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Abstract - Many existing stability analysis methods for fuzzy 
logic control systems like TS fuzzy model based methods usually 
tackle plants that are linear with respect to control. This paper 
proposes an improved method which does not have such 
restriction. The proposed method employs a Lyapunov function 
to prove the stability of the non-linear fuzzy logic control system. 
An illustrative example will be given to demonstrate the ability 
of the method. The plant in this example has a control signal 
function composed of piecewise linear functions, saturation 
functions and a deadband. 

I. INTRODUCTION 

A fuzzy logic control system consists of a plant and a fuzzy 
logic controller (FLC). As shown in Fig. 1, the output of the 
FLC is a function of the degrees of membership of the fuzzy 
rules, and these degrees of membership are function of input 
variable(s), e.g. system states. The control system becomes 
highly non-linear. The analysis of system stability for this 
system is a difficult task. 

A common approach to tackle the stability problem of 
fuzzy logic control systems is based on TS fuzzy plant 
models. The plant of the control system is first represented 
by a TS fuzzy model. Then an FLC, in which linear state 
feedback is usually used in the output of every fuzzy rule, is 
designed. Tanaka et a1 [7, 81 applied the parallel distributed 
compensation technique to develop the FLC. Then LMI 
techniques were employed to find a common Lyapunov 
function so that the system stability is ensured. Cao et al [4- 
61 decomposed the fuzzy plant model into many sub-systems, 
each of them consists of a nominal system and interactions of 
the sub-systems. Then a design method was proposed that 
can give an FLC capable of stabilizing the system. Other 
stability analysis methods involve TS fuzzy plant models can 
be found in the literature [ 12- 131. 

There were also studies on analysing fuzzy logic control 
systems which do not use fuzzy plant models [9-111. Some 
methods use error and change of error as inputs of the FLC. 
Then the state plane is partitioned and analysis is carried out 
in every partition individually. However, these methods may 
become difficult to apply when high order systems are 
involved. Also, the input membership functions are usually 
required to have a regular shape with an even distribution in 
the domain. In this case, the flexibility of designing the FLC 
is reduced. 

Recently, we have proposed a stability analysis method 
which employs Lyapunov direct method for fuzzy logic 

control systems [l-21. The proposed method handles every 
fuzzy sub-system (that will be defined in section 2.1) 
individually instead of the system as a whole in order to avoid 
dealing with the complex non-linear control signal generated 
by the FLC. This method does not require a fuzzy plant 
model, and the shape and distribution of the input 
membership functions are not restricted to certain patterns. 

In this paper, we further develop this stability analysis 
method so that it is not restricted to systems that are linear 
with respect to control [14]. If the plant is of the form 
X = l x )  + b ( x ) g ( u )  + w , where g(u) is a scalar linear or non- 
linear function of U, and is either a monotonic increasing or a 
monotonic decreasing function, the proposed stability 
analysis method can be applied. It should be noted that the 
methods based on TS fuzzy plant model usually deal with 
plants with u instead of g(u). It is because a plant with g(u) 
may lead to a premise depending on u (in addition to the 
system state) in the fuzzy control rules. Then the design of 
the FLC and the stability analysis may become very difficult. 

In Section I1 of this paper, the fuzzy logic control system 
considered in this paper will be introduced, and some 
definitions, useful properties and theorems will be stated. 
The proposed stability analysis method will be discussed in 
Section 111. An example will be given in Section IV to 
illustrate the ability and merits of the stability analysis 
method. The plant in this example has a control signal 
function composed of piecewise linear functions, saturation 
functions and a deadband. Finally, a conclusion will be 
drawn in Section V. 

11. FUZZY LOGIC CONTROL SYSTEMS 

A fuzzy logic control system comprising a plant and an 
FLC is shown in Fig. 1. The FLC consists of r fuzzy rules. 
Each fuzzy rule generates an output ui and a degree of 
membership pi E [0, 11, i = 1, 2, ......, r. The overall control 
signal applying to the plant is a function of ui and pi. Let the 
plant be of single input, n-th order and non-linear type which 
can be described by the following equation: 

(1) 

where x = [XI, x2, ......, x,JT is a state-vector, f(x) = Lfl(x),f2(x), 
......, fn(x)IT and b(x)  = [b l (x ) ,  b2(x), ......, b,,(x)]1 are function 
vectors describing the dynamics of the plant, w = [wl ,  W Z ,  ...... 
, wnIT is a vector describing the external disturbances, g(u) is 
a scalar linear or non-linear function of U, and u is a control 

