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Abstract

This paper presents the stability and robustness
analyses of an uncertain fuzzy control system which is
formed by an uncertain fuzzy plant model and a fuzzy
controller.  The fuzzy plant model with parameter
uncertainties describes exactly the behavior of an
uncertain nonlinear plant. Three design approaches are
introduced to close the feedback loop. Based on the
Lyapunov’s stability theory, new stability criteria and
robust areas are to be derived without resorting to a
common Lyapunov function. An application example on
stabilizing an uncertain nonlinear mass-spring-damper
system will be given to illustrate the merit.

1. Introduction

As fuzzy control was found capable of tackling
uncertain nonlinear systems, it has become a hot topic of
research. The design is usually by heuristic methods.
Although they are simple and easy to understand, the
stability and performance are not guaranteed. To prove the
stability, researchers had derived different conditions
based on sliding mode control technique [3] and adaptive
technique [4]. One significant work [1] proposed the use
of a fuzzy model. If this fuzzy model can describe exactly
the system dynamics, a stability condition can be derived
by finding a common Lyapunov’s function [2, 5].
However, the condition is valid to systems without
parameter uncertainties. In this paper, we analyze the
stability and robustness of an uncertain fuzzy control
system. The fuzzy model is modified to one with
parameter uncertainties such that it can exactly describe
the behavior of an uncertain nonlinear system [6]. Based
on this modified fuzzy model, stability conditions and
robust area are derived by applying Lyapunov’s stability
theory. Unlike [1], the Lyapunov’s functions used no
Ionger need to be common.

2. Fuzzy plant model and fuzzy controller
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An uncertain multivariable fuzzy control system can be
regarded as consisting of a fuzzy plant model and a fuzzy
controller closing the feedback loop.

2.1. Fuzzy plant model with uncertainties

Let p be the number of fuzzy rules describing the
uncertain nonlinear plant. The i-th rule is of the following
format, ) _
Rule i: IF x; is M’ and ... and x, is M,;

THEN x=(A' +AA")x+ (B’ +AB')u 6}
where M, is a fuzzy term of rule i corresponding to the
state X, k=1, ..., n, i = 1, ..., p; AA' e R™™ and
AB' € R™™ are the uncertainties of A'e R™”* and
B'€RV™ respectively; xeR™ is the system state

vector and ue R™" is the input vector. The inferred
system states are given by

x(t) = gwi (AT +8AHX(D) + (B +AB ) u(t)) (2
Swim=1, wixye[o, 1] foralli )
i=1
X I‘M:l (x1)°l1M; (x2)°'“°ﬂMi (x,)
W@ =" -
E,("M; () 0 fys (% )o+-ofyys ()

Hyg (x;) is the grade of membership and ‘o’ denotes the

t-norm operator.

@

2.2. Fuzzy controller

A fuzzy controller with ¢ fuzzy rules is to be designed
for the plant. The j-th rule of the fuzzy controller is of the
following format:
Rule j: IF x; is Ny and ... and x, is N,

THEN u=G’/x+r 5)
where NJ is a fuzzy term of rule j corresponding to the
state xg, B=1, ..,nj=1, .., ¢ G/ eR™" is the
feedback gain of rule j, r € R™" is the input vector. The
inferred output of the fuzzy controller is given by

u= Sm(Gix+r) ®)
j=1
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Smim=1,m®elo, 1] forallj )
j=1

Hygg (1) © gy (33 )0 woply (X, )

®)

mi (x) ==

En(u g (1) 0 Hygg (F2)or=-obyy (5))
Hyy (x;) is the grade of membership.

3. Stability and robustness analysis

The stability and robustness of the uncertain fuzzy
control system are to be analyzed in this section. Three
cases of controller design approaches will be investigated.

