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Abstract: This paper addresses the stable fuzzy controller design
problem of nonlinear systems, The methodology is based on a
fuzzy logic approach and the genetic algorithm (GA). In order to
analyze the system stability, the TSK fuzzy plant model is
employed to describe the dynamics of the nonlinear plant. A
fuzzy controller is then developed to close the feedback loop. The
stability conditions are derived. The feedback gains of the fuzzy
controller and the solution for meeting the stability conditions are
determined using the GA. An application example on stabilizing
an inverted pendulum system will be given. Simulation and
experimental results will be presented to verify the applicability
of the preposed approach.

I. INTRODUCTION

Fuzzy control is particulariy useful for ill-defined nonlinear
systems. Control actions of a fuzzy controller are usually
described by some linguistic rules, making the control
algorithm easy to understand. To facilitate a systematic tuning
procedure, a fuzzy controller implemented by a neural-fuzzy
network was proposed in [7-8]. Through tuning, fuzzy rules
can be generated automatically. Genetic algorithm (GA),
which is a powerful searching algorithm [5], has been applied
to fuzzy systems to help generate the membership functions
and/or the rule sets [16]. These methods make the design
simple; however, they do net guarantee the system stability.

In order to investigate the system stability, the
Takagi-Sugeno-Kang (TSK) fuzzy plant model approach was
proposed [1-2, 10, 14, 21-24]. A nonlinear system is modeled
as a weighted sum of some simple sub-systems. It gives a
fixed structure to some of the nonlinear systems, and facilitates
the analysis of them. There are two ways to obtain the fuzzy
plant model: 1) by perferming identification methods through
the use of the input-output data of the plant [1-2, 10, 14}, 2) by
deriving directly from the mathematical model of the nonlinear
plant [9]. Stability of the fuzzy system formed by a fuzzy plant
model and a fuzzy controller was investigated, Different
stability conditions based on the Lyapunov stability theory [3,
6, 9] and other methods [11-13, 15, 17-19, 23-24] were
reported. Using these stability conditions, the closed-loop
system stability can be tested after finding the fuzzy controller
parameters, which are usually determined by trial and error.
Furthermore, the ways to solve the stability condition are
usually not considered. If the stability conditions can be
formulated as some linear matrix inequalities (LMIs) {9, 23],
some software can help find the solution numerically.
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However, formulating the stability conditions into an LMI
problem will limit the realm of the stability analysis. In order
to have a systematic method to obtain a fuzzy controller with
guaranteed system stability, a fuzzy controller derived from
GA [20, 24] is proposed. The stability conditions for fuzzy
control system are first derived. Based on these conditions, the
parameters of the fuzzy controller are obiained using GA.

II. TSK Fuzzy PLANT MODEL AND FUzzY CONTROLLER

We consider a fuzzy control system formed by a nonlinear
plant connected with a fuzzy controller in closed loop. The
TSK fuzzy plant model is employed to describe the dynamics
of the nonlinear plant.
A. TSK Fuzzy Plant Model with Parameter Uncertainties

Let p be the number of fuzzy rules describing the nonlinear
plant. The i-th rule is of the following format,
Rule i IF f(x(1)) is M, and ... and £, (x(z)) is M}

THEN x(#) = A x(#)+ B, u(?) )]
where M! is a fuzzy term of rule i corresponding to the
function f, (x(z)) containing the parameter uncertainties of
the nonlinear plant, = 1,2, ..., ¥,i=1,2, ...,p, ¥isa
A, eR™ and B, eR™"

constant system and input matrices respectively; x(r) e R™ is

positive  integer; are known

the system state vector and u{z) € R™"' is the nput vector.
The inferred system is given by,

X(1) = éw,. x(O)A,x(t) + B.u(®)), @

where Sw.(x(t)=1, w,x() €0, 1] foralli 3)
il

(1) = g (A RO % phy (L) %% 1, (fp(X(2))) )

£l KONty oG g o x0D)
is a nonlinear function of x(f) and wu, (f,(x())) is the

membership function corresponding to M), . The value of
Hyg ([, (x(£))) can be known or unknown. Ifitis an unknown

function, f,(x(#)) reflects the parameter uncertainties of the
nonlinear plant. A fuzzy controller will be obtained based on
the TSK fuzzy plant model of (2).
B. Fuzzy Controller

