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Abstract - This paper presents a neural network with variable
parameters. These variable parameters adapt to the changes
of the input environment, and tackle different input data sets
in a large domain. Each input data set is effectively handled
by its corresponding set of network parameters. Thus, the
proposed neural network exhibits a better learning and
generalization ability than a traditional one. An improved
genetic algorithm [1] is proposed to train the network
parameters. An application example on hand-written pattern
recognition will be presented to verify and illustrate the
improvement.

I. INTRODUCTION

It is well known that a neural network can approximate
any smooth and continuous nonlinear functions in a compact
domain to an arbitrary accuracy [7-8]. The 3-layer feed-
forward neural networks have been successfully applied in
wide range of applications such as system modeling and
control, prediction [2], recognition [3], etc. Thanks to its
specific structure, a neural network can be used to realize a
learning process [5, 8-9], which consists of two steps:
designing a network structure and choosing an algorithm for
the learning process. The structure of the neural network
governs the non-linearity of the modelled function. The
learning algorithm ‘is used to provide a rule to optimize the
weight’ values within the training period. A typical neural
network structure offers a fixed set of weights after the
learning process. This single set of weights is used to model
all input data sets. However, a fixed set of weights may not
be enough to learn the data sets if the data sets are
distributed in a vast domain separately and/or the number of
network parameters is too small.

One of the important issues for a neural network is the
learning or training process. The learning process aids to
find a set of optimal network parameters. The gradient rules
[7-8], such as the MRI, MRII, MRIII rules and the
backpropagation techniques, adjust the network parameters
based on the gradient information to reduce the mean square
error over all input patterns. However, the derivative
information of the optimized function is necessary (the error
function is thus required to be continuous and differentiable),
and the learning process is easily trapped in a local optima,
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especially for multimodal problems. The learning rules are
also network-structure dependent. Some global search
algorithms such as Tabu search [5], simulated annealing [5]
and genetic algorithm [5-6] were proposed. Unlike the
gradient descent based algorithms, these search algorithms
are less likely to be trapped in a local optima and do not
need a differentiable or even continuous error function.
Thus, these search algorithms are more suitable for
searching in a large, complex, non-differentiable and
multimodal domain [10].

Genetic algorithm (GA) is a directed random search
technique [4-6] that is widely applied in optimisation
problems. It is especially useful for complex optimisation
problems when the number of parameters is large and the
analytical solutions are difficult to obtain. GA can help find
out the optimal solution globally over a domain. It has been
applied in different areas such as fuzzy control, path
planning, greenhouse climate control, modelling and
classification, etc.

In this paper, a variable-parameter neural network tuned
by an improved GA is proposed [1]. It consists of two units,
namely the rule-base (RB) neural network and the data-
processing (DP) neural network as shown in Fig. 1. The RB
neural network stores some rules governing how the DP
neural network handles the input data. By using this
proposed neural network, some cases that cannot be handled
by the traditional neural networks with a limited number of
parameters can now be tackled. To illustrate this point, a
figure with two sets of data S1 and S2 separated in a far
distance as shown in Fig. 2 is used. In general, there can be
a lot of data sets separated in far distances within a large
domain. If we solve this problem using a traditional neural
network, the weights of the neural network are trained to
minimise the error between the network output and the
desired value in a mapping problem. However, for a limited
number of parameters, the network may only model the data
set S instead as shown in Fig. 1. In order to alleviate this
problem, the architecture of the neural network shown in Fig.
1 is proposed in this paper. Referring to Fig. 1, when the
input data belongs to S1, the RB neural network will follow
rule set 1 to drive the DP neural network to handle the S1
data. Similarly, when the input data belongs to S2, the rules
corresponding to S2 will be employed to drive the DP neural
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network to handle this input data. In other words, it operates
like two individual neural networks handling the
corresponding input data. An improved GA [1], which has
good performance in multimodal problems, can be employed
to train the parameters of the proposed neural network.

This paper is organized as follows. The variable
parameter neural network will be presented in section IL
Training the variable parameter neural network using the

improved GA will be presented in section III. Application -

examples will be given in section IV to illustrate the
applicability of the proposed approach A conclusion will be
drawn in section V.