3.1. General Design Approach (GDA)

General design approach allows differences in the rule
antecedents between the fuzzy plant model and the fuzzy
controller. This approach gives designers the largest
freedom on controller design. From (1) to (8), the closed-
loop fuzzy system is given by,

x=3 3 wml (® +AH)x+ (B +AB)r) ©
i=l j=1
HY = A" +B'G/,AHY = AA" + AB'G/ (10)

3.2. Parallel Design Approach (PDA)

Parallel design approach uses the same rule antecedents
of the plant model in the fuzzy controller. Hence, some of
the terms in (9) can be grouped together. This makes the
stability criterion to be satisfied more easily. The closed-
loop fuzzy system is given by,

x= _ﬁlw"w"(ﬂ“‘ +AH" )x+2§_w’w1(J” +AJ"f)x+£lw"<B" +ayr (1)
i= i<j i=

Ji o HY +H Y= AHY + AH# (12)
2 2
H =A'+B'G’/, AHY = AA" + AB'G/ (13)

3.3. Simplified Design Approach (SDA)

Simplified design approach that requires the sub-system
in each rule of the fuzzy plant model has a common input
matrix B, and the fuzzy controller has the same number of
rules with the same antecedents as the fuzzy plant model.
The closed-loop fuzzy system is given by,

P - . . . .
x=Xw/(H/ + AH')x+ (B’ + AB”)r) (14)
J=1
H/ =A/+BG’, AH’ = AA/ + ABG/ (15)
Because the input matrices are common, we have,
B=B’/, AB=AB’ or, (16)
P . N . .
Sw/B/ =B, Sw/AB/ =AB an
j=] j:]

3.4. Stability and Robustness Analysis
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In this section, the system stability and the robustness
are analyzed. Theorem 1 to 4 summarize the analysis
results for the three design approaches respectively.
Theorem 1 and 2 are directly extended from [1], whereas
Theorem 3 and 4 describe the less conservative conditions.

Theorem 1. Under GDA, the fuzzy control system as
given by (9) without uncertainty, i.e. AHY =0, is stable if
the following inequality holds:

H P+ PHY < —¢l foralli andj

where Pe R is a symmetric positive definite matrix, £
is a positive value and Ye R™" is an identity matrix, |||

denotes the I, vector norm or induced matrix norm.
Under PDA, the fuzzy control system as given by (12)

without uncertainty, i.e. AH" =0 and AJY =0, is stable
if the following inequalities hold:
H TP +PH" < ~el foralt i
J7 P+ PJY < —el forall i<j
Under SDA, the fuzzy control system of (15) without
uncertainty, ie. AH’ =0, is stable if the following
inequality holds:

HP+PH’ < -4l forallj

Definition 1. The robust area of a fuzzy control system is
defined as the area in the parameter space inside which
uncertainties are allowed to exist without affecting the
system stability. ‘

Theorem 2. Under GDA, with the uncertain fuzzy control
system given by (9), the robust area is governed by,

rﬂ,-jTP +PHU“ I< —(HijTP +PHYY - el for all i and j.
Robust area '

The uncertain fuzzy control system is stable if the

uncertainty |AHY'P+PAHY|, with [AHY P+PAHY

max
as its maximum value, satisfies the following condition:
ﬂAﬂijTP+ PAH"!"I < ﬂAHijTP +PAH”" < "AH"/’TP+ pAH"f" for all
max Robust area
iandj
Under PDA, with the uncertain fuzzy control system
given by (12), the robust area is governed by,

Jo e+ e 1< —(H“"P+PH") - el for all

Robust area
T ..
“J T p+pPyY

1<—(J9 P+ PJV)— el forall i<j

Robust arca

The uncertain fuzzy control system is stable if the

uncertainty |AH® P+PAH®| and "AJ"TP+PAJ”

’

with IIAHi'TP+PAHii and

lAJ"fTP+PAJ‘f‘

as

max max
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their maximum values respectively, satisfy the following
conditions:

IAHiirP +PARY i < |AH"" s PAH""IM < 'AH""P +PAH l
{IAJ""TP + PAJ”‘H <Jayip + PAJ‘iﬂw < IAJ’!’TP+ PAJ”I!
Under SDA, with the uncertain fuzzy control system
given by (15), the robust area is governed by