A fuzzy controller with ¢ fuzzy rules is to be designed for the
plant. The j-th rule of the controller is of the following format:
Rulej: [F g (x(r)) is N/ and ... and g (x(?)) is N/,

THEN u(r) =G x(1) (5)

The IEEE international Confarence on Fuzzy Systems

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 00:49 from IEEE Xplore. Restrictions apply.



where N4 is a fuzzy term of rule j corresponding to the
function g,(x(1)), f=1,2, ..., 2= 1,2,
positive integer; G, € R™ is the feedback gain of rule j to

e G, £218 2

be designed. The inferred output of the fuzzy controller is

given by u(s) = zl m, (X(NG (1) (6)
£
where Sm (x(®)) =1, m,(x(t) e[0, 1] forall; 0
=1
Ay (B (XM (B XN %% (X)) g

m, (x(0)) =~
Eliy 6 G0N %ty (o -y 0 (X))
is a nonlinear function of x(f) and g (g5(x(1))) is the

membership function corresponding to Ni, to be designed.
C. Fuzzy Control System

In order to carry out the analysis, the closed-loop fuzzy
system should be obtained. From (2) and (6),

k(1) = zz w, (x(0))m, (X(E)H (1) ©)
where H; = A, +B,G, (10)

III. STABILITY ANALYSIS
To analyze the stability of the fuzzy control system of (9),
consider the Taylor series,
X(1 + Aty = x(¥) + x(1)Af + o{At) {11)
where o(Ar) = ~x(t) —X(¢)Af + x(f + At} is the error term and
At>0,
At
lim focao)] =0 (12)
Ar—0* At
From (9) and (11), writing w;(x()) as w, and m {x(r)) as
m ,, and multiplying a transformation matrix T € R™" of rank
# to both sides, we have

Tx( + Aty = Tx(t) + 5, 5 w,m, TH,x()Af + To(Ar)
i=1j=1

i=l =

= [l +$ 3 wm TH ,.;r"A.rJTx(r) +To(Al)

The reason for introducing T will be given at the end of this
section. Taking norm on both sides of the above equation,

ITx(: + Ar)| < )fl J};} wm, {1+ THﬁT"Aq [Tx(®)] +|Toas)] (13)

where " - " denotes the /; norm for vectors and /, induced norm
for matrices. From (13),

frxte+an] < 2 Swm, JU+ TH, T Ajfexo)] + fTocan)
i=1j=1

= |Tx(e+ ar)| - [Txe)f < )":I ,Zl wm, ﬂ[l +TH, T A~ l],’l‘x(l)|!+l|To(At)||
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. ITx(r + anj-|Tx(s)] <
Ar—0* At

(14)
lim[$ 3 w,m, ﬂ|1 +TH,T o —1JTx(o)]+[ro(an])/ Ar

AT =1 j=)

From (12) and (14),
P c -
d|[Tx()| < tim %Ew,.mj QII +TH, T A~ 1)
dt T Ao At
< £ S, afrn, T Jrxcof

i=1 j=1

[0
(15)

where
-1 _
o] i i+ THiII‘ af-1 .

[TH"Tl + (TH!,T")'] (16)
2

‘Tnax

is the corresponding matrix measure [4] of the induced matrix
norm of HTH ﬂ"" (or the logarithmic derivative of

[TH, T Anec(:) denotes the largest eigenvalue, * denotes

the conjugate transpose. From (15), if p[TH,.jT"] satisfies
the following inequality,

,u[TH,jT"] < —¢ foralliandj. (7N
where ¢ is a nonzero positive constant, it can be proved (15)

implies a stable system of (9). Before conducting this proof,
consider the following inequality obtained from (15) and (17).

