
 
 

  

Abstract— This paper presents the stability analysis of the 
fuzzy control systems based on the fuzzy-model-based 
approach.  The fuzzy controller, which does not require sharing 
the same premises as those of the fuzzy model, is considered.  
The class of fuzzy controllers offers the design flexibility and 
robustness property to the fuzzy control systems.  However, 
conservative stability results will usually be produced 
compared with the fuzzy control systems with fuzzy controllers 
sharing the same premises as the fuzzy models.  Relaxed LMI-
based stability conditions will be derived for this class of fuzzy 
control systems.  Furthermore, LMI-based performance 
conditions will be given to guarantee the system performance.  
Numerical examples will be given to illustrate the merits of the 
proposed approach. 

I. INTRODUCTION 
uzzy-model-based approach is the most common 
approach to analyze the system stability of the fuzzy 
control systems.  Based on the TS-fuzzy model [1]-[2], 

nonlinear systems can be represented in a general and 
systematic form.  A fuzzy controller is then proposed to deal 
with the nonlinear system based on the fuzzy model.  In [3]-
[4], basic stability conditions were derived to guarantee the 
system stability.  The stability conditions can be expressed 
in linear matrix inequalities (LMIs) [5] which can be solved 
numerically and efficiently using convex program 
techniques.  By sharing the same membership functions 
between the fuzzy plant model and the fuzzy controller, 
relaxed stability conditions were reported in [6]-[11]. 
 In [3]-[4], the membership functions of the fuzzy 
controller can be freely designed.  Furthermore, as the 
stability conditions do not relate to the membership 
functions of the fuzzy model, the fuzzy controller in [3]-[4] 
is suitable to deal with the nonlinear systems subject to 
parameter uncertainties which are represented by the fuzzy 
models with uncertain parameters grouped into the 
membership functions.  Under this case, as the grades of 
membership are uncertainties, the stability conditions in [4]-
[11] are not applicable for this class of fuzzy control 
systems.  Hence, for this class of fuzzy control systems, it 
can be seen that the fuzzy controller in [3]-[4] offers better 
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design flexibility and robustness property.  However, due to 
the membership functions of the fuzzy model are not 
considered during the system analysis, conservative stability 
results may be produced.  In this paper, the system stability 
of fuzzy control systems will be investigated.  In order to 
keep the design flexibility and robustness property of the 
fuzzy controller, the fuzzy controller does not require 
sharing the same premises as those of the fuzzy model.  By 
proper formulation of the fuzzy control systems, relaxed 
stability analysis approach in [6]-[11] can be partially be 
applied.  Consequently, relaxed stability conditions can be 
derived.  Furthermore, LMI-based performance conditions 
will be derived to guarantee the system performance. 

This paper is organized as follows.  In section II, the 
fuzzy model and the fuzzy controller will be presented.  In 
section III, LMI-based stability and performance conditions 
will be derived.  In section IV, numerical examples will be 
presented to illustrate effectiveness of the proposed 
approach.  A conclusion will be drawn in section V. 

II. FUZZY MODEL AND FUZZY CONTROLLER 
A multivariable fuzzy-model-based control system 

comprising a fuzzy model and a fuzzy controller connected 
in closed-loop will be considered. 

 
A.  Fuzzy Model  
 Let p be the number of fuzzy rules describing the 
nonlinear plant.  The i-th rule is of the following format: 
Rule i: IF ))((1 tf x  is i

1M  AND … AND ))(( tf xΨ  is i
ΨM  

            THEN )()()(  ttt ii uBxAx +=  (1) 
where i

αM  is a fuzzy term of rule i corresponding to the 
known function ))(( tf xα , α = 1, 2, ..., Ψ; i = 1, 2, ..., p; Ψ is 
a positive integer; nn

i
×ℜ∈A  and mn

i
×ℜ∈B  are known 

constant system and input matrices respectively; 1)( ×ℜ∈ ntx  
is the system state vector and 1)( ×ℜ∈ mtu  is the input vector.  
The system dynamics are described by, 
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is a nonlinear function of x(t) and )))(((
M

tfi xα
α

µ , α = 1, 2, 

…, Ψ, are the grade of membership corresponding to the 
fuzzy term of i

αM .  It should be noted that the value of 
))((

M
txi α

α
µ  is uncertain when it contains the system 

parameter uncertainties. 
 