AH/'P + PAH/ 1<-(H/"P+PH/)-d forallj

Robust area

The uncertain fuzzy control system is stable if the
.T .
AH’ P+PAH’ "

forall i
arca

forall i<j
Robust area

uncertainty uAHf "P+PAR/ ﬂ, with

max
as its maximum value, satisfies the following condition:

P4 rAﬂf|<|AHfTP+PAH!| <|AHF|>+ pAHlI forallj
max Robust area

Theorem 3. Under GDA, the fuzzy control system as
given by (9) without uncertainty, i.e. ARY =0, is stable if
the following inequalities hold:
BYTPY + PUYRY <o
HNTPM +PYEY 1 ) )
———— (] = —— iTok | phpyii .
oxe +(1 pxc),-;k‘“.,%,,“w(ﬂ P¥ +PYRY), 0)<-a1
forallik=1,..,p;jl=1..,c
Under PDA, the fuzzy control system as given by (12)
without uncertainty, i.e. AH* =0 and AYY =0, is stable
if the following inequalities hold:
HETPH +PAHH < —a
B Tp% L pHgH 1 y i
.t max{maX A, (B P* + P4H"),
max A (JV B + P IY), O < 1
forijk=1,..,p;j=1,..,c
Under SDA, the fuzzy control system of (15) without
uncertainty, ie. AH’ =0, is stable if the Jollowing
inequalities hold:
H Pt 4 PHH < -d
£Tpk kyvk
wl“—+(l—%) T:;[Aw(nf'r" +PHY), 0j<-d

foralljk=1,..,p

Theorem 4. Under GDA, with the uncertain fuzzy control
system given by (9), the robust area is governed by,

ﬁH“TP"‘ + P"’H“B I | .

L MRoweam —-——)lu" PY 4+ P“n'7| I
pxc pxc Robust area

. HYTpH 4 pHgH

1 =T, -
i - (] = —— Y Pl’l +Pklﬂu ~d
v = )

ﬂu"ﬂr*‘ + P"‘ﬂiiﬂ + A (HIPH 4+ PUHI) > 0
Robust area

forallik=1,.,p;jl=1,..candij# kl.
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The uncertain fuzzy control system is stable if the

T " .
uncertainty "AH" PY +PYAHY l with
“AH” P¥ + PHAHY as its maximum value, satisfies

max
the following condition:

HAHUTP“ + P"’Au"f’ < HAH“’TP” + PYAHY l
max
<fami"PH + P"'AH""I
Robust area
for all i and j.
Under PDA, with the uncertain fuzzy control system
given by (12), the robust area is governed by,

SOl S S 1

1 n N
; +a-—pf TR prmd]
p p 'Robustarca
HETp L pogH 1 . .
< ——pz——-— (I—F)A‘m(ﬂ"rl’“ +P*RYI—¢l foralli 2 k

T ii if gy bk i Tpkk Kk gy ii :
JaTee pim| + A (HTPH L PYHY) >0 foralli 2 k

, |ﬂ“TP“ +P"‘H”“ml

1 4. )
+(1=— 17 TP PRy 1
p? p"’)'l Inmﬂ
HETp LpigH 1 )
< (=P A JT TP+ PE Il for all k; i<
P P

JriTex +p2yi] + A (JTTP® 4 PIIH) 2 0foralli< ; k

The uncertain fuzzy control system is stable if the
uncertainty lAH""TP’* +P""An"'l and nAJ"TP*“ +P""AJ"n,
with ‘AH“TP‘* +P"‘AH“§ and ﬁAJ’iTP"" +P’°"A.l"f| as
max imax

its maximum value respectively, satisfy the following
conditions: :

Tptt +r"m“'<|1m""r" +r“,m‘"'| <|An"7r" +P“AH“L~ foralli, k
'u"’"r“ +pH u”l <|u"’"r“ +r“u‘l <'A,af,u AP forall icj; k
Under SDA, with the uncertain fuzzy control system given
by (15), the robust area is governed by

