jand R,+R," <0,/=

ijk

I, 2, ., p; i < j where Ry =RﬁkTe R and
R, = i..T € R™ . From (10), we have,
P P
40) SZZW,. w, + pw, K(1)"Q,, X(r)
=1 k=l
Z 2 Qijk+jSk _
+ ww w + X(¢
;;; P j\Nk ka)i() [-FR +Rjk ()
p _ [Q,+Q,
LS wEQEO -~ Y Y| L L k@
p i=1 p J=l i<y le+Ry
wx(0) ] [wx() wx(0) ] [wx()
P | w X(¢ w X(¢ 11w X@)| = w x(¢
i | IO [ IO | 1 wEO| 50
~ : p : :
w,X(?) w,X(?) w,X(f) w,X(?)
(11
Qllk Sle Slpk
S .. S
where S, =| " an T k=12 .,
Splk Sp2k Qppk
e Q.
ijk:Qtjk 2Qﬂk'+Rijk’ 7 k=1, 2 , pyo 1 < J,
911 §12 Elp __
— S ... S _ +
S = :21 Q:22 : ?/7 , SU_QZQ +R,,’J_1 2,
Sp S, 0 Q,
.y p; 1 < j. Let the value of p be designed such that
w,+pw, >0,k=1,2, .., p. It can be seen from (11) that if
S, <0, k=1 ., pand S>0, we obtain V()<0

(equality holds when X(¢) = x(f) = 0) which implies the
asymptotically stability of the fuzzy-mode-based control
system of (6).

B. Performance Design

In this section, LMI-based performance conditions will be
derived to guarantee the system performance of the fuzzy-
model-based control systems. The system performance is
quantitatively measured by the following performance index
which is commonly used in the optimal control techniques
[14].

_ q|:x(t)j| {JIT Jz}{x(t)}dt
wlu@)| |J, I u@)

where 77 — % > 0 denotes the optimization period,
J,=3"eR™>0, J,eR™, J,=J,'eR"™ >0 and
-1
J, J K, K
e L 1 e R 50 From (5) and
JZ J3 KZ K3
(12), we have,

(12)
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4 :fllx(ff (iwiG,-F“x(tHiwiE,.r“x(t)j }
x(?)

2

P J—
w,G () + Y w G I x(0) |

[y J
J, I

P
j=

1

=1

=J~ﬁ_X(t)}T I p . TO TI—
| x(1) 0 ;wil" G, +Zw,.1“ G,

i=1
I 0
« Jl Jz )4 4 P 4 X(t) dt
3" 3,0 ;WfG;F x(t)+;ijjl" X(1) || x(r)

(13)
Let

Sx@O1 2 0 [x@)
”LLQJ { 0 FZ}LOJ””

where 77 is a non-zero positive scalar. By minimizing the

value of 7, the performance index J can be minimized.
From (13) and (14), we have,

(14)

| [1
7| X(¢) » ,
L° L(IJ |0 Z ijjl"’lx(t) + Z Wjajl"flx(t)

J=1

I
2 4T T 2 . aT=rT
0 YwI'G +X wI'G,
i=1 i=1

0

J, J,
J, 7,
0

J=1

[x(7)
| x(2)

Iz

r> o
oy
(15)
From (15), we have,
F{X(t)T{rl 01:|W|:Fl 01}[X(I)}dt<0 (16)
% | x(t) 0 I 0 I |x(0)
where
r 0 J,
W=lo S w6 +3 WG, LQT
i=1 i=1 (17)

r

0

P P I 0
X S| -n
0 Z;wl.cﬁz;ch_, 01
Jj= Jj=

It can be seen that the inequality of (17) holds when W <
0. From (17), by Schur complement, W < 0 is equivalent to

the following conditions.