B.  Fuzzy Controller 
 A fuzzy controller with p fuzzy rules is to be designed for 
the nonlinear plant.  The j-th rule of the fuzzy controller is of 
the following format: 
Rule j: IF ))((1 tg x  is j

1N  AND … AND ))(( tg xΩ  is j
ΩN  

           THEN )()( tt jxGu =  (5) 

where j
βN  is a fuzzy term of rule j corresponding to the 

function ))(( tg xβ , β = 1, 2, ..., Ω; j = 1, 2, ..., p; Ω is a 

positive integer; nm
j

×ℜ∈G  is the feedback gain of rule j to 
be designed.  The inferred output of the fuzzy controller is 
given by, 
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is a nonlinear function of x(t) and )))(((N tgj xβ

β
µ  is the grade 

of membership corresponding to the fuzzy term j
βN . 

 
C.  Published Stability Conditions 
 LMI-based stability conditions in terms of LMIs have 
been derived to test the system stability of the fuzzy control 
systems formed by the fuzzy model of (2) and the fuzzy 
controller of (6).  The stability conditions are summarized in 
the following theorem. 
 
Theorem 1 [3]-[4]:  The fuzzy control system, formed by the 
nonlinear plant in the form of (2) and the fuzzy controller of 
(6) is guaranteed to be asymptotically stable if there exists 
symmetric matrix nn×ℜ∈= TPP  such that the following 
LMIs hold. 

0>P ; 
( ) ( ) 0T <+++ jiijii GBAPPGBA , i = 1, 2, ..., p; j = 1, 2, 
..., p. 
 
III.  STABILITY ANALYSIS AND PERFORMANCE DESIGN 
 In this section, the system stability of the fuzzy control 
system formed by the nonlinear plant in the form of (2) and 
the fuzzy controller of (6) will be investigated.  Furthermore, 
LMI-based performance conditions will be derived to design 
the system performance.  In the following analysis, wi(x(t)) 

and mj(x(t)) are denoted by wi and mj respectively for 

simplicity.  The property that ∑
p

i
iw

1=

 = ∑
p

j
im

1=

 = ∑∑
p

i

p

j
iimw

1= 1=

 = 

1 will be used during the analysis. 
 
A.  Stability Analysis 
 From (2) and (6), the fuzzy control system is as follows, 
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 To investigate the stability of (9), the following Lyapunov 
function candidate will be considered. 
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where 0T >ℜ∈= ×nnPP .  From (9) and (10), 
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where ρ > 1.  It is assumed that the membership functions of 
the fuzzy controller are design such that 0≥− jj wmρ , j = 1, 

2, ..., p.  Based on the property that ( )∑ −
p

j=
jj wm

1
ρ  = 

( )∑∑
=

−
p

i

p

j=
jji wmw

1 1

ρ  = ρ − 1, we have, 
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where nn
i

×ℜ∈Λ , i = 1, 2, ..., p, is an arbitrary matrix.  From 
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, j 

= 1, 2, ..., p; i < j.  It can be seen that the asymptotically 
stability of the fuzzy control system of (10) is guaranteed by 
the stability conditions of 0<R  and 
( ) ( ) 0T <++++ ijiijii ΛGBAPPGBA , i = 1, 2, ..., p; j = 1, 

2, ..., p.  The stability analysis results are summarized in the 
following Theorem. 
 