II. VARIABLE PARAMETER NEURAL NETWORK

The proposed 3-layer, fully-connected feed-forward
variable-parameter neural network is shown in Fig. 3.
Comparing with the traditional 3-layer feed-forward fully-
connected neural network [7], the main differences are the
variable-parameter hidden and output nodes. In the
proposed network, the parameters of the activation functions
vary according to some intermediate signals of the proposed
network. Consequently, the proposed network can be made
adaptive to the contingent changes of the environment. The
learning and generalization abilities of the network are thus
enhanced.

Referring to Fig. 3, x(t)=[x. ® x,@) X (t)]

denotes the input vector, n,, denotes the number of input
nodes; ¢ denotes the current number of input vector, which is

L2 ..,mi=12,..

denote the connection weights between the input layer and
the hidden layer; n), denotes the number of hidden nodes;

L2 ot j=1,2, ...,

weights between the hidden layer and the output layer; n,,,
1 1
i b
are parameters related to a proposed activation function of
the hidden and output nodes, #{-). The details of the

proposed network will be presented as follows.

a non-zero integer, w s J = > Nins

w,fj , k= Rt ny, denote the connection

denotes the number of output nodes. m , m{ and r?

A. Proposed Hidden Node and Output Node

Fig. 4 shows the details of the hidden and output nodes
with the proposed activation function employed in the them.
In this figure, z,(?) to z,(¢) denote the input of the node; w; to
w, denote the connection weights; m and r denote the
intermediate connection weights. The output of the
summation block, f(9), is given by,

L0 =3 wz0 M
i=l

The output of the node can be written as,

f@=y(/,0),m,r) @
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where the activation function is to evaluate the fitness of the
input and is defined as,

2
S (e @.mr)=——itmmy el 1] 3)
lee Ar+ar)
2
Am = (———1 PP=TAT) - l)m )
2
Ar = (—1 TR0 l)r )

It can be seen from (3) that the proposed activation
function is characterized by the mean (m) and standard
deviation (r) respectively. When Am and Ar are both zero,
the values of m (which is functionally equivalent to the static
bias of the traditional neural network) and r govern the zero-
crossing point and the steepness of the activation function
respectively. Am and Ar are to adjust the zero-crossing
point and the steepness of the activation function according
to the value of £(#). Referring to Fig. 1, the parameters m
and r form the rule sets. From (4) and (5), the values of
the Am and Ar depend on the network inputs and the
parameters m and r. In other words, it operates as if the
neural network handles different input data with different
network parameters Am and Ar .

B. Input-Output Relationship of Proposed Neural Network
Referring to Fig. 3, the output is defined as,

Y, (1) =zf[z":wfj fj(t),mf,rf],k= 1,2, o) o 6)
j=1

where

fi= Zw % (), m; J,j= 1,2,...,m, @)

denotes the output of the j-th hidden node. In the proposed

2 1

1
neural network, the values of the parameters w i Wigs M,

r;, m; and r? will be trained by the improved GA [1].
After training, the values of these parameters will be fixed
during the operation. The total number of tunable
parameters of the proposed neural networks is (1, + n,, +

2)ny, + 2n,,,.
III. LEARNING WITH IMPROVED GENETIC ALGORITHM

An improved GA [1] will be employed to obtain the
optimal parameters of the proposed neural network. The
crossover and mutation operations of the improved GA are
modified. To realize the modified genetic operations, the
offspring spreads over the domain so that a higher chance of
reaching the global optimum can be obtained. Let the input-
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output relationship of the modified neural network be
described by,

yd(t)=g(xd(t)), t=1,2,..., n4
X (=[x0 H0

yo=pio #o
and the desired outputs of an unknown nonlinear function
g(-) respectively, n,; denotes the number of input-output
data pairs. The fitness function is defined as,

®)

where and

x4 (1)

y,‘,'m (t)] are the given inputs

fitness = oo )
and v

S hro-nof
err=> = (10)

k=1 PouNa
is the mean square error (MSE). The objective is to
maximize the fitness value of (9) using the improved GA by
setting the chromosome to be

rj! wfj m,f rkZ] for all i, j and k. The range
of the fitness value of (9) is [0, 1]. It can be seen from (9)
and (10) that a larger fitness implies a smaller MSE err.