X =Xx) + b ( x ) g ( u )  + w 
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fig. 1 A general fuzzy logic control system 

I I 1 

fig. 2 A fuzzy sub-system 

signal generated by an FLC. The i-th fuzzy rule of the FLC is 
of the following form: 

(2) 

where <premise i> is the premise of fuzzy rule i with an input 
variable vector z. In many cases, z will be the state vector x; 
but it can also be a function of x (e.g. the distance from a 
sliding plane) [l, 21. ui can be a constant or a function, either 
linear or non-linear, of x. This is an advantage as compared 
with the case of many existing FLCs that require the rule 
outputs to be linear state feedback control laws of x. It is 
assumed that for any input ~0 in the input universe of 
discourse Z, there exists at least one pi among all the rules 
that is non-zero. The membership functions of the output 
fuzzy sets are assumed to be singletons. The center average 
defuzzification method is applied and the control signal is 
given by 

Rule i :  IF <premise i> THEN U = ui 

;=I 

2. I Some definitions and properties 

We shall first define some terms and highlight some useful 
properties in this sub-section. The Lyapunov theorem on 
globally asymptotically stability will also be stated. 

Definition 1: For any input ~ ~ € 2 ,  if the degree of 

membership pi of fuzzy rule i is zero, this fuzzy rule i is 
called an inactive fuzzy rule for  z,; otherwise, it is called an 
active fuzzy rule for  z,. An active region of a fuzzy rule i is 
defined as the region Z,cZ such that the fuzzy rule i is active 
for ZE 2,. 

It should be noted that an inactive fuzzy rule for z = zo will 
not affect the controller output U (for z = z,). By letting ZA be 
a set containing the rule numbers of the active fuzzy rules for 
z,, (3) can be rewritten so as to consider all active fuzzy rules 
(for z = z,) only: 

(4) 

Property 1: For any input ~ ~ € 2 ,  there exist p ,  q E 1 ~  such 
that up I ui I uq for all k ZA. 

Definition 2 :  A fuzzy sub-system (as shown in Fig. 2) 
associated with fuzzy rule i is a system with a plant of (1) 
controlled by only ui, which is the output of fuzzy rule i in the 
form of (2). 

To prove the global asymptotic stability of a non-linear 
system, the Lyapunov theorem can be applied, which can be 
stated as follows [3]: 

Theorem I :  Assume that there exists a scalar function V of 
the state x, with continuous first order derivatives such that 

M11: V(x)  is positive definite, 
M12: V ( x )  is negative definite, 

M13: V(x)  -+ = as llxll+ m , 

then the equilibrium point at the origin is globally 
asymptotically stable. 
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111. STABILITY ANALYSIS METHOD 

One major difficulty in analysing the stability of the whole 
fuzzy logic control system is that we have to tackle a very 
complex non-linear control U. Fig. 1 shows that U is a 
function of ul and p, for iE [ 1, r]. Moreover, the p,'s are 
functions of z. The idea of the proposed stability analysis 
method is to break down the problem of analysing the 
stability of the whole fuzzy logic control system into 
analysing every fuzzy sub-system (as defined in Definition 2) 
individually. In this case, only one ui instead of many uis has 
to be considered; and the highly complex non-linear function 
p, is not involved. Hence, the complexity of the stability 
analysis is drastically decreased. Here, the plant is not 
restricted to be linear with respect to control. The proposed 
stability analysis method requires g(u) to be a monotonic 
increasing or decreasing function only. The detail about the 
stability analysis method can be sumniarized in the following 
theorem. 

Theorem 2: If 

M21: P is a quadratic, symmetric and positive definite matrix, 

M22: V is negative definite in every fuzzy sub-system's 

M23: g(u) is either a monotonic increasing or a monotonic 

M24: the defuzzification method of (3) is applied, 

then the equilibrium point at the origin is globally 
asymptotically stable. 

Proof: 

and V = xT P x + 00 as llxll+ 00 ; 

active region; 

decreasing function; 

From M21, 

V = x T P x  

v = X T  Px + XTPX.  (6) 

From (1), 

V = ( f x ) + b ( x ) g ( u ) + w ) T P x + X ~ P ( f x ) + b ( x ) g ( u ) + w ) .  

