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Abstract— This paper presents the stability analysis of the
fuzzy control systems based on the fuzzy-model-based
approach. The fuzzy controller, which does not require sharing
the same premises as those of the fuzzy model, is considered.
The class of fuzzy controllers offers the design flexibility and
robustness property to the fuzzy control systems. However,
conservative stability results will usually be produced
compared with the fuzzy control systems with fuzzy controllers
sharing the same premises as the fuzzy models. Relaxed LMI-
based stability conditions will be derived for this class of fuzzy
control systems. Furthermore, LMI-based performance
conditions will be given to guarantee the system performance.
Numerical examples will be given to illustrate the merits of the
proposed approach.

I. INTRODUCTION

uzzy-model-based approach is the most common

approach to analyze the system stability of the fuzzy

control systems. Based on the TS-fuzzy model [1]-[2],
nonlinear systems can be represented in a general and
systematic form. A fuzzy controller is then proposed to deal
with the nonlinear system based on the fuzzy model. In [3]-
[4], basic stability conditions were derived to guarantee the
system stability. The stability conditions can be expressed
in linear matrix inequalities (LMIs) [S] which can be solved
numerically and efficiently using convex program
techniques. By sharing the same membership functions
between the fuzzy plant model and the fuzzy controller,
relaxed stability conditions were reported in [6]-[11].

In [3]-[4], the membership functions of the fuzzy
controller can be freely designed. Furthermore, as the
stability conditions do not relate to the membership
functions of the fuzzy model, the fuzzy controller in [3]-[4]
is suitable to deal with the nonlinear systems subject to
parameter uncertainties which are represented by the fuzzy
models with uncertain parameters grouped into the
membership functions. Under this case, as the grades of
membership are uncertainties, the stability conditions in [4]-
[11] are not applicable for this class of fuzzy control
systems. Hence, for this class of fuzzy control systems, it
can be seen that the fuzzy controller in [3]-[4] offers better
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design flexibility and robustness property. However, due to
the membership functions of the fuzzy model are not
considered during the system analysis, conservative stability
results may be produced. In this paper, the system stability
of fuzzy control systems will be investigated. In order to
keep the design flexibility and robustness property of the
fuzzy controller, the fuzzy controller does not require
sharing the same premises as those of the fuzzy model. By
proper formulation of the fuzzy control systems, relaxed
stability analysis approach in [6]-[11] can be partially be
applied. Consequently, relaxed stability conditions can be
derived. Furthermore, LMI-based performance conditions
will be derived to guarantee the system performance.

This paper is organized as follows. In section II, the
fuzzy model and the fuzzy controller will be presented. In
section III, LMI-based stability and performance conditions
will be derived. In section IV, numerical examples will be
presented to illustrate effectiveness of the proposed
approach. A conclusion will be drawn in section V.

II. Fuzzy MODEL AND Fuzzy CONTROLLER

A multivariable fuzzy-model-based control system
comprising a fuzzy model and a fuzzy controller connected
in closed-loop will be considered.

A. Fuzzy Model
Let p be the number of fuzzy rules describing the
nonlinear plant. The i-th rule is of the following format:

Rule i: IF £(x(?)) is M| AND ... AND £, (x(2)) is M,

THEN x(¢) = Ax(¢)+B,u(?) 1)
where M/, is a fuzzy term of rule i corresponding to the
known function f,(x(?)), a=1,2,.., ¥i=12,.,p; ¥is
a positive integer; A, € R™ and B,e R™" are known
constant system and input matrices respectively; x(¢)e R
is the system state vector and u(t)e R™ is the input vector.
The system dynamics are described by,

K(0) = 3w (x(O)(AX0) + Bu() @
where,
Zp:Wi(X(f)) =1, w(x(®))e[0 1] foralli 3)
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is a nonlinear function of x(7) and u , (f,(x(?))), =1, 2,

..., ¥, are the grade of membership corresponding to the
fuzzy term of M, . It should be noted that the value of
My (X, (1))

parameter uncertainties.