IOOL < 45 som,efrsc] - -frxco] (®

where ¢, <t is an arbitrary initial time. We shall show that

(19) implies an exponentially stable closed-loop system of (9),
and x(1) >0 as r > o0,

Proof From (18),
[ﬂrd_’i% + e'”Tx(t)“]e“""’ <0 (19)
%me(t) )0 = [Tx()e”™ <|Tx(,)
=[x <[Tx(, e (20)

Since ¢is a positive value,

[Tx(#)] = 0 as t > 0. Inorderto
show x(t}) = 0 as t — , considering the following property
and T has rank n,

ITx@)| = x(@" T"Tx(x) ©n
As T'T is symmetric positive definite (T has rank n), from
(21), |Tx(2)| = 0 only when x(s) 0. QED

The stability conditions of the closed-loop fuzzy system can
be summarized by the following lemma:

Lemma 1. The fizzy control system as given by (9), which may
have parameter uncertainties, is exponentially stable if
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TH, T is designed such that,
u[tH,T] <— for aiti and

where £ is a nonzero positive constant scalar,

It should be noted that with the use of a suitable
transformation matrix T, any Hurwitz matrix having a positive
or zero matrix measure can be transformed into another matrix
having a negative matrix measure (see (17)). The stability
conditions derived can then be applied. The problem left is to
find such a matrix T for a given system. This will be discussed
later. From the above derivation and Lemma 1, we also see the
system stability 1s not affected by the membership functions of
the fuzzy controller.

VI STABILITY CONDITIONS AND FEEDBACK GAINS

In this secticn, the problems of solving the stability
conditions derived in the previous section and obtaining the
feedback gains of the fuzzy controller will be tackled using the
GA with arithmetic crossover and non-uniform mutation [5].
From Lemma 1, the uncertain fuzzy control system is stable if
there exists a transformation matrix T satisfying the following
conditions,

dr(a, +B,G )17 <—z,i=1,2, pj=12,...c (22)

T, T, = T,
The objectives are to find _1Ta T» = Tu| and
Tn] TuZ e Tnn
G G}, G,
G - G, Gy - Gi | such that the above conditions are
G, G, - Gl

satisfied. Let a fitness function be defined as follows,
fitness = T3 n,j;t[T(A,. + B,.Gj)l'"]
=1

i=lj

23)

wheren; 20,i=1,2, ..., p,ji=1,2, ..., ¢, are constant scalars,
The problems of finding T and G; are now formulated into a
minimization problem. The aim is to minimize the fitness
function of (23) using the GA. As T ind G, are the variables of
the fitness function of (23), they will be used to form the genes
of the chromosomes. The finding of the solution to this
minimization problem, however, does not imply that the
conditions of (22) are satisfied. Hence, different ny, i=1,2, ...,
p.j=1,2, ..., ¢, may need to be tried to weight the cenditions of
(22) in order to change the significance of different terms on
the right hand side of (23). For instance, one of the terms in
(23) is very negative, which returns a very small fitness value.
However, under this case, the conditions of (22) may not be
satisfied. A small value of n;; corresponding to that term can be
used to attenuate the effect of that term in the fitness function,
This may help the GA process to find a solution that satisfies

1}  Obtain the fuzzy model of the nonlinear plant.

2) Determine the number of rules and the membership
functions of the fuzzy controller.

3) Solve T and G, with the fitness function defined in (23)
andmy=1,i=1,2,...,p,7=1,2, ..., cusing the GA. If T and
G; cannot be found, adjust ny accordingly.

V1. APPLICATION EXAMPLE

An application example on stabilizing an inverted pendulum
(Model 505 inverted pendutum) [25] as shown in Fig. 1 will be
given in this section. Referring to Fig. 1, the plant consists of a
pendulum rod that supports a sliding balance rod. The balance
rod is driven via a toothed belt and a pulley, which in turn is
driven by a drive shaft connected to a dc servomotor betow the
pendulum rod. The inverted pendulum can stand upright by
steering the sliding rod in the presence of gravity. The balance
weight in the bottom may be adjusted to alter the center of the
gravity of the pendulum rod and hence the system dynamics (a
source of parameter uncertainties). The plant has 2 sensors for
measuring the system states in real time. The first one is a
high-resolution encoder to measure the angle of the pendulum
rod. Another one is a shaft encoder to sense the position of the
sliding rod. The objective of this application example is to
design a fuzzy controller to balance the inverted pendulum
based on the design procedures mentioned in the previous
section suck that &7) = 0 and x() = 0 (Fig. 2).