Let F = (f(x) + P x  + X T  P (f(x) + w), (7) 

B = b ( ~ ) ~  P x + xT P b(x) ,  

then V = F + Bg(u). (9) 

(8) 

From M22. 

is negative definite, and 

is also negative definite. 

The system stability can be proved by considering six 
cases. Case 1 and Case 2 consider a monotonic increasing 

g(u). Case 3 and Case 4 consider a monotonic decreasing 
g(u). Case 5 considers the situation when B is zero. All these 
five cases assume x # 0. The situation x = 0 will be 
considered in Case 6. M11 and M13 of Theorem I have 
already been satisfied due to M21. We have to prove that 
under these 6 cases, if M22 to M24 are satisfied, V is also 
negative definite in the whole state-space so that M12 of 
Theorem 1 is satisfied. 

Cuse 1: If g(u) is monotonic increasing, B is positive, x # 0 

Let Vql = F + Bg(u,) . 

It should be noted that by M22 and (lo), Vql is 

negative definite. Now, g(u) is monotonic 
increasing, g(uq) 2 g(u) V U 5 uq. Consequently, 

V = F + Bg(u)  I Vql < 0 Q U I uq. 

Vp1 = F + &(up 1 

(12) 

Case 2: If g(u) is monotonic increasing, B is negative, x # 0 

Let 

which is negative definite by M22 and (1 1). Now, 
g(u) is monotonic increasing, g(u,,) I g(u) Q U 2 U,,. 

Consequently, 

(13) V = F + Bg(u)  I Vpl < 0 Q U 2 U,,, 

Cuse 3: If g(u) is monotonic decreasing, B is positive, x # 0 

Let 

which is negative definite by M22 and (11). Now, 
g(u) is monotonic decreasing, g(u,,) 2 g(u) Q U 2 U,,. 
Consequently, 

(14) 

Vpz = F + B g ( u p )  

V = F + Bg(u)  I Vpz < 0 'd U 2 U,,. 

Case 4: If g(u)  is monotonic decreasing, B is negative, x f 0 

Let 

which is negative definite by M22 and (10). Now, 
g(u) is monotonic decreasing, g(uJ I g(u) Q U 2 uq. 
Consequently, 

(15) V = F +  Bg(u)  5Vq2 < 0 V U I uq. 

Case 5: If B is zero, x # 0 

From M22, V = F < 0 (16) 

irrespective of the value of U. 

Case 6: If x = 0 

From (7) and (8), F = B = 0 if x = 0 irrespective 
of the values off(x), b(x)  and w. 
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Consequently, V = o 
irrespective of the value of U. 

Hence, from Case 1 to Case 6, (12) to (17), we have: 

if U; E [up, U,], k Z A ,  

c o i f  x+O 

v{ = O i f x = O  

which is negative definite. 

Moreover, from M24, Property 1, and (4), we have 

7 
8 
9 

C Piup 
is I ,  

Pi 
ie I ,  

P N 0 
N P 0 
Z Z 0 

s 

Pi Pi 

i d ,  ; S I ,  

3 up 5 U I U,, equality holds when U; = up = U,. 

Hence, (19) shows that the overall FLC output indeed lies 
between up and U, if M24 is satisfied, that is the 
defuzzification method in (3) is employed to derive the 
overall control signal. 

In conclusion, if M21 is satisfied, M11 and M13 of 
Theorem 1 are satisfied. Also, if M21 to M24 are satisfied 
which give (18) and (19), M12 of Theorem 1 is satisfied. 
Hence, Theorem 2 is proved. 

QED 

IV. ILLUSTRATIVE EXAMPLE 
Consider a plant of the following form: 

where g(u) is a piecewise linear function with deadband and 
saturation as shown in Fig. 3. An FLC with fuzzy rules 
described by Table 1 and membership functions shown in Fig. 
4 is applied to control the plant and the defuzzification 
method of (3) is used. The proof of system stability is given 
as follows: 

Proof: 

Let x = [x ,  x2IT. We select a quadratic and positive definite 
Lyapunov function as follows: 

2 4 6l.4 -6 4 -2 0 

Fig. 3 Function of g(u) 

-1 -0.5 -0.2 0 0.2 0.5 1 
Rg. 4 Membership functions of XI and xz 

Antecedent I Consequent I 

50 1 
v=xT[ 1 25) 

= 50x: + 25x22 + 2x1x2. 