is uncertain when it contains the system

B. Fuzzy Controller

A fuzzy controller with p fuzzy rules is to be designed for
the nonlinear plant. The j-th rule of the fuzzy controller is of
the following format:

Rulej: IF g,(x(¢)) is N/ AND ... AND g, (x(?)) is N},
THEN u(t) = G x(¢) 5)
where N;} is a fuzzy term of rule j corresponding to the
function g,(x(?)), B=1,2, .., j=1,2,
positive integer; G, € R™" is the feedback gain of rule j to

., P, £21s a

be designed. The inferred output of the fuzzy controller is
given by,

u() = 3. m, (x()G X() ©
where
imj(x(t))=1, m,(x(t))e[0 1] forallj (7)

J=1

(& (KON X 1 (&5 (KO XX 1, (8 (X(2)))

and m;(x(¢¥)) are denoted by w; and m; respectively for

simplicity. The property that Zw = Zm = ZZwm =
Jj=1 =1 j=1

1 will be used during the analy51s.

A. Stability Analysis
From (2) and (6), the fuzzy control system is as follows,
p

X(f) = ZWI[ ix(t)+Bin:ijjx(t)J
22

=l j=1

w,(Ax(1)+BG, (1) )

To investigate the stability of (9), the following Lyapunov
function candidate will be considered.

V(t)=x(t)" Px(t)
where P=P" € R > 0. From (9) and (10),
V(1) = x(t)" Px(¢) + x(£) " Px(¢)

{iimm

(10)

(Ax()+BG, )x(t)] Px(f)

+ X(t)TP(ZP:i w,w, (Ax(1) +B,G, )x(t)]

=1 j=1

zp: Zp: wm; x(6)"

(a,+BG,VP+P(a, +BG, k()

m,(x(1)) =

®)
is a nonlinear function of x(#) and Hy, (g5(x(2))) is the grade

of membership corresponding to the fuzzy term Ny .

C. Published Stability Conditions

LMI-based stability conditions in terms of LMIs have
been derived to test the system stability of the fuzzy control
systems formed by the fuzzy model of (2) and the fuzzy
controller of (6). The stability conditions are summarized in
the following theorem.

Theorem 1 [3]-[4]: The fuzzy control system, formed by the
nonlinear plant in the form of (2) and the fuzzy controller of
(6) is guaranteed to be asymptotically stable if there exists
symmetric matrix P=P" e R™ such that the following
LMIs hold.

P>0;
(A,+BG,)'P+P(A,+BG,)<0, i =

s D-

L2 ., pj=12

III. STABILITY ANALYSIS AND PERFORMANCE DESIGN

In this section, the system stability of the fuzzy control
system formed by the nonlinear plant in the form of (2) and
the fuzzy controller of (6) will be investigated. Furthermore,
LMI-based performance conditions will be derived to design
the system performance. In the following analysis, w;(x(¢))

3t (o (KONt (o (KON X Xy, (€0 (X))

+P(A, +B,G,

+ )T
(AB GB GP)J X0

22 Smlom, - oy [ELP(A +GB)(T} )J ®

i= ] J=1
where p> 1. It is assumed that the membership functions of
the fuzzy controller are design such that pm,—w, >20,j=1,

_Wj) =

{(Ai +BG,J P)]x(t)
)JX(I )

+P(A, +BG,
(11

w,(w o= " ((A +BG,)'P

p
2, .., p. Based on the property that Z(pmj
j=1

> w{om, -

=l j=1

) = p—1, we have,
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iiw,w x()'((A, +B,G, ] P+P(a, +B,G, k()
22w lom, —w K@) [ )] 0

33w om, - ﬁm[@+BG)) }@

(A +B,G
, > 18 an arbitrary matrix. From

(A, +BG,J'P
+P(A +BG,

(12)

where A, e R™,i=1,2, ...
(12), let R,+R," >0, i =1, 2,
R, =R, eR"™,
1& . (A, +BG,)'P
— X(7 t
20 LP(A,. +8G,)-(p-1a, )"
(A, +BG,) +P(A, +BG),)
~(p-1A, +(a,+B,G,)'P
+P(A,+B,G,)-(p-1A,