Theorem 2:  The fuzzy control system of (10) formed by the 
nonlinear plant in form of (2) and the fuzzy controller of (6) 
is guaranteed to be asymptotically stable if the membership 
functions of the fuzzy controller are designed such that there 
exists a ρ > 1 leading to 0))(())(( ≥− twtm jj xxρ , j = 1, 2, 

..., p and there exists matrices nn×ℜ∈= TPP , nn
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×ℜ∈Λ  

and nn
jiij

×ℜ∈= TRR  such that the following LMIs are 
satisfied. 
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Remark 1:  The solution to the stability conditions in 
Theorem 1 is also the solution to the stability conditions of 
Theorem 2.  Referring to Theorem 1, let P be the solution, 
we have ( ) ( ) 0T <+++ jiijii GBAPPGBA , i = 1, 2, ..., p; j 
= 1, 2, ..., p.  Considering the stability conditions in Theorem 
2, let 0Λ =i  and 
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0T ≥+ ijij RR , j = 1, 2, ..., p; i < j), it can be seen that the 
stability conditions in Theorem 2 are satisfied with the P 
given by Theorem 1.  However, the solution given by 
Theorem 2 may not be the solution of the stability conditions 
in Theorem 1. 
 
B.  Performance Design 
 In this section, LMI-based performance conditions will be 
derived to guarantee the system performance of the fuzzy 
control systems.  The system performance is quantitatively 
measured by the following performance index which is 
commonly used in the optimal control techniques [13]. 
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where τ1 − τ0 > 0 denotes the optimization period, 
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 The system performance can be optimized by minimizing 
the performance index J.  Let 
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where η is a non-zero positive scalar.  By minimizing the 
value of η, the performance index J can be minimized.  
From (15) and (16), we have, 
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 The feedback gains are designed as 1−= XNG ii  where 
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 It can be seen that the inequality of (19) holds when W < 
0.  From (19) and by Schur complement, W < 0 is equivalent 
to the following inequality. 

0
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, i = 1, 2, ..., p. 

 It can be seen that the inequality of (20) holds when Wi < 
0, i = 1, 2, ..., p, which are the performance conditions.  The 
stability conditions in Theorem 2 can be expressed in terms 
of X and Nj by pre- and post-multiplying diag{X, X ⋅⋅⋅, X } 
to 0<R  and X to other stability conditions by letting 

ii VXΛ =  and XXRS ijij = .  The stability and performance 
conditions are summarized in the following theorem. 
 
Theorem 3:  The fuzzy control system of (10) formed by the 
nonlinear plant in form of (2) and the fuzzy controller of (6) 
is guaranteed to be asymptotically stable if the membership 
functions of the fuzzy controller are designed such that there 
exists a ρ > 1 leading to 0))(())(( ≥− twtm jj xxρ , j = 1, 2, 

..., p and there exists matrices nn×ℜ∈= TXX , nn
i

×ℜ∈V , 
nn

jiij
×ℜ∈= TSS , nn×ℜ∈= T

11 JJ , mn×ℜ∈2J  and 
mm×ℜ∈= T

33 JJ  such that the following LMI-based stability 
and performance conditions are satisfied. 
Stability Conditions: 

0T >ℜ∈= ×nnXX ; 
0T ≥+ ijij SS , i = 1, 2, ..., p; i < j; 

0TTT <++++ iijjiii VBNNBXAXA , i = 1, 2, ..., p; j = 1, 
2, ..., p; 

0

21

22221

11211

<





















=

pppp

p

p

SSS

SSS
SSS

S ; 

where ( ) iiiiiiiii VBNNBXAXAS 1TTT −−+++= ρ  , i = 1, 
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1, 2, ..., p; i < j and the feedback gains are designed as 
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−= XNG ii  i = 1, 2, ..., p. 
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IV.  NUMERICAL EXAMPLES 
 Two examples will be given in this section to illustrate the 
merits of the stability analysis and performance design 
results.  In the first example, a numerical example will be 
given to show that the stability region given by Theorem 2 is 
larger than that given by Theorem 1.  In the second example, 
the LMI-based stability and performance conditions will be 

2030

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 00:06 from IEEE Xplore.  Restrictions apply.