Also V(x)  + = as llxll+ = . The first derivative of V is given 

by 

432 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 03:52 from IEEE Xplore.  Restrictions apply.



V = 5OXlii 25X2i2 + 2.ijX2 -k 2Xli2. 

From (20), 

V = 5oXlX2 4- 25X2[-2Xl - X2 4- 2g(U)] 

+ 2x22 + 2x1 [-2x1 - x2 + 2g(u)] 

= 50XlX2 -5oX1X2 -25x22 +5oX2g(U) 

f 2x22 - 4x; - 2xlx2 + 4X,g(u) 
2 = -4X: - 23x2 - 2X1X2 -k 4Xlg(u) 5 0 X z g ( U ) .  

For rule 1, x1 is P, x2 is P, u = -5 

= $ X I  E [0.2, 11, x2 E [0.2, 11 and g(u) = -3. From (22), 
lo time/s 2 4 6 8 

-1 
0 

V = - 4 X ;  - 23x22 - 2Xlx2 + 4xIg(u) +5oX2g(U) 
Hg. 5 Responses of the system with non-linear in control 

For rule 6 to 8, since g(u) = 0, the analysis for rule 5 can also 
be applied to give the result V < 0.  

For rule 9, if [XI XZ] # [0 01, the analysis of rule 5 can be 
applied to give the result V < 0 .  If [XI x21= [O 01, from (221, 
v =o. 

2 = -4x: - 23x2 - 2xlx2 - 12x1 - 150x2 

< O  

since x1 and x2 are positive. 

For rule 2, x1 is N, xz is N, U = 5 

=j XI E [-I, -0.21, x2 E [-1, -0.21 and g(u) = 3. From (22), 

2 v = -4X; - 23x2 - 2X1X2 + 4x1g(u) -I- 50X,g(U) 
Hence, V is negative definite in every fuzzy sub-system's 

= -4~; - 23x22 - ~x,x, + 12x1 + 150x2 active region, when g(u) is monotonic increasing and the 
< O  defuzzification method of (3) is applied. From Theorem 2, 

the equilibrium point at the origin is globally asymptotically 
stable. 

QED 
Simulation results of the zero-input responses of the 

closed-loop system with initial values x(0) = [ l  -0.5IT are 
shown in Fig. 5. The stability of the fuzzy logic control 
system is verified. 

since x1 and x2 are negative. 

For rule 3, x1 is Z, x2 is P, U = -3 

* x1 E [-OS, 0.51, x2 E E0.2, 13 and g(u) = -2. From (22) ,  

2 V = -4xl - 23~: - 2X1X2 - 8x1 - 100x2 

5 -4x; - 23x22 + 1 + 4 - lOOx, 
< O  

V. CONCLUSION 
since max(5-100x2) = -15. 

For rule 4, XI is Z, x2 is N, u = 3 

3 x1 E [ - O S ,  OS], x2 E [-1, -0.21 and g(u) = 1. From (22), 

V = -4X: - 23x22 - 2X1X2 4- 4x1 + 50x2 

<-4x;-23x,2+1+2+50x2 

< O  

since max(3+50x2) = -7. 

For rule 5, x1 is P, x2 is Z, u = -1 

3 x1 E [0.2, 11, x2 E [ -OS,  0.51 and g(u) = 0. From (22), 

V = -4~; - 23x22 - 2~1x2 

= -3x: - 2 2 4  - (XI + x2)2 

c 0. 

An improved Lyapunov function based stability analysis 
method for fuzzy logic control systems has been presented in 
this paper. This method is advantageous in that every fuzzy 
sub-system is handled individually so as to reduce drastically 
the complexity of analysis, the shape and distribution of the 
membership functions are not restricted to certain patterns so 
as to make the FLC more flexible, and the plant in the system 
is not needed to be linear with respect to control. The last 
point is important because many TS fuzzy model based 
stability analysis methods are difficult to apply to plants that 
are not linear with respect to control, as this may lead to a 
premise depending on the control (in addition to the state) in 
the fuzzy control rules. This paper has shown how the 
proposed stability analysis method can be applied to tackle 
plants that are non-linear with respect to control, and the non- 
linear function of control is either monotonic increasing or 
decreasing. An example has been given to illustrate how the 
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method can be applied to a plant with a control signal 
function which is piecewise linear and with saturation and 
deadband. It can be seen that the stability analysis is simple. 
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