J

., p; I < j where

we have,

V()=

—ZZWW x(0)" x(7)

/lz</

+R;

ifw(m—wﬁo[“*EGyj [}m

1
Yo == +P(A‘.+B,.G/ +A

+ Rif

+

wx(z )
w,X(?)

wx(7)

R w,X(¢)

where

ﬁii = (Ai +BiGi)TP+P(Ai +BiGi)_ (p_
p’
(A, +BG,JP+P(A,+BG,)-(p-1A,
= +(A.f +B,/Gi)TP+P(Aj +B.fGi)_(p_l)Aj
i 2 Ry,
=1,2, .., p;i<j. It can be seen that the asymptotically
stability of the fuzzy control system of (10) is guaranteed by

the stability conditions of R<0
T .
(A,+BG,) P+P(A,+BG )+ A, <0,i=1,2, .., p;)

and

—_

b

2, ..., p- The stability analysis results are summarized in the
following Theorem.

Theorem 2: The fuzzy control system of (10) formed by the
nonlinear plant in form of (2) and the fuzzy controller of (6)
is guaranteed to be asymptotically stable if the membership
functions of the fuzzy controller are designed such that there

exists a p > 1 leading to pm ,(x(¢))—w,;(x(¢)) 20, j = 1, 2,
..., p and there exists matrices P=P"'e R™", A, e R™
and R; = R/.,.T e R™ such that the following LMIs are
satisfied.

P=P ' eR™>0;

R, +R, 20,i=12 .,pi<j

(A,+BG, P+P(A,+BG )+ A, <0,i=12 .. pj=1,
2,.,p;

Bll Blz _Rlp
Ez R21 Rzz ' Rzp <0:
Rﬂl Rﬁ2 RI’I’

where R, = (A, +B,G,) P+P(A, +BG,)-(p-1)A,, i =1,

2, s b
(Ai + BiGj )T P+ P(Ai + BiG,i )_ (p - 1)Ai
R\ (A./ + B./Gi)T P+ P(Aj + B./Gi)_ (p-1A,
2

+RU, J

=12 ..,p/i<j.

Remark [: The solution to the stability conditions in
Theorem 1 is also the solution to the stability conditions of
Theorem 2. Referring to Theorem 1, let P be the solution,

we have (A, +BG,)'P+P(A,+BG,)<0,i=1,2, .., p;j
=1, 2, ..., p. Considering the stability conditions in Theorem
2, let A =0 and

+(A,+B,G,JP+P(A, +BG,)
2 2
R,+R, >0,/=12,

stability conditions in Theorem 2 are satisfied with the P
given by Theorem 1. However, the solution given by
Theorem 2 may not be the solution of the stability conditions
in Theorem 1.

{(A,. +BG,P+P(A, +BG,)
R

(which leads to

.., P; I <J), it can be seen that the

B. Performance Design

In this section, LMI-based performance conditions will be
derived to guarantee the system performance of the fuzzy
control systems. The system performance is quantitatively
measured by the following performance index which is
commonly used in the optimal control techniques [13].

_ T{x(t)} {JIT Jz}{x(t)}dt
wlu@)| |J, J;|u@)

(14)
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where 77 — % > 0 denotes the optimization period,
J=3"eR™">0, J,eR™, J,=J,eR"™ >0 and

J] JZ
J,' T,

From (6) and (14), we have,

J =f;[x(rf [iw,-c,-x(ﬂ} ]LJ ”
RO L I A S
Thlx] [0 2XwG 0T,

R POIP
0 Z:I:chj x(1)

The system performance can be optimized by minimizing
the performance index J. Let

Jx@)[x2 0 [x0
n-[n{x(t)}li 0 xl‘z}{x(t)}dt

where 77 is a non-zero positive scalar. By minimizing the

value of 75, the performance index J can be minimized.
From (15) and (16), we have,