 
 

employed to design a stable and well-performed fuzzy 
controller for a cart-pole typed inverted pendulum. 
 
A.  Example 1 
 A numerical example will be given to show the 
effectiveness of the stability conditions in Theorem 2.  A 
fuzzy model with the following 2 fuzzy rules is considered. 
Rule i:  IF x1(t) is i

1M  
            THEN )()()( tutt ii BxAx += , i = 1, 2 (21) 

where 






 −
=

01
102

1A , 






 −
=

11
10

2

a
A ; 








=

0
1

1B  and 









=

02

b
B ; 2 ≤ a ≤ 6 and 1 ≤ b ≤ 25.  A 2-rule fuzzy 

controller of (6) is employed to close the feedback loop.  It is 
assumed that the membership functions of fuzzy controller, 
which are different from the membership functions of the 
fuzzy plant, are designed such that 0))(())(( ≥− twtm jj xxρ , 
j = 1, 2, with ρ = 5.  The feedback gains G1 and G2 are 
designed such that all eigenvalues of H11 and H22 are located 
at −10.  Fig. 1 shows the stability regions of Theorem 1 and 
Theorem 2.  It can be seen from Fig. 1 that the stability 
conditions in Theorem 2 provides larger stability region than 
those of Theorem 1.  Furthermore, the published stability 
conditions given in [6]-[11] cannot be applied as the 
premises of the fuzzy model and fuzzy controller are 
different. 
 
B.  Example 2 
 An application example on stabilizing a cart-pole typed 
inverted pendulum [14] will be given. 
 
Step I) The dynamic equations of the inverted pendulum 
on the cart [14] is given by, 
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where x1(t) and x2(t) denote the angular displacement (rad) 
and the angular velocity (rad/s) of the pendulum from 
vertical respectively, x3(t) and x4(t) denote the displacement 
(m) and the velocity (m/s) of the cart respectively, g = 9.8 
m/s2 is the acceleration due to gravity, m = 0.22 kg is the 
mass of the pendulum, M = 1.3282 kg is the mass of the cart, 
l = 0.304 m is the length from the center of mass of the 
pendulum to the shaft axis, J = ml2/3 kgm2 is the moment of 
inertia of the pendulum around the center of mass, F0 = 

22.915 N/m/s and F1 = 0.007056 N/rad/s are the friction 
factors of the cart and the pendulum respectively, and u(t) is 
the force (N) applied to the cart.  The objective of this 
application example is to employed the proposed fuzzy 
controller to control the nonlinear plant such that x1(t) = x3(t) 
= 0 at steady state.  The nonlinear plant can be represented 
by a fuzzy plant model with two fuzzy rules [14].  The i-th 
rule is given by, 
Rule i:  IF x1(t) is i

1M  
            THEN )()()( tutt ii BxAx +=  for i = 1, 2 (26) 
The system dynamics are described by, 
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functions are defined as ))(( 11 txw  = ))(( 1M1
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Step II) A two-rule fuzzy controller is employed to 
control the nonlinear plant.  From (6), the output of the fuzzy 
controller is defined as follows. 

∑
p

j=
jj ttmtu

1

)())((=)( xGx  (28) 

 The membership functions of the fuzzy control 

are designed as 2

2
1

1
1

5.12
)(

1N11 9.0))(())(( ×
−

==
tx

etxtxm µ  and 

2

2
1

2
1

5.12
)(

1N12 9.01))(())(( ×
−

−==
tx

etxtxm µ .  Fig. 2 shows the 

membership functions of the fuzzy model and fuzzy 
controller.  It can be seen that the membership functions of 
the fuzzy controller satisfied the conditions of 

0))(())(( 11 ≥+ txwtxm jjρ , j = 1, 2, with ρ = 20. 
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Step III) Based on the stability conditions in Theorem 3, 
with η = 10−3, four fuzzy controllers with feedback gains 
designed based on different J1, J2 and J3 can be obtained.  
Table I tabulates the feedback gains of the four fuzzy 
controllers which are denoted by fuzzy controllers 1 to 4.   It 
can be seen that different J1 and J3 put different weights on 
the system states and control signal respectively which lead 
to different feedback gains to satisfy the performance index. 
 