£ Tok gk

p* +ptat] I
'Robest area 1 iT, i
. va-—faTeeepwl

HTPY +PAHE ] )
< -—-1-——-(1-—:;)1,,,(“"?‘ +PH ) o

iTpt i iTpk kggi
poapti]  ea @R eptE) >0

forall k #i.
The uncertain fuzzy control system is stable if the

tlAH‘TP" +P'AH"H, with

‘AH’ P* +P"AH'H as its maximum value, satisfies
max

uncertainty

the following condition:

IAB"TP" +P"An"|<|An"TP" +PHAR I <|AH'TP" +P‘Aﬂ‘|
max W aea
forallk # i
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Proof: In the following, we will prove the theorems above
under GDA only. The proofs for PDA and SDA are
similar to those of GDA and are omitted. Consider the
Lyapunov’s functions,

yH =—;-XTP“x fork,=1,...,pand =1, .., ¢, k#i and

l#j. (18)

Differentiate (18), we obtain,

vH =—;-(XTP"1x+xTP"{x) (19)

From (9) and (19),

vH =l((}'§1§1w"mf(ﬂ“f +AHY )x+ (B + AB)r)TP¥x
i=l j=

+XTP”(§, iwimj(liij +AH X+ (B + AB))r))
i=1j=1
<23 Swimx" @Y +PYH
21—[1—- (20)

+RAH"J' PY +PHAHY )x+§wi|lP”(B‘ +4B ]

max

where “AHUTP"’ +PHAHY

s.AH"fTP"' +PHAHY

max
Let V¥ =v, P¥ =P and
Hi"p+PHY +|AH'7TP +PAHY "
From (20) and (21),

1< —¢l foralliandj. (21)

max

Vs %il ﬁlwfmfxT( —el)x+ 2wi P8 + AB )|l
=1]= : i=

<-Extxs S P’ + Bl 22)

From (22), there are two cases to be investigated: r = 0 and
r # 0. For the former case, (22) becomes,

Vs —%xTx = —-—;—"xuz <0 (23)
From (19), we have
1 1
V= xPx2 2 A, P = V 2 Ay, (@)= """ (24)

where Amin(-) denotes the minimum eigenvalue of a matrix.
From (23) and (24),

d

M= holshe,
where f, is an arbitrary initial time.  (25) implies
Jx(@®)]— 0 as £ — co. For r# 0, from (22) and (24),

T (25)

d“X“ " " :zlw "P(Bl * AB’)l‘u
@ = 2/1,m P) Arnin (P)
e Elw" lp’ + aB )|
=7 2 (P) Ao (P)
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miax"P(Bi +AB )r||max

Ainin () @0

£
-+
oM

where,
"P(B" + AB")r" < ||P(B“ + AB")er
for all k and I. From (26),

aix(r)
¢ "«‘v H+2Amm(m e

< mljc\x"P(Bi +AB! )r"mx

T @%ﬂﬁemﬁm
()] T mgXﬂP(B" +AB |
- d : Arin (B)
chels mﬂllm:m +(f: - o tte o
n
bl sha, fe 7= Ma-emﬁﬁ“‘”) @7

From (27), ||x(t)" is bounded if r is bounded. Hence, we

can prove the condition of (21) is a condition for system
stability. By assuming that the system has no parameter
uncertainty, the stability condition for GDA in Theorem 1
is proved. The robust area under GDA in Theorem 2 can

h IAH"I'TP +PAHY

{r-1,)

max —_'(ZLN(P)r )

(=t,)

k7=

3 )

with

be proved by replacing

max

“AHTP-t-PAHij This ends the proofs of the

Robust area
Theorem 1 and Theorem 2.