I 0
0 f G,/ {Jl Jz}
AN T
[x(@0)] = T s x(?)
j dt <0(17)
% X(l) | 0 ) X(l)
, X7 0
X0 ZW/'G/‘ _77|: 0 X2:|
I= ' !
The feedback gains are designed as G, =N, X' where

N, =R"™,i=1,2,..,pand X=P"' >0. From (17), we
have,

Tl o e
Wx(] ] 0 X, 0 X, |[x0

where
WIpO A L 10(19)
= T —
0 > wN, |lg" g, [0 Z;Wij To 1
i=1 j=

It can be seen that the inequality of (19) holds when W <

:|€ 9{("+m)><(n+m) > 0 .

x(7)
3w G x(0)

(15)

(16)

(18)

It can be seen that the inequality of (20) holds when W; <
0,i=1, 2, ..., p, which are the performance conditions. The
stability conditions in Theorem 2 can be expressed in terms
of X and N; by pre- and post-multiplying diag{X, X ---, X }
to R<0 and X to other stability conditions by letting
XA, =V, and S; = XR;X. The stability and performance

i

conditions are summarized in the following theorem.

Theorem 3: The fuzzy control system of (10) formed by the
nonlinear plant in form of (2) and the fuzzy controller of (6)
is guaranteed to be asymptotically stable if the membership
functions of the fuzzy controller are designed such that there
exists a p > 1 leading to pm (x(1))—w,;(x(1)) 20, j = 1, 2,

..., p and there exists matrices X=X"e R™", V, e R™,
S[jzsjiTe‘Ji"X”, J =J eR™, J, e R™
J,=J 3T € R™" such that the following LMI-based stability

and performance conditions are satisfied.
Stability Conditions:

X=X"eR™ >0,
T . L. ..
S, +S;, 20,i=12 ., pi<j

and

XA, +AX+BN,+N,'B +V,<0,i=12 ., pj=1,
2,.,p;
§11 §12 Elp
§: Sy Sy SZp <0:
pl 2 p
where S, =XA,"+AX+BN, +N,"B" —(p-1)V, , i = I,
2, P
T T T
[XA,. +AX+N,B/ +BN, - (p-1)V, J
T T T
g _\tXA +AX+NB, +B,N,—(p-1)V, s o

! 2
, 2, ..., p; i <j and the feedback gains are designed as
=NX"i=1,2,..,p

i i

QN

Performance Conditions:

-1
K, K J J

o= | >0y
K, K,| |3, J,

0. From (19) and by Schur complement, W < 0 is equivalent -nt 0 X, 0
o . T
t?, the following inequality. W, = 0 7l 0 N, <0,i=12..p
> wW, <0 (20) X, 0 -K -K,
B 0 N -K, -K,
K K] [3 5]
where K,' K, J,' >0, IV. NUMERICAL EXAMPLES
) ) Two examples will be given in this section to illustrate the
-0 X, 0 merits of the stability analysis and performance design
0 -7l 0 Nl.T results. In the first example, a numerical example will be
W, = X 0 -K -K.| i=L2,..p given to show that the stability region given by Theorem 2 is
: L g larger than that given by Theorem 1. In the second example,
0 N -K, -K, the LMI-based stability and performance conditions will be
2030
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employed to design a stable and well-performed fuzzy
controller for a cart-pole typed inverted pendulum.

A. Example 1
A numerical example will be given to show the
effectiveness of the stability conditions in Theorem 2. A
fuzzy model with the following 2 fuzzy rules is considered.
Rule i: IF x,(7) is M}
THEN x(1) = Ax(t)+Bu(?),i=1,2 21)

2 -10 a -10 1
where AI:1 Rt A2:1 : ; Blzo and

b
Bz={0} 2<a<6and 1 <b <25 A 2-rule fuzzy

controller of (6) is employed to close the feedback loop. It is
assumed that the membership functions of fuzzy controller,
which are different from the membership functions of the
fuzzy plant, are designed such that pm (x(¢))—w;(x(#)) 20,
j=1,2, with p=5. The feedback gains G, and G, are
designed such that all eigenvalues of H;; and H,, are located
at —10. Fig. 1 shows the stability regions of Theorem 1 and
Theorem 2. It can be seen from Fig. 1 that the stability
conditions in Theorem 2 provides larger stability region than
those of Theorem 1. Furthermore, the published stability
conditions given in [6]-[11] cannot be applied as the
premises of the fuzzy model and fuzzy controller are
different.

