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Abstract— This paper investigates the system stability of the
fuzzy-model-based control systems. New stability conditions in
terms of linear matrix inequalities (LMIs) will be derived based
on the Lyapunov-based approach. It will be shown that the
proposed stability conditions offer relaxed stability result than
that of some important published stability conditions. The
feedback gains of the fuzzy controller will be designed based on
the LMI-based approach. A numerical example will be given to
show the merits of the proposed stability conditions.

1. INTRODUCTION

uzzy-model-based control approach offers a systematic

approach to handle nonlinear plants. In this approach,

the nonlinear plant is represented by the TS-fuzzy model
[17-[2]. A fuzzy controller [3]-[4] with similar structure will
be employed to close the feedback loop to form a fuzzy
model-based control system. The system stability was
investigated in [3]-[4] based on Lyapunov-based approach.
It was shown that the fuzzy-model-based control system is
guaranteed to be stable if there exists a solution to a set of
linear matrix inequalities (LMIs) [5] which can be solved
numerically and efficiently by some convex programming
techniques. When the fuzzy controller shares the same
premise as those of the fuzzy model, relaxed stability
conditions can be obtained [6]. Under this design criterion
of the fuzzy controller, further relaxed stability conditions
were reported in [7]-[10]. In this paper, the system stability
of the fuzzy-model-based control systems studied in [3]-[10]
will be investigated. @ Based on the Lyapunov-based
approach, new LMI stability conditions will be derived. It
will be shown analytically and experimentally that the
proposed stability conditions will offer relaxed stability
results than those published in [3]-[10]. The LMI-based
design of the feedback gains of the fuzzy controller will also
be presented subject to the system stability.

This paper is organized as follows. In section II, the fuzzy
model and the fuzzy controller will be presented. In section
III, some important published stability conditions [3]-[10]
will be reviewed. In section IV, new relaxed stability
conditions will be derived for the fuzzy-model-based control
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systems. In section V, the design of the feedback gains
based on the LMI-based approach will be given. In section
VI, numerical example will be given to illustrate the
effectiveness of the new stability conditions. A conclusion
will be drawn in section VIL

II. Fuzzy MODEL AND Fuzzy CONTROLLER

A fuzzy-model-based control system comprises a
nonlinear plant represented by the TS-fuzzy model and the
fuzzy controller connected in closed loop. The details of the
fuzzy model and the fuzzy controller are given as follows.

A. Fuzzy Model
Let p be the number of fuzzy rules describing the
nonlinear plant. The i-th rule is of the following format.

Rule i: IF f,(x(7)) is M; AND ... AND f, (x(?)) is M,,

THEN x(z) = A x(t)+ B, u(?) (1)
where M/, is a fuzzy term of rule i corresponding to the
function f,(x(¢)), a=1, 2, ..., ¥, ¥is a positive integer, i =
1,2, .,p; A,eR™ and B,e R™™ are known constant
system and input matrices respectively; x(t)e R™ is the
system state vector and u(z)e R™ is the input vector. The
system behavior is described by,

K0 = w OO+ Bu). @)
where,
zp:w,.(x(t)) =1, w(x())e [0 1] foralli (3)

oty @) x gy, ()3, (f, (D))
w,(x(1) = —

3l Oty ()1, (1 (06)

4)
is a known nonlinear function of f,(x(?)). My ( fa(x(t))),

a=1,2,..., ¥ is the grade of membership corresponding to
the fuzzy term of M/, .

B. Fuzzy Controller

A fuzzy controller with p fuzzy rules is employed to
handle the nonlinear plant. The j-th rule of the fuzzy
controller is of the following format.

Rulej: IF f,(x(¢)) is M AND ... AND £, (x(?)) is M,,
THEN u(?) =G x(¢) (5)
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where G, € R™ is the feedback gain of rule j. The inferred
output of the fuzzy controller is given by,

u(®) = 3w, (06 X0 ©

C. Fuzzy-Model-Control System

The fuzzy-model-based control system is formed by
connecting the fuzzy model of (2) and the fuzzy controller of
(6) in closed loop. From (3), we have the following

property.
Z w,(x(7)) = ZZW (x@)w;(x(1)) =1 ()

=l j=1

From (2), (6) and (7), we have,

x(t) = Z,,:W[ (x(t))(A x(1)+ B, Zw (x(1)G x(t)J

=3 S xOw, xO)A, +BG, KO

= 33 )W, (XOH () ®)
where

H,=A+BG,,i=1,2,..,p;j=1,2,..,p. 9)

III. PUBLISHED STABILITY CONDITIONS

In this section, some important LMI stability conditions
which guarantee the stability of the fuzzy-model-based
control systems in form of (8) will be reviewed.