1). Referring to Fig. 2, the state space equations representing
this inverted pendulum are as follows,

0 1 0 0 0
woy=| 10 SO Bl | SO ey
ACICRACK A0

where x(n =[x,) =0 =0 O =lpw dn 0 ];
&) is the angular displacement of the pendulum rod (in rad),
() is the angular velocity of the pendulum rod (in rad/s), x(f)
is the position of the sliding rod (in m) and x{r) is the velocity
of the sliding rod (in m/s). The plant is operating in the region

that 6()e[f Ouul =l Xul= [_% %] ,
6(1‘) € [émin H.mu] = [xi.’min meax ]: [_ % %:l 2

x(f) e [xmm xml.x] = [J?&?Jmin xlmx]z [_0_12 0_12] ,
x(t) € [‘*min x‘max] = [x4 min X, max ]: [_02 0,2] ;
fitateyy = e+l + mal g sin6()/64)

J, +ml,
€ [ﬁ f,m] =[-15.7716 -14.4457],

m, (g cosB() - 0(1) 1, = 26(H)x(1))

the conditions of (22) during the minimizing process. L(x(@)= z
: : J, +ml
The procedure to obtain the fuzzy controller using the GA o T
can be summarized into the following steps.
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elr. £ =[48.4863 s6.4501] ,
g —mi ] +my i )gsin0(1)/6(1)
J, + m‘IDZ
elr Al =la2482 150116] ,
—m' 1 g cos8(r)+ J,8()* +2m, ()01
Joemi?

eff £l =[-18:5884 —15.9605),

S (x()) =

Fix() =

f=—— elf f_]=l-88576 -85024],
J,+ml, i -
J,/m 7=
fy=—2lm_elr g ] =[s303 7.6178]; 4, =
J,+ml

0.330 m is the length of pendulum rod from the pivot to the
sliding rod T section, m; = m, + m,, is mass of the complete
sliding rod including all attached elements, m), =0.103 kg is
mass of the sliding rod with belt, belt clamps, and rubber end
guards(but without sliding rod brass "dount" weights), m,, =
0.110 kg is the combined mass of both of the sliding rod brass
“dount” weights, m; = my, + m,; is the mass of the complete
assernbly minus #1,, my, = 0.785 kg is the mass of the complete
moving assembly minus 7, and m,.», m,; = 1 kg is the mass of
brass balance weight, I, =0.071 m is the position of the c.g. of
the complete pendulum assembly with the sliding rod and
balance weight removed, g = 9.8m/s® is the acceleration due to

pravity, 1, =ﬂw_2.l_w.+_mic9_, i z_M_)’ T =0.05m,
m,

i el0o74 008 m, 4 = L + 0031 m,

J,=Jd +mli+md? , J. = 00246 kgm® and

J, =J+mx(f)*. The system of (24) can be approximated
by the TSK model with the following rules:

Rule i IF f£,(x(¢)) is M| AND f,(x(#)) is M} AND ....
AND f,(x(2)) is M
THEN x,()= A, x(1)+Bu(t) fori=1,2,3, ..., 64 (25)
The dynamics of the plant is described by,

()= i w,(x(D)(A x(2) + B‘.u(z))

(26)
i=]
0o I 0 ¢ 0
0 f, 0 Js,
where A, = o 0 1 and B, = 0 S, =1, for
£, 0 f, O I,

i=1,2,,.,32 f, = fi fori=33,34,...,64; f, = f,  for
i=1,2,...,16,33,34,...48; £, = f, fori=17,18,...,32,
49,350, ...,64; f, = f,  feri=1,2,...,8,17,18, ...,24;33,
34,...,40,49,50, ..., 56; f, = f,_ fori=9,10, ..., 16,25,
26, ...,32,41,42, ..., 48,57,58, ..., 64; f, = f, fori=4a
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+1,..,4a+4,a=0,2,..,14; f, =fi, fori=da+ ...,
ha+4 a=1,3,..,15 f, =f5...... fori=da+l,4a+2, a=
0,1,2,...,15 f5 = f, fori=da+34a+4,a=0,1,2,..,
15, fo, = fi, fori=1,3,...,63, f, =f fori=24,..,
64. The membership functions are chosen as follows,