B. Example 2
An application example on stabilizing a cart-pole typed
inverted pendulum [14] will be given.

Step 1) The dynamic equations of the inverted pendulum
on the cart [14] is given by,

X, (1) = x,(1)
— F(M +m)x,(t)—m’I’x,(t)" sin x, () cos x, ()
+ Fymlix,(¢t)cos x,(t) + (M +m)mglsin x, (¢)
—ml cosx, (t)u(t)

(22)

xX,(t) = 5 oD 5 (23)
M +m)(J +ml™)—mI"(cos x,(t))
x;(2) = x,(1) (24)
Fmlx,(t)cos x,(t) + (J + ml*Ymlx,(t)* sin x,(¢)
— F,(J +ml*)x,(t) —m’gl’ sin x,(¢) cos x, ()
()= +(J +ml )u(t) 25)

(M +m)(J +ml*)—m’I*(cos x, (1))’
where x,(f) and x,(f) denote the angular displacement (rad)
and the angular velocity (rad/s) of the pendulum from
vertical respectively, x3(¢) and x4(f) denote the displacement
(m) and the velocity (m/s) of the cart respectively, g = 9.8
m/s” is the acceleration due to gravity, m = 0.22 kg is the
mass of the pendulum, M = 1.3282 kg is the mass of the cart,
/ = 0.304 m is the length from the center of mass of the
pendulum to the shaft axis, J = m/*/3 kgm® is the moment of
inertia of the pendulum around the center of mass, F =

22915 N/m/s and F, = 0.007056 N/rad/s are the friction
factors of the cart and the pendulum respectively, and u(t) is
the force (N) applied to the cart. The objective of this
application example is to employed the proposed fuzzy
controller to control the nonlinear plant such that x,(¢) = x;(¢)
= 0 at steady state. The nonlinear plant can be represented
by a fuzzy plant model with two fuzzy rules [14]. The i-th
rule is given by,

Rule i: IF xy(7) is M;

THEN x(¢) = Ax(t)+Bu(t) fori=1,2 (26)
The system dynamics are described by,
2
x(1) = 3" w,(x, ())(Ax(0) + Bu(2)) (27)
i=l

where X0 =k o O xOl;
0 1 0 0
A M+m)ymgl/a, —F(M+m)/a, 0 Fyml/a,
: 0 0 1 0
-m’gl’/q, Eml/a, 0 —F,(J+ml*)/a
0 1 0 0
ﬁ(z\4+m)mg1/a2 ~E(M+m)/a, 0 Fymlcos(r/3)la,
A = 2r
2 0 0 1 0
—%nglzcos(ﬂﬂ)/az Fmicos(z/3)/a, 0 —F(J+mi*)/a,
0 0
—-ml/a, —mlcos(x/3)/a,
’ B1 = 5 = ’
0 0
(J+ml*)/a, (J+ml*)/a,

a, =M +m)(J +ml*)—m**,

a, =(M +m)(J +ml*)—m’I* cos(z/3)>. The membership

functions are defined as w,(x,(¢)) Uy, (@) =
1 1 _
1_1+e—7(x,(t)—7r/6) 1+ /6 and w,(x,(1)) -
1= 1, (x5, (1))
Step II) A two-rule fuzzy controller is employed to

control the nonlinear plant. From (6), the output of the fuzzy
controller is defined as follows.

u(t)= Zﬁ:m‘,(x(t))G‘fx(t)

The membership functions of the fuzzy control
_x@?

are designed as m(x,(2)) = i, (x,(2)) =0.9e 25 and

(28)

,xl(f)z
m, (x,(1)) = ,ule (x,(£))=1-0.9e 5 |

membership functions of the fuzzy model and fuzzy
controller. It can be seen that the membership functions of
the fuzzy controller satisfied the conditions of

o (x, () +w, (3, (1) 20, j = 1,2, with p=20.