A. Wang et al’s Basic Stability Conditions
Theorem 1: The equilibrium of the fuzzy-model-based
control system in form of (8) is asymptotically stable in the

large if there exists a symmetric matrix P =P" € R™" such
that the following LMIs hold.

P>0; H/P+PH,<0,i=1,2 .., p;

H,+H,\ H, +H,
/21 P+P—/21 <0, =1 2 ..

w,(x(D))w; (x()) % 0.

where s is an integer denoting the maximum number of fired
fuzzy subsystems at an instance.

Proof: see [7].

Remark 1: Tt has been shown in [7] that if the stability
conditions of Theorem 1 hold, the stability conditions of
Theorem 2 will also hold.

C. Kim et al’s Relaxed Stability Conditions
Theorem 3: The equilibrium of the fuzzy-model-based
control system in form of (8) is asymptotically stable in the

large if there exist matrices P=PTeR™"
X, = X[jT e R™ such that the following LMIs hold.
P>0;
A,P+PA, +X,<0,i=12 .., p;

T . .
A, P+PA;+X,;,<0,1<i<j<p;

and

X11 X12 le
x| X oo Xl
Xl/) XZ/J o X/J/)
H,+H,

where A”:T

Proof: See [8].

Remark 2: Tt was pointed out in [9] that the stability
conditions of Theorem 5 can be further improved by

modifying the LMI conditions A[jTP+PA[j +X,<0,1<1
<j<pto 2A, P+2PA, +X, +X," <0, 1<i<;<p where
X, =X, e R"™.

Remark 3: Tt has been shown in [8] that if the stability

conditions of Theorem 2 hold, the stability conditions of
Theorem 3 will also hold.

D. Marcelo et al’s Relaxed Stability Conditions
Theorem 4: The equilibrium of the fuzzy-model-based
control system in form of (8) is asymptotically stable in the

Proof: see [6]. large if there exist symmetric matrices P=PT e R™",
T, =T, X", li[/. = li[/.T e R™ and S, € R"™ such
B. Tanaka et al’s Relaxed Stability Conditions that the foll LMIs hold
Theorem 2: The equilibrium of the fuzzy-model-based at the following § hotd.
; ; . . P>0;
control system in form of (8) is asymptotically stable in the o
large if there exist matrices P=P'eR™ and T 20,0, h =12 . pri<j;
Q =Q" € R™ such that the following LMIs hold. Q,-Z, On,, Qn,,
P>0;Q>0; ot —| @ Q-7 L
H,'P+PH, +(s—)Q<0,i=12 .,p | Ss<p ' : : : B
. .
H[j+Hj[ P+P H[j+Hj[ _QSO ] < i< J < » anlh anZh Q/J_Z/Jh
2 2 ' P
W, (X(E)w, (X(1) £ 0 ; mihere, fori,j,h=12 ..,p,
Q = H[[TP +PH, ;
1933
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R,, ifji<h
th = ﬁhj’ l_fj > h
0, ifh=
L//1+(SL//1 ijh )+ W ljpl < j
an/h N
th +(Sﬂh th)+ W jih? l_fl > j
Q P p| Mot
.= — + }.
ij 2 >
ifl =hork=h

R,
W, = { *
0,

Proof: See [10].

ifl # hork#h

Remark 4: 1t has been shown in [10] that if the stability
conditions of Theorem 3 hold, the stability conditions of
Theorem 4 will also hold.