Next, we prove Theorem 3 and Theorem 4. From (20) and

assuming that w*m' 2 >wim! forik,=1,..,p:j1

pxc

=1,..,¢c,and kl #ij, then,

v S%xT(W‘m'(HUTPu SPEHY +IAH”TP” +P“AH”R D
-

+ z zw im/ @ITPH 4 PHEY 4 uAH‘iTP" +P“‘AH'/| D)x+ S w'xTPE (B + AB')r
max i=l

1
<o Ovtm! (ETPH PHRT |amTTRY P AR

i,

) M‘

v (B

l

+ P 4 oY) + o TR +P“AH”" M)
- max

=g
[y
=

>

zw xTP"'(B' +AB)r

Let [H'PY +PHHY 4 “AH”TP” P‘"AH”“ 1<—¢l
max
max(Ay (HT P +P“H")+[AH‘7TP“ +P"’AH'7“ )20

ikt max

forall i, j, k, l and §j # kl.

HiTp¥ L PRV 4+ I\AH’T

P+ PUar| 1

. ]
:}V”SEXT( -
pXc

1 . . y ,
+(1- iTp , phigily 4 “AH"TP"’ +PYARY " D)x
pxcijzk max

L . .
+ 2w xP¥B + AB)r
i=1
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It should be noted that if
T, . LT .

max(A_, (HY P¥ + PYHY) +“AH" P¥ +P"‘AH"“ <0
=kl max
, the above condition is reduced to (21).
Let
HITPY L pHHT +faHITRY PH AT |

l pXxec (28)
+(1_7’.X_L:)?Lx«l.m(nfifpkl +PﬂHij)

fpni™et cptani] yp<-a

foralli,j, k, I, ij # kl.

Condition of (28) will lead to the conditions for GDA in
Theorem 3 and Theorem 4. Under (28),

vH S——z‘xTx+ ﬁwixTPu (Bi +ABi)r 29)
i=
Compare (21) and (28), we find that the condition of (28)
is less conservative than (21). (29) is similar to (22).
Hence, the stability of the uncertain system can be proved
for the two cases of r mentioned early. Recalling that the
inequality (29) holds under the assumption that the product
of the grades of membership w*m' is the largest, the
system is stable only in a certain range of x that satisfies
the assumption. This range of x will change as the largest
product value of the grades of membership changes during
operation. Hence, the stability is guaranteed for a local
system corresponding to a particular range of x. To prove
the overall system stability, (25) and (27), we can see that
the norm “x(t)“ is always exponentially decaying. The
switching from one local system to another only results in
a change of time constant only. Therefore, the system
stability is guaranteed globally. This ends the proofs of
Theorem 3 and 4. For the Theorem 3 and 4, the total
number of Lyapunov’s functions involved is pxc.

4. Application Example

An application example on stabilizing an uncertain
nonlinear mass-spring-damper system is given [5]. The
behavior of this system can be described by
M5+ g(x, %)+ f(x) = ¢(xX)u 30)
where M is the mass and « is the force, x) describes the
spring nonlinearity and uncertainty, g(x,x) describes the
damper nonlinearity and uncertainty, and ¢(x) describes
the input nonlinearity and uncertainty. Let
8(x,x) = D(c)x + ¢y x +¢3(8)%)

F () = Kcax +csx® +c5(0)%) (31

0(3) = 14387 +¢,5% + ¢y (%)
The operating range of the states is assumed to be within —

1.5 and 1.5. The parameters are chosen as follows:
M=10, D=K=10, ¢ =0, ¢y =1,
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o= ;C’L et -8 ;C; ) sin(101) so that
e;(t) eler, Y, cs =001, cs =01,
ce®)= e +cy +(ce - cg *tes Y cos(5¢t) SO that
c(tyeles e 1, ¢, =013,
cg(t) (Cg ;CSL +(cf *Eg—gi) cos(51))cos(55) so that

() elek,cfl, c¢E=-01, cf=-126, cf =-01,
¢y =01, ¢ =126, c§ =01. It can be seen that the
parameter uncertainties ¢3, ¢ and cg are modeled as
functions of time in order to show the robustness of the
designed controller. The nonlinear system then becomes
£=—i-001x—01x® — ¢y (1)i — e (£)x + (14387~ 01352 + ey (u  (32)
which can exactly be represented by the following rules.
Rule i: IF xis M} and X is M,