Fig. 2 shows the
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Step I1I) Based on the stability conditions in Theorem 3,
with 7 = 107, four fuzzy controllers with feedback gains
designed based on different Jy, J, and J; can be obtained.
Table I tabulates the feedback gains of the four fuzzy
controllers which are denoted by fuzzy controllers 1 to 4. It
can be seen that different J; and J; put different weights on
the system states and control signal respectively which lead
to different feedback gains to satisfy the performance index.

Fig. 3 shows the system state responses and the
control signals with the fuzzy controllers using various
feedback gains under the initial state conditions of

T

x(0) = {?

seen that the nonlinear plant can be stabilized successfully
by the fuzzy controllers 1 to 4. The system stability of the
fuzzy control systems are guaranteed by the stability
conditions in Theorem 3. The minimum and maximum
magnitudes of the control signals produced by the four fuzzy
controllers are tabulated in Table 1. Referring to Fig. 3, the
fuzzy controllers 3, which put heaviest weight on x3(¢) and
the least weight on u(f), offer the best state response in terms
of raise time and settling time on x;(f) at the cost of large
magnitude of control signal. Referring to Fig. 3 and Table 1,
it can be seen that the fuzzy controllers designed under

T
0 0 0} . Referring to this figure, it can be

1 0 0 O
01 0
J, = offer faster state responses on x;(f)
0 0 100 O
00 0 1

while the fuzzy controllers with J; = 100 offer smaller
magnitude of control signals. Hence, it can be shown that
the performance conditions offer an effective way to design
the system performance subject to the performance index of
(14).

V. CONCLUSION

The system stability and performance design have been
investigated. A fuzzy controller, which does not require
sharing the same premises as those of the fuzzy model, has
been proposed to control the nonlinear systems. Relaxed
stability conditions have been derived for this class of fuzzy
control systems. The stability results are applicable to fuzzy
control systems with uncertain grades of membership.
Furthermore, LMI-based performance conditions have been
derived to guarantee the system performance. Numerical
examples have been given to illustrate the effectiveness of
the proposed approach.
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Fig. 1(a). Theorem 1.
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Fig. 1(b). Theorem 2.
Fig. 1. Stability regions of Theorem 1 and Theorem 2.
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Fig. 3. System state response and control signals under fuzzy controller 1 (solid lines), fuzzy controller 2 (dotted lines), fuzzy controller 3 (dash-dot), and
fuzzy controller 4 (dashed lines).

Fuzzy Controller Min. u(?) Max. u(t)
Performance Index Parameters Feedback Gains
N) N)
1 [1 0 0 0] [0]
0100 0
J, = 0 0 o ,J, = ol G, =[4404.1989 341.9473 22.2183 306.7273]
1 -15.6335  2760.9899
0 0 0 1] 10] G, =[1938.9552 148.3632 8.5644 129.1503]
Ji=1
2 [1 0 0 0] [0]
0100 0
J = L= G, =[2430.5433 193.9088 1.6889 186.34186]
0010 0 24707  1940.8350
0 0 0 1] 10] G,=[1625.5779 128.3212 1.0259 121.0424]
J; =100
3 10 0 0 0
01 0 0 0 G, =[11059.3228 911.9826 404.4426 916.1438]
J]: ,d,= s
0 0 100 0 0 G,=[3973.9950 323.6919 -53.1304  6261.1390
00 0 1 0
133.9778 318.2300]
J3:1
4 10 0 0 0
T R T G, =[2564.4280 201.6470 14.4104 190.6409]
1= s> 9 = > 1= B . N :
0 0 100 O 0 —15.4341  1974.4903
00 0 1 0 G, =[1617.5625 125.6765 8.1229 116.2206]
J5 =100

Table I. Feedback gains under different values of performance index parameters, and the minimum and maximum amplitudes of the control signals.
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