IV. STABILITY ANALYSIS

The system stability of the fuzzy-model-based control
system of (8) will be analyzed. In the following analysis,
wi(x(?)) is denoted by w; for simplicity. From (6), we have
the following property which will be used later.

r [0 0 x@] [0
ZW{G —IJL@)HJ

To investigate the system stability of (8), the following
Lyapunov function candidate is considered,

(10)

V(t) = x(t)" Px(t) (11)

where P, =P," € R > 0. From (2), (10) and (11), we
have,
V(t) = x(t) " Px(t) +x(t) Px(r)

P, 0]A, B,
B R
¥ x(r){ H% } x(1)
{ } _{ ]Z}LI:; I{))}L(f)}
moe)le 0] ]
o SJE ™

3

A
A[
0
0
P
0

(12)

T A[ B[

o| P G I

2 X(t) i tm
2 ‘L(IJ A, B |

+ P

G' _Im

i=1
P 0
P2 P3

x(t)
u(?)

where  P= { }e Rt =P e R™ and

P,e R™™. Tt can be seen that V(t)<0 (equality holds
when x(¢) = 0 and u(?) = 0) if

oA B [A B
G, -1,| |G, -I

i

T
}P<0 i=1,2,..,p (13)

which implies the asymptotically stability of the fuzzy-
model-based control system of (8). The analysis results are
summarized by the following theorem.

Theorem 5: The equilibrium of the fuzzy-model-based
control systems in form of (8) is asymptotically stable in the

large if there exist matrices P, =P € R™", P, e R"
and P, € R™" such that the following LMIs hold.
[A, B, ] [A, B,
P>0;P +
G -I,| |G, -I

i i

P 0
where P = .
P2 P3

Remark 5: Referring to Theorem 5, it can be seen the
number of LMIs is reduced to p only compared with that in
Theorem 2 to Theorem 4.

T
}P<0 i=1,2..,p;

P p
Furthermore, let P, = Z:ij2 ; and Py :Z:ij3 ; where
j=1

=

P,,e R™ and P, e R™™,j =1, 2, .., p, (13) can be

written as follows.

V()= ii ww, {X(t)}

i1 j-1 u(?)
A P, +PA, +G, P21+P21G G, P3J+PB =P, | x®)
P,'G,+B,'P -P, -P,-P,' u(t)
PP T
=D > wwa(0)' Qz(t) (14)
=1 j=1
x(1)
where z(¢) = and
u(7)
T
0 - AP +PA +G/'P, +P,'G, G/ P, +PB -P,'
’ P,'G,+B,P -P, -P,,-P,'
(15)
Let R, +R[/.T >0 where R; = RﬁT e R - From
(14), we have,
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V() €3 w207 Q,a(0)

i=1

+3 S wwz()'(Q, +Q, +R, +R," J(t)

=Y
wz(t) | [ waz()
_| w20 | | ) (16)
w,Z(f) w,2(f)
S, S, 1p
where S = Sfl S:zz Sf/} , 8,=Q,,i=12, .,p
S, S, S,

=1,2,..,p;i<j. It can be
seen that V(1) <0 (equality holds when x(f) = 0 and u(?) =
0) if S <0 which implies the asymptotically stability of the

fuzzy-model-based control system of (8). The analysis
results are summarized in the following theorem.

Theorem 6: The equilibrium of the fuzzy-model-based
control systems in form of (8) is asymptotically stable in the

large if there exist matrices P =P e R™", P, € R"™",

P, eR™ and R, =R, e R""™"" such that the
following LMIs hold.
P>0; R, +R, >20,j=12.,pi<j
S11 S12 o Sl/)
S. S. - S
s=|% S Sels,
S/Jl S/JZ o S/Jp

+Q.
where S, =Q,,i=12..,p, S, :(%}'Rud‘ =1,

2, p; i < Js and
0. - AP +PA +G/'P, +P,'G, G/ P, +PB -P,'

’ P,'G,+B'P -P, -P,,-P,'
J=12 . pi<j;

V. DESIGN OF FEEDBACK GAINS BASED ON LMI APPROACH

In this section, the design of the feedback gains G; will be
obtained based on the LMIl-based approach. In the

X, 0
following analysis, let X = { ! } =P g RUmmrtmm)
2 X3
T nxn mxn mxm -
X =X eR™>0, X,e R, X,eR"", G,=NX"

and N, e R™,j=1,2, .., p. The existence of X will be

discussed later. From (12),

L | x(1) T 4| x(@)
b Z { } X A, BT * L(f)}
G[ _Im
A, B,
2| x(1) {G' -1 }X x(1)
=Yw L X
Z ‘L(IJ A, B, T u(t)}
G[ _Im
el
:iw{x(t)yxﬁ G -1,]X, X, X{x(t)}
= u@ X, 0[A, B, || [u®
’ Xz X3 G[ _Im

XA +A X +BX,+X,'B’
X,'B," +N, -X,

BX,+N'-X,
-X,-X,'

3

(17)
}. It can be seen that V(r)<0

= ZPDW,Z(I)T{

x(1)

u(?)