THEN x=(A'+AA )x+ (B +AB)u,i=1,2,3,4 (33)
with the r-norm operation being chosen as the
multiplication. The fuzzy rules of the fuzzy controller
designed by GDA are defined as follows,

Rule 1: IF xis M/ and X is M}

THEN u=G'x j=1,2,3,4 (34)
where the membership functions of M, i=1,2,3, 4, a=

2
1, 2’ ' = 2 = —La
are Py () = My () =155

x2 : ; 2
“M}(x)=“Mf(x)=zz—5’ #Mlz(x)=ﬂM;(X)=l—5§’,

. 72 Xy .
uMg(x)=uM;(i)=%-; X= s X=X, Xy =X+2x3

X2
[ -2 0 -2 0 -2 0]
Al = ’ 2 = ’ A3 = £
|-201 1] A [—2.01 1] -2235 1}
P ] PR [ R R ¢
[-2235 1 1.4387 0.5613 |
B3=— ° 1 B‘=— 0 T,
1.4387 0.5613
AA‘:AA2=AA3=AA“=[ 0 ',
205(1) —cy(t) —c5(1)

AB' = AB? = AB? = AB* =[ 0
cg(X)

gains are designed as G''=[1.3971 —2.0852}, G'’=[ 3.5810
-5.3447], G"=[1.5535 —2.0852] and G“=[3.9818 -

5.3447] so that H“=322=H33=H“=[‘2 O];

] . The feedback

0 -2
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I’=[(1) ﬂ Figure. 1 and 2 show the responses of x(t) .

and x(¢#) with (solid lines) and without (dotted lines)
parameter uncertainties with initial states of x = [—1, —l] .

The analysis results are tabulated in Table I which shows
that the system is stable according to Theorem 2.
Moreover, from (25), the system performance can be
predicted to lie inside the range:

] <V2e 2

where €is chosen as 0.01.

(35)

5. Conclusions

The stability and robustness of uncertain fuzzy control
systems have been analyzed. Three design approaches of
fuzzy controller have been introduced and investigated.
Stability conditions and robust areas for each design
approaches have been derived based on Lyapunov’s

[6] HK. Lam, FHF. Leung, and P.K.S. Tam, “Design of stable and
robust fuzzy controllers for uncertain nonlinear systems: Three
Cases,” Proceedings of IFAC/AIRTC97, 1997, pp. 28-33.

2 8 10

4"I'lme(Set:.)6
Figure 1. Response of x(f) of system with (solid
line) and without (dotted line) parameter
uncertainties.

stability theorem. The Lyapunov’s functions for different
subsystems are allowed to be distinct, and as a result, less
conservative stability conditions have been obtained. An
application example on stabilizing an uncertain nonlinear
mass-spring-damper system has been given.
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Figure 2. Response of x(z) of system with (solid

line) and without (dotted line) parameter
uncertainties. ' :

S| A (P 4 PHT) o iAH""TP +P ""| or EAHiiTP+ PAH? || or | Column2
=T . Robust area max fminus
Amax (@Y P+ PJY) T | T ) Column 3
HAJU P+PAJ']| HAJ" P+PAJ”H
Robust area max
1,1 —4.0000 2.8644 2.7280 —0.1364
1,2 -3.7087 3.4948 3.3284 —0.1664
1,3 —4.0000 2.8807 2.7435 —0.1372
1,4 —3.6050 3.5357 3.3673 —0.1684
2,2 —4.0000 3.1755 3.0243 -0.1512°
2,3 —3.7459 3.1836 3.0320 -0.1516
2,4 —4.0000 3.2043 3.0517 -0.1526
3,3 -4.0000 2.8807 2.7435 ~0.1372
3,4 —3.6468 3.2043 3.0517 ~0.1526"
4,4 —4.0000 3.5357 3.3673 -0.1684

Table I. The stability and robustness analysis resuit.
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