1 1
[Wﬁ m;

IV. APPLICATION EXAMPLE AND RESULTS

In this example, a pattern recognition problem is given
to illustrate the learning and generalization abilities of the
proposed neural network in a classification problem with a
large number of input data sets. The proposed network is
used to recognize hand-written graffiti. In this example, the
digits 0 to 9 and three (control) characters (backspace,
carriage return and space) are recognized by the modified
neural network. These graffiti are shown in Fig. 5. A point
of each graffiti is characterized by a number based on the x-y
coordinates on a writing area. The size of the writing area is
Xmax DY Vmax- The bottom left corner is set as (0, 0). Ten
uniformly sampled points of the graffiti are taken as the
inputs of the interpreter. The points are taken in the
following way. First, the input graffiti is divided into 9
uniformly distanced segments characterized by 10 points,
including the start and the end points. Each point is labelled
as(x, y),i=1,2,...,10. The first 5 points, (x;, y;), i =1, 3,
5, 7 and 9, taken alternatively are converted to 5 numbers p;
respectively by using the formula p; = xxma+ yi. The other 5
points, (x; y), i = 2, 4, 6, 8 and 10, are converted to 5
numbers respectively by using the formula p; = yymat xi.
These ten numbers, z;, i = 1, 2, ..., 10, will be used as the
inputs of proposed graffiti recognizer.  The graffiti
recognizer consisting of 5 modified neural networks as
shown in Fig. 6 is proposed to perform the graffiti
recognition. In this figure, the inputs are defined as follows,
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— z(t)

= 11
X(1) 0] (1n
where  X(1)=[%,(t) % () %0(t)] denotes  the

normalized input vectors of the proposed graffiti recognizer;
z(t) = [zl ® z,() Z10 (t)] denotes the ten points in

the writing area; |||| denotes the /, vector norm. Referring to

Fig. 6, the function of the graffiti class selector is to divide
the input graffiti classes into 4 sub-classes. In this example
(Fig. 5), the graffiti “0(a)”, “0(b)”, “1” and “2” are arbitrarily
assigned to class 1; the graffiti “3”, “4”, “5(a)” and “5(b)”
are assigned arbitrarily to class 2; the graffiti “6”, “7”, “8(a)”
and “8(b)” are assigned arbitrarily to class 3; the graffiti “9”,
“backspace”, “carriage return” and “space” are assigned
arbitrarily to class 4. To train the neural network of the
graffiti class selector, a set of training pattern governing the
input-output relationship will be employed. 1600 training
patterns (100 patterns for each graffiti) will be used in this
example. The training patterns consist of the input vectors
and its corresponding expected output. The input-output
relationship of the training patterns is defined such that the

output y;(f)=1 and others are zero when the input vector
belongs to class i, i = 1, 2, 3, 4. The fitness function is given

by (9), with
2

19 3, () Y@
=1 70 [ 0
err = (12)
r 4x1600

where y()=[f() ¥4 y{®) yI(®)] denotes the
expected output vector and

y(t)=[y,(t) y2(8) y3(0) y4(t)] is the actual network
output defined as,

n, 10
Y@= ’/(Z Wf;’/(z w;'iii (’)”"}'

j=1 i=l

,r}}m,%,r,fJ,k= 1,2,3,

4, (13)
The index of the maximum output of the graffiti-class
selector indicates the possible sub-class number of the input
vector. This index is used to select the corresponding sub-
class recognizer to perform the pattern recognition. As a
result, only one sub-class recognizer activates each time.
Each sub-class recognizer implemented by the proposed
neural network has 10 inputs and 4-outputs, which is
activated by the class selector. It can be seen from this
approach that the sub-class recognizer limits the number of
input patterns into 4 classes. In this way, the learning
process is shared by the 4 sub-graffiti recognizers, which can
be trained separately. Similar to the training process of the
graffiti-class selector, 400 training patterns (100 for each
graffiti) are employed to train each sub-class recognizer.
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The desired network output y(f)=1 (and others are zero)

when the input vector belongs to classe, @ =1, 2, 3, 4 and
input pattern i, i = 1, 2, 3, 4. The fitness function for each
network is given by (9), with

Aol o)

4

= 14

e Z; 4x400 (14
where

y?”’(t)=[y;"'(r> oy y:“'(o] denotes the

expected output vector and

ye=Drw »© e ] is the  actual

network output of the a-th sub-class recognizer defined as,
ny, 10
yi@= tf[Z wZ,-tf(Z Wii%, (0, m}, ) ) mg,r¢ J k=1,2,3,
]

j=l =
4 (15)
The actual recognized class of the input pattern is indicated
by the maximum output of the sub-class recognizer activated
by the graffiti-class selector. For instance, the maximum
output of the graffiti class selector is from y,(¢). Then, the
first sub-class recognizer will be employed to classify the

input pattern. If yj(¢) has the maximum output value, it

can be concluded that the possible input pattern is “0(b)”.