= filx{+ A,

S ™

=K+ A

= for o = 33,34,...,64
ho.—h

X iﬂlll

- M
LNt o ra=12.163334. 8
fz _fz

o 2 28)
e (1 30D)= (
1o LD o 21718, 32,49.50.. 64

fore=12,.,32

F im0 = @n

1

f’m T 2
%&—‘- for a = 1,2...8,17,18,19..,,24,33 34 ..,40,49,50,51....56
Frag (=)= o e
l-:%x(f_l}ﬁ;ror @ =910 16,2526, 324142, 48,57,58.59....64
(29)
;jjfggzj;ﬁ& fora=4ai+1,..4i+4i=02,.,14
dan 4
pliten)={ T "L
oI e o din i A1 3,005
f‘.,,.. - fAm
(30)
2SO f for @ = 4i +1,4i +2;i = 0,12,...15
S S
'uM-; (fs(f)) =
- t
1—.&1_{’_--. fora=4i +34i+4;i=012,..,15
S fo
(31)
— £+
_%(iffﬁe_ fora =13,.,63
S 4 bnin
017 S+ S, ¢2)
1o e oy =2,4,..64

fﬂm _fem

2} A 16-rule fuzzy confroller is designed to balance the

inverted pendulum based en the TSK fuzzy plant model of (25).

The rules of the fuzzy controller are defined as follows.

Rulej: IF x,(1) is N{ AND x,(2) is NJ AND x,(2) is N{
AND x,(7) is N}

THEN »,(=G x(n,j=1,2,...,16 G
The output of the fuzzy controller is defined as,
L3
u(l) = Z]m;(x(t))cjx(!) (39
=

The membership functions for the 4 fuzzy sets are given by,
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B =1°

PRCOR

[ -decl-7?

@’ fori=172,.,8

-{{ot)|-m)*
' fori=9,10,.,16

[ -qow]-m)?

e for i =123,4910,11,12
-(|ée}-my?

Ll_ e 27,

-(|x(]-m,)?
7 for i =1,2,5,6,9,10,13,14

l-e

fori=56,781314,1516

(35

(36)

inverted pendulum even when the value of /; is a bit outside the
operating range of the TSK fuzzy plant model.

VII. CONCLUSION

Fuzzy control of nonlinear systems has been investigated.
The nonlinear systems are represented by the TSK fuzzy plant
models. Based on the TSK model, a fuzzy controller has been
proposed, and the stability conditions have been derived. GA
with arithmetic crossover and non-uniform mutation has been
used to help find the solution to the stability conditions and the
feedback gains of the fuzzy controller. An application example
on stabilizing an inverted pendulum system has been presented

g ((0)) =1 37)

=(|xtr)|-my)?

1o illustrate the merits of the proposed fuzzy controller.
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(measure x(1))

(a). Front view. (b). Plan view.
Fig. 1. Inverted pendulum systern.
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(b). Two principal structure members.
Fig. 2. Plant modet of the inverted pendulum.

{c). Response of x;(1). (d). Response of x.(r).
3. Simulation (dotted lines) and experimental (solid lines) results of the
pendulum for /= 0.07 m.
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(2). Response of x,(1).
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(b). Response of x(f).
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Fig. 4. Simulation (dotted lines) and experimental (solid lines) results of the

pendulum for /= 0.08 m.

(c). Response of x3(f).
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Fig. 5. Simulation (dotted lines) and experimental (solid lines) results of the

pendulum for /,=0.09 m.

{¢). Response of x3(s).
Fig. 6. Simulation (dotted lines) and experimental (solid lines) results of the
pendulum for /,=0.1 m.
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Response of x(?).

G, [[-17.6400 -7.6010 -57.4994 —12.6397]
G, |[-16.9238 -7.3720 —56.0060 -12.2283]
G; [[-16.3253 ~7.2394 -553780 -11.9594]
G,{[-15.6844 —7,0323 -54.0189 —11.5885]
Gs|[-21.9391 -9.0288 —62.2073 -14.3193]
Gg[[-20.9478 87117 —60.3399 —13.7860]
G:[[-20.0617 —8.48380 —59.2924 -13.3842]
Gy [[-19.1952 —B.2083 —57.6338 -12.5146]
Gy [[-19.6967 -8.0138 -59.9186 —13.1253]
Gio|[-18.8748 —7.7600 —58.2745 —12.6795]
G|[-18.1757 -7.6020 -57.4804 -12.3732]
Gyp|[-17.4452 -7.3744 -56.0049 -11.9743]
Gia{[-15.3442 64928 -54.4500 -11.3363]
G[[-14,7450 -6.3050 -53.1277 -10.9876]
Gis|[-14.2592 —6.2031 -52.6715 —-10.7770]
Gig[[-13.7193 -6.0320 -51.4574 —10.46011

Table I. Feedback gains G,.
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