(equality holds when x(¢) = 0 and u(¢) = 0) if

o - {XlA[T +AX, +BX,+X,"B” BX,+N, - XZT} -0
‘ X,'B,' +N, - X, -X,-X,"

,i=1,2,.,p (18)

which implies the asymptotically stability of the fuzzy-

model-based control system of (8). The analysis results are
summarized in the following theorem.

where Z(t) = X{

Theorem 7: The equilibrium of the fuzzy-model-based
control systems in form of (8) is asymptotically stable in the

large if there exist matrices X, =X,' € R"™", X, e R™",
X, € R™" and N; e R™" such that the following LMIs

hold.
X, >0;

Q = XA'+AX +BX,+X,'B.' BX,+N,/'-X,’ <0
" X,'B +N.-X, -X,-X,'
i=1,2..,p
where the feedback gain is design as G ;=N ijl ,j=1, 2

s D

p p
Furthermore, let X, = Z:wJX2 ; and X, = Z:ij3 ;
J=1 j=1

where X, € R and X;, € R, j=1,2,
be written as follows.
. PP _ — _
V()= wwz(t) Qz(t)
=1l j=1
where

.y P, (17) can

(19)
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! X, B +N,-X,, -X,, - X,
(20)
Let ﬁ[j +§UT >0 where ﬁ[j zﬁﬁT e R - From
(20), we have,

wz(?) !

= _[XA +AX +BX, +X, B BX, +N'-X, jT}

wz(?)

V(t)z sz:(t) S sz.(t) (21)
w,Z(t) w,Z(t)
Ell §12 El/)
S, S S = =
where S=| ' % 1,8,=Q,,i=1,2,..,p
g/Jl g/JZ g/)p

=1,2,..,p;i<j. It can be

seen that V(1) <0 (equality holds when x(¢) = 0 and u(?) =

0) if S <0, which implies the asymptotically stability of the
fuzzy-model-based control system of (8). The analysis
results are summarized by the following theorem.

Theorem 8: The equilibrium of the fuzzy-model-based
control systems in form of (8) is asymptotically stable in the

large if there exist matrices X, =X,' e R"", X, ;ER™,
X;; € R, E[j = ﬁﬁT e R gpd N, e R™ such
that the following LMIs hold.

X, >0; R, +R," >0,/=12 .., pi<j;

Ell §12 §1/J
g — S21 S22 S?/J < 0 ;
rl S/JZ S/Jp
— J— — _,_ —|—_.. —
where S, =Q,,i=12 ..p, S[j :(%}—R[j’j =],
2, p; i < 7,

3. - XA +AX +BX, +X, B’ BX, +N/ '-X,'
’ X, B +N,-X,, -X,, - X,

,J =12 .. p i<j and the feedback gain is design as
G,=NX/.j=12..p

Remark 6: It can be seen that if the stability conditions in
Theorem 7 to Theorem 8 are satisfied, X, = XlT >0, and

—X3—X3T<O for Theorem 7 and —X3j—X3jT<O for

0
Theorem 8 are required. As a result, X =| _' is a
X, X,

non-singular  matrix. Hence, there must exist

P'=X= {Xl X } if there exists solution to the stability
2 3

conditions in Theorem 7 or Theorem 8.

Remark 7: The solution of the stability conditions in
Theorem 4 is also a solution of those in Theorem 6.
Referring to Theorem 4 and considering that there exist
symmetric matrices P > 0, T;; = 0, R;; and matrices S for
all i, j, k=1, 2, ..., p; i <j such that the stability conditions
in Theorem 4 are satisfied. Referring to Theorem 4, the
following LMIs hold.