For comparison purpose, traditional 3-layer fully
connected feed-forward neural networks [7] trained by the
improved GA [1] are also used to replace the proposed
networks in this example. For all cases, the initial values of
the parameters of the neural network are randomly generated.
The number of iteration to train the neural networks is
100000 for the graffiti class selector and 10000 for sub-class
recognizer in both approaches. For the improved GA, the
probability of acceptance ( p, ) is set at 0.1 for both

networks. The probability of mutation ( p,, ), the weight of
crossover ( w ), the parameters of w, and w, of the

improved GA are 0.01, 0.5, 0.5 and 0.5 respectively for both
networks. The population size is 10. All the results are the
averaged ones out of 10 runs. The simulation results of both
the approaches with different numbers of hidden nodes
(numbers of parameters) are tabulated in Table 1. For a large
number of training sets, it can be seen from Table I that the
graffiti-class selector implemented by the proposed approach
outperforms that of the traditional approach in terms of
training and testing fitness values. For a small number of
training sets, it can also be seen from Table I that the sub-
graffiti recognizers realized by the proposed and traditional
approaches provide similar results in terms of training and
testing fitness values.

In order to test the generalization ability of the
proposed neural networks, a set of testing patterns consisting
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of 480 input patterns (30 patterns for each graffiti) is used.
The recognition rates of the proposed and traditional neural
networks validated by the training and testing patterns for
each graffiti with different n, are tabulated in Table II.
Based on the results of Table I, the networks with the best
fitness values will be used to realized the graffiti recognizer.
For the proposed neural network, the graffiti-class selector
with n, = 25; sub-class recognizer 1 with n, = 7; sub-class’
recognizer 2 with n, = 15, sub-class recognizer 3 with n, =
15; and sub-class recognizer 4 with n, = 15 are employed;

For the traditional neural networks, graffiti-class selector
with n, = 27; sub-class recognizer 1 with n, = 16; sub-

class recognizer 2 with n, = 16; sub-class recognizer 3 with

n, = 16 and sub-class recognizer 4 with n, = 11 are

employed. In general, it can be seen from Table II that the
recognition rate of the graffiti recognizer realized by the
proposed neural networks for each graffiti is over 93%. The
recognition rate of the graffiti recognizer realized by the
traditional neural networks is not acceptable for the digit “6”
(only 67%).

V. CONCLUSION

A variable parameter neural network has been proposed
in this paper. The parameters of the proposed neural
network are trained by the improved GA. Thanks to the
variable parameters, the learning and generalization abilities
of the proposed network have been increased. An
application example on pattern recognition has been given to
illustrate the merits of the proposed approach.
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Fig. 1. Proposed architecture of the neural network.
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Fig. 3. Proposed variable parameter neural network.
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Fig. 2. Diagram showing two sets of data in a spatial domain. 4 Backspace
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Fig. 5. Graffiti digits and characters (with the dot indicating the
starting point of the graffiti).
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TABLE. I(B). TRADITIONAL NEURAL NETWORK.