-7l 0 wP, 0
=1 ) . ) .
0 ! 0 > wG +X WG,
W — ” i=1 i=1 < 0

> wpP, 0 -K, -K,
i=1

0 iw,Gi + iw,.é, -K," -K,

Jj=1 i=1

-l 0 Zp:w,P, 0
0 - 0 SwG +3w(F+G )
- B i=1 i=1 <0
lePi 0 -K, -K,
i=1
0 YwG+YwlF+G) -K,' -K,
L J=1 1 d
-l 0 iw,l’, 0
0 -l 0 ﬁw,cf +ﬁi(w‘ +piv—w)F+G,)
=, E P <0
lZW,R 0 -K, -K,
0 iw,(;,+i%(w,+pﬂ"—w,)(]7+a,) -K," -K;
PP r
=ZZWi(wj+pwj)1‘lj—Zw,T[ <0 (18)
i=1 j=l i=1
where Fe R™ is an arbitrary matrix,
- 77(1 - ijl 0 [1 - i)l{ 0
o o
0 —ﬂ(l—ijl 0 G,T+i(F+§j)
T o P
v 1 1 1
(S () N 1N
o o o
0 G+ F+G) [1-1lk (1ol
I i p J o 2 o 3
1y 0 ——P 0
c o
0 1y 0 —(F+G,)
and T, = | o 1 P | , 0>
——P 0 —K,  —K,
c c c
1 —=\ 1 1
0 —(F+G,) —K,” —K,
| P c c

1. From (18), it can be seen that W<0 if T, <0,i,j=1,

2, ...,p and T >0,i=1, 2, .., p which are the performance

conditions. =~ The LMI-based stability and performance
conditions are summarized in the following theorem.

Theorem 1: The fuzzy model-based control system of (6)
formed by the nonlinear system in form of (2) and the non-
PDC nonlinear controller of (5) is guaranteed to be
asymptotically stable if there exist non-zero positive scalars
p. 1 and o> I such that w,(x(t))+pw, (x(#) >0, k=1, 2,

., D, and matrices Fe R™", G, e R, Ej e R,
J=J eR™, J,eR™, J,=J'eR™, P =P ,
R, =R, eR™, R,+R, <0 and A ,=A"eR™
such that the following LMI-based stability and performance
conditions are satisfied.

LMI-Based Stability Conditions:
P>0,k=12.,p;

R, +R, 20,/ k=12 .,pi<j
R,+R,'<0,j=12 ., pi<j
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Qllk Slzk Slpk
S . S
S, =| " Qf“ C <0, k=12, p
Splk Sp2k Qppk
911 SIZ Elp
s=| % Q= Se g,
Spl Sp2 Qﬁp
+Q
where S, :w—i—&ﬂ” Jok=1 2 .., p i<}
_ 0.4+0. _
U=%+Ry,j‘=1, 2 pri <]
LMI-Based Performance Conditions:
-1
K, K J, J
e T
KZ K3 J2 J3
_,7(] _l]] 0 (1 —l]]’, 0
o o
0 —n(l—ljl 0 G,T+l(F+E/)T ,
T,= 1 7 1 & <0
N A
o o o
0 G +L(F+G)) 7( 7lJK2"‘ —[lfiJKs
L P o o) |
i,j:_l, 2, ., D; i
7y 0 ——P 0
o o
1 _
0 Ty 0 —(F+G,)
'I: = o p >0,171 =1,
——P, 0 —K, —K,
o o o
1 —\ 1 1
0 _(F+G:) _ 2T _K3
L P o o J
2,..,D.

IV. NUMERICAL EXAMPLE

A numerical example will be given to demonstrate the
effectiveness of the LMI-based stability and performance
conditions. Considering the fuzzy model with the following
rules [11],

Rule i: IF x,(¢) is M;
THEN () = A x(t)+Bu(r), i = 1,2 (19)

-5 -4 -2 -4 0
where A, = , A, = , B = and
-1 -2 20 -2 10

0
B, =L}. The membership functions are defined as

1+sin(x, (7))
2
—sin(x, ()
> .

wi(x, () = Hyy (x @)= and

w,(x,(2)) = My (@)= ! The time derivative

of the membership functions are obtained as
e (6 () = cos(xl(zt))xla) and Wz(xl(t)):_cos(xmzr))xl(t).
The system dynamics are described as,
2
X(t) =3 wi (x, (0)(Ax(1) + Bou(1)) (20)
i=1

where x= [xl(t) xz(t)]r. We follow the assumptions in

[11] that x](t)e[—% ﬂ and xz(t)e{—% ﬂ It is

that x(/)e[-2 2] which
Wy (3, (1)) = —Jcos(x, (1)) and W, (x, (1)) = —[cos(x, (1)) . By

also assumed leads to

. 1 . . .
choosing p = 100 referring to Fig. 1, it can be seen that the
conditions w,(x,(¢))+ pw,(x,(¢)) >0, i =1, 2, are satisfied.
. _ 1 —
Based on Theorem 1, with 7 =107 and 0 =—, G, G,
P

and P, i = 1, 2 are obtained under different weighting

matrices J;, J, and J; and tabulated in Table 1. The
nonlinear controller is in the following form,