 Fig. 3 shows the system state responses and the 
control signals with the fuzzy controllers using various 
feedback gains under the initial state conditions of 

T

000
3

)0( 




= πx .  Referring to this figure, it can be 

seen that the nonlinear plant can be stabilized successfully 
by the fuzzy controllers 1 to 4.  The system stability of the 
fuzzy control systems are guaranteed by the stability 
conditions in Theorem 3.  The minimum and maximum 
magnitudes of the control signals produced by the four fuzzy 
controllers are tabulated in Table 1.  Referring to Fig. 3, the 
fuzzy controllers 3, which put heaviest weight on x3(t) and 
the least weight on u(t), offer the best state response in terms 
of raise time and settling time on x3(t) at the cost of large 
magnitude of control signal.  Referring to Fig. 3 and Table 1, 
it can be seen that the fuzzy controllers designed under 



















=

1000
010000
0010
0001

1J  offer faster state responses on x3(t) 

while the fuzzy controllers with J3 = 100 offer smaller 
magnitude of control signals.  Hence, it can be shown that 
the performance conditions offer an effective way to design 
the system performance subject to the performance index of 
(14). 
 
V. CONCLUSION 
 The system stability and performance design have been 
investigated.  A fuzzy controller, which does not require 
sharing the same premises as those of the fuzzy model, has 
been proposed to control the nonlinear systems.  Relaxed 
stability conditions have been derived for this class of fuzzy 
control systems.  The stability results are applicable to fuzzy 
control systems with uncertain grades of membership.  
Furthermore, LMI-based performance conditions have been 
derived to guarantee the system performance.  Numerical 
examples have been given to illustrate the effectiveness of 
the proposed approach. 
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Fig. 1(a).  Theorem 1. 
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Fig. 1(b).  Theorem 2. 

Fig. 1.  Stability regions of Theorem 1 and Theorem 2. 
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Fig. 2.  Membership functions of the fuzzy model (dotted lines) and the 
fuzzy controller (solid lines). 
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Fig. 3(a).  x1(t). 
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Fig. 3(b).  x2(t). 
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Fig. 3(c).  x3(t). 
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Fig. 3(d).  x4(t). 
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Fig. 3(e).  u(t). 

Fig. 3.  System state response and control signals under fuzzy controller 1 (solid lines), fuzzy controller 2 (dotted lines), fuzzy controller 3 (dash-dot), and 
fuzzy controller 4 (dashed lines). 

 
Fuzzy Controller 

Performance Index Parameters Feedback Gains 
Min. u(t) 

 (N) 

Max. u(t) 

 (N) 
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
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
















=

1000
0100
0010
0001

1J , 





















=

0
0
0
0

2J , 

J3 = 1 

G1 = [4404.1989   341.9473   22.2183   306.7273] 

G2 = [1938.9552   148.3632   8.5644   129.1503] 
−15.6335 2760.9899 
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



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








=
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
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
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
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








=

0
0
0
0

2J , 

J3 = 100 

G1 = [2430.5433   193.9088   1.6889   186.34186] 

G2 = [1625.5779   128.3212   1.0259   121.0424] 
−2.4707 1940.8350 
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
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J3 = 1 

G1 = [11059.3228   911.9826   404.4426   916.1438] 
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         133.9778   318.2300] 

−53.1304 6261.1390 
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G1 = [2564.4280   201.6470   14.4104   190.6409] 

G2 = [1617.5625   125.6765   8.1229   116.2206] 
−15.4341 1974.4903 

Table I.  Feedback gains under different values of performance index parameters, and the minimum and maximum amplitudes of the control signals. 
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