»n() e ()] T (n:;nber Fitness Training Testing
(0 —1 Sub-Graffiti — y;l ) parameter) value error error
0 N t
o + | Recognizer | % 8 Graffiti 11(169) | 0972083 | 0.028719 | 0.039160
%()— Ys Class 16(244) | 0984667 | 0015571 | 0.024011
. »:() —-yl ) Selector 22 (334) 0.986700 0.013480 0.032367
: | Sub-Graffiti |—>¥3(") 27(409) | 0988324 | 0011814 | 0.025062
. 7| Recognizer 2 |—>¥;(?) Sub-
: Graffiti ' 20 oot 5(79) 0997621 | 0.002385 | 0.002371
: Sg':;so, »® ) R°°°§“‘Z°' 8(124) | 0998419 | 0.001583 | 0.001502
1] . 3
: 5 Sub-Graffiti " §(:) 11(169) | 0998833 | 0.001168 | 0.001067
: ¢ | Recogizer 3 —"”,8 16(244) | 0.999275 | _0.000725 | 0.000901
Ya
. Sub-
: y.(0) 50) Graftiti 5(19) 0992110 | 0.007953 | 0.014470
(0 ¥ Sub-Graffiti —>2(! ) Recognizer | ¢ (124) 0994964 | 0.005061 | 0.006394
10’] + | Recognizer 4 —>y; (1) 2
. 340 11(169) | 0995409 | 0004612 | 0.008528
16(244) | 0996251 | 0.003763 | 0.004985
Sub-
Fig. 6. Architecture of the graffiti recognizer. Graffiti 5(19) 0992217 0.007844 0.030851
R°°°§“'z"' 8 (124) 0994101 | 0.005934 | 0.035875
TABLE. I. SIMULATION RESULTS OF BOTH APPROACHES FOR HAND- : ] (;23) ggg;;gg gggggg; g'gggigg
WRITTEN GRAFFITI RECOGNITION. 6( ) - - -
G?:g.;ﬁ 5(79) 0998220 | 0001783 | 0.006770
TABLE. I(A). PROPOSED NEURAL NETWORK. Recognizer
s 8 (124) 0999143 | 0.000858 | 0.005955
7 (UMOCT | Fitness Training Testing T1(169) | 0999694 | 0.000306 | 0.004761
parameters) value error error 16(244) | 0999610 | 0.000390 | 0.005342
Graffiti 10 (168) 0993194 | 0.006852 | 0.022748 TABLE II. RECOGNITION ACCURACY RATE OF THE BEST PROPOSED
Class 15 (248) 0.994311 0.005722 0.013656 NEURAL NETWORK AND TRADITIONAL NEURAL NETWORK WITH
Selector 20 (328) 0.995481 0.004540 | 0.018550 DIFFERENT NETWORK SETTING
25 (408) 0.997622 0.002384 | 0.011136 -
Sub-Graffit 5 (88) 0.995445 0.004576 | _0.004685 Proposed network Traditional network
Recognizer | 7 (12) 0.999660 | 0000340 | 0.000862 Recognition | po o onigion | ReCOBMtion | g o nition
1 accuracy rate accuracy ratc
10 (168) 0.996938 0.003072 0.005798 (%) ofthe | 2ccuracy rale | (o) of the accuracy r ate
15 (248) 0.996835 | 0.003175 | 0.005561 best network bt(f) of ‘hek best network bé /:) °tfv;h°k
Sub-Graffiti 5 (88) 0.992152 0.007910 0.016251 for the s S‘h“et“"?' for the f sh“e or
Recognizer training or the testing training or the testing
5 7 (120) 0.991734 0.008335 0.017311 patterns patterns patterns patterns
10 (168) 0.994312 0.005720 | 0.015005 0(2) 100.00 93.33 99.00 100.00
15 (248) 0.994676 | 0.005352 0.011817 0(b) 100.00 100.00 100.00 100.00
Sub-Graffiti 5 (88) 0.990333 0.009761 0.049566 1 100.00 100.00 98.00 100.00
Recognizer 2 99.00 96.67 100.00 100.00
H 7(120) 0.993056 | 0.006993 0.027096 3 5500 S00.00 100,00 10000
10 (168) 0.994664 | 0.005365 0.042821 2 100.00 96.67 98.00 9333
15 (248) 0.995843 0.004175 0.032889 5(a) 100.00 100.00 100.00 100.00
Sub-Graffiti 5 (88) 0.996169 0.003845 0.008233 5(b) 100.00 100.00 100.00 100.00
Recognizer | 5 (150) 0995208 | 0.004815 | 0.009562 6 100.00 100.00 98.00 66.67
4 7 98.00 100.00 99.00 93.33
10 (168) 0.997302 0.002706 0.008834 8(a) 100.00 93.33 99.00 93.33
15 (248) 0.999145 0.000855 0.005120 8(b) 100.00 93.33 100.00 86.67
9 99.00 100.00 99.00 100.00
gack 100.00 96.67 100.00 96.67
pace
Return 100.00 100.00 100.00 100.00
Space 100.00 100.00 100.00 100.00
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