2 2 -l
u(f)=Zw,(xl(t))G,-[ZWk(xl(f))Pk] x(1)

j=1 k=1 (21)

+ i W, (x,(1))G, (Z w, (x, (t))ij x(7)

Referring to Table 1, it can be seen that different
weighting matrices place different weights on x;(f) and u(?)
to specify the system performance. Fig. 2 shows the system
state responses and control signals of the nonlinear plant
with the nonlinear controller of (21) under different feedback
gains. It can be seen that all nonlinear controllers can
stabilize the nonlinear system. The nonlinear controller with

100 0 0 .
J, 2{ 0 J , J, 2{0} , J3 = 100 offers the fastest rising
time on x;(f) and the minimum magnitude on u(¢) as the
heaviest weights are placed on x(¢) and u(f) among the four
sets of weighting matrices. In general, the nonlinear
controllers with the heaviest weights on x,(f) offer faster
rising time on x;(¢) while those with the heaviest weights on
u(f) offer smaller range of u(f). Hence, it can be seen that
the LMI-based stability and performance conditions can be
served as an effective tool to design a stable and well-
performed nonlinear controller for nonlinear systems.

V. CONCLUSION

A nonlinear controller has been proposed to control
nonlinear plants represented by fuzzy models. LMI-based
stability conditions have been derived based on the
parameter-dependent Lyapunov function. Based on the
commonly-used performance index, LMI-based performance
conditions have been derived to design the system
performance. A numerical example has been given to
illustrate the effectiveness of the proposed approach.
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Fig. 2(b). x2(0). Fig. 2(c). u(?).
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Fig. 2. System state response and control signals under J, = {0 J ,Jd,= {0} and J3 = 1 (solid lines), J, :{ 0 1

0
} s Iy = LJ and J; = 1 (dotted lines),

10 0 100 0 0 .
J, = ,J, = and J; = 100 (dash-dot), and J, = , J, = and J; = 100 (dashed lines).
Yloo1]7 7 o Lo o177 o

Performance Index Parameters G;, E,. andP,i=1,2 Min. u(f)  Max. u(?)
G, =[7.4985x10™" —2.4298x107]; G, = [-1.9991x10™° —2.3689x10™"]
10 0 G, =[-4.1720x107° 7.7924x107°]; G, =[-7.9056x10"° —1.5128x107]
J, = L I,= L I=1 . e - 4 P -5.1994  0.0008
01 0 p | 1:2834x107 1.4194x107 | o _12543x107 9.1731x10
b114194%107 2.7613x107 |77 |9.1731x107° 2.5435x107
G, =[2.2625x10" —9.3098x107]; G, =[1.8540x10™ —8.3328x10™]
100 0 0 G, =[6.1067x10°° 2.5998x10™]; G, =[1.6111x10™ ~7.1409x10~"]
J, = LI, = [ =1 . o - B P —0.5696  0.4387
0 1 0 p _|94210x107 8.0632x10° | _9.3833x10™ 2137910
8.0632x10°  7.7031x107 | "7 | 2.1379%107°  6.4850x10°

G, =[1.7648x10™" —2.0651x107"]; G, =[-1.7264x10~" —1.9972¢-004]
G, =[4.7857x10°° 3.2661x10°]; G, =[2.1268x107 1.2876x10™]

1 0 0
JI{O I}JFM’JFWO p | 10388107 2.4079x10° 1.0048x10°  —1.0105x10°| 07095  0.0094
2.4079%107°  3.1025x10°° —1.0105x107°  3.1275x10°°

5

G, =[4.7815x10™ —5.8949x107]; G, =[2.8717x10™* —4.9685x10™]

100 0 0 G, =[8.8067x10° 3.6847x10°]; G, =[1.3074x10° —2.6565x10]
J, = s, =| [, J3=100

_[9.3715x10“ 1.0196><105] _[9.2778x10" ~5.3483%10°°
s IhH =

—-0.1245 0.0472
"T11.0196x107  5.4030x107 —5.3483x10™° 5.3106><103}

Performance index parameters, G;, G; and P;, and the minimum and maximum control signals.
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