Q1 - Zu Qnm in/)[
n,,. -7, - n, .
Qt=| W QT Q| g gy
Qn/)l[ Qn/JZ[ Q/J _Z/J[
p
P P ~
= > wQt, <0 = > wQt,+H<0 (22)
i=l i=l
where
. Q| Q|2+T|21+;(S|Elis|21‘r) . S}l,""Tl,u"'(Sl,u*Sl,uT)
Qt, — Q|2+T|2,+'(S|2,Tfs|z,) Qz . Qz,y+Tz,u+'(Sz,qusz,u)
Ql,y"'Tlp""(Sl,uT*Sl,u) Qz,y+Tz,y|+(Sz,qusz,u) Q,,
(23)
- ) | | .
-2 wR; =Y wR, (Wm+w)—Ry (wm+w,)-R,,
s = 2 2
1 <t
1 Z Z 1
He (W1+W2)ER12 —leijj—lejRjz (W2+WI7)ER2II
B z . .
: ) : ) . , c
(W1+W,;)ER1,7 (W2+W,;)ER2,7 : _;WjR[{/_;Wjij
I = A
(24)
It was shown in [10] that
[l sl o w UHT w i =0.  Hence,

based on this property, from (22), (N)t[ <0 for all i imply

P ~
> wQt, <0. Let where
i=l

m[ax((N)t[): th <0

which implies that

¢= arg(m[aX(Qt[ )) ’

P ~ P ~ ~
Z:;w[Qt[ < Z:W‘th =Qt_<0.

Under the solution of Theorem 4, the stability conditions
in Theorem 6 will be considered. Considering Q;; in

Theorem 6, let P =P, P, =B,'P, P, =&l ,i=1,2,..,p,

£ is a non-zero positive scalar and
T, +IS,. -S, ,
R, :{ i (Sug Sug) 0} j=1,2,..., p;i<j, where €is a
0 0

non-zero positive scalar, we have,
s —|A'P+PA+G/BP+ B'PG, G
' £G, —26

i
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i

_ {(A[ +B,G,) P+P(A, +BG)) eG.T}

&G, =24
A T
- Q[ 6GL 51_1’2" ’p (25)
&G, -2d
T
- G,+G,
Q+T,+6,-s,.) «{ j
S, = 2 =12, .p
ij GL + G ) 2 2 2 2 b
£ ! -24d
2
i<j (26)
where Q[ = H[[TP + PH[[ s
. (H +H,\ H,+H,
Q,=|——"| P+P|———=| and H,=A +BG,.
2 2
In Theorem 6, it is required that
S11 S12 o Sl/)
S S. - S
S= :21 :22 . 1<0 to guarantee the system
S, S S

rl p2 o V74

stability. From (25) and (26), with proper shifting of rows
and columns of the matrix S, the matrix S can be written as

T G, +G,
Qt, 0 d L | for
0 2

=24
all i and j. As (N)tg <0, there must exists a non-zero

} where © is a matrix related to (

. t. O .
positive € such that Qt, < 0. Hence, it can be seen
a0 -2d

that the solution of the stability conditions in Theorem 4 is
also the solution of those in Theorem 6. However, the
solution of the stability conditions in Theorem 6 may not be
the solution of those in Theorem 4.

VI. NUMERICAL EXAMPLE

A numerical example will be given to illustrate the
effectiveness of the derived stability conditions.
Considering the following fuzzy model with p =s=2,

Rule i: IF xy(¢) is M; THEN x(¢) = Ax(¢)+Bu(?),i=1,2

2 -10 a -10 1
where Alzl L A2:l N Blzo and

b
B, = {0} , is considered. The feedback gains, G| and G,, of

the fuzzy controller is designed such that the eignevalues of
H,, and Hy, are all located at —2 respectively for any values
of parameters @ and b. Fig. 1 to Fig. 5 show the stability
regions for the stability conditions in Theorem 1 to Theorem
6 respectively for parameters ae [—10 4] and be [1 15].
Referring to these figures, it can be seen that the stability
region produced by Theorem 4 is the same as that produced
by the modified stability conditions in Theorem 3.

However, the number of LMI stability conditions is reduced
to p only which can reduce the computational demand on
solving the solution. Furthermore, it can be seen that the
stability conditions in Theorem 6 provide the largest stability
region.

VII. CONCLUSION

A new set of LMI stability conditions has been derived to
guarantee the system stability of the fuzzy-model-based
control systems. It has been shown that the proposed
stability conditions have provided relaxed stability results
than those of some important published stability conditions.
The feedback gain design of the fuzzy controller using LMI-
based approach has been provided. A numerical example
has been given to illustrate the effectiveness of the proposed
approach.
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Fig. 4. Stability region based on Theorem 4.

Fig. 1. Stability region based on Theorem 1.
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Fig. 5. Stability region based on Theorem 6.

Fig. 2. Stability region based on Theorem 2.
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Fig. 3. Stability regions based on Theorem 3 with

modification in Remark 2 and Theorem 5.
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