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Abstract - This paper presents the learning of neural
network parameters using a real-coded genetic algorithm
(RCGA) with proposed crossover and mutation. They are
called the average-bound crossover (AveBXover) and
wavelet mutation (WM). By introducing the proposed
genetic operations, both the solution quality and stability
are better than the RCGA with conventional genetic
operations. A suite of benchmark test functions are used
to evaluate the performance of the proposed algorithm.
An application example on an associative memory neural
network is used to show the learning performance brought
by the proposed RCGA.

I. INTRODUCrION

Learning or training is one of the important issues of
neural networks. The learning process aims to find a set
of optimal network parameters. The widely-used gradient
methods [1-2], such as MRI, MRII, MRIII rules, and back-
propagation techniques, adjust the network parameters
based on the gradient information of the fitness function in
order to reduce the mean square error over all input
patterns. One major weakness of the gradient methods is
that the derivative information of the fitness function is
needed, meaning it has to be continuous. The learning
process is easily trapped in a local optimum, especially
when the problems are multimodal and the learning rules
are network structure dependent. To tackle this problem,
the real-code genetic algorithm (RCGA) [4] was proposed
for optimization problems in a large, complex, non-
differentiable and multimodal domain [11]. RCGA is a
good training algorithm for neural or neural-fuzzy
networks [5-6]. The same RCGA can be used to train
many different networks regardless of whether they are
feed-forward, recurrent, or of other structure types. This
generally saves a lot of human efforts in developing
training algorithms for different types of networks.

A lot of research efforts have been spent to improve
the performance of RCGA. Basically, RCGA involves
two genetic operations: crossover and mutation. Recently,
different crossover operations for RCGA have been
proposed to improve the efficiency of the algorithm.
Unimodal normal distribution crossover (UNDX) was
proposed by Ono et. al. [7] for handling multimodal
functions and non-separability problems. UNDX mixes
the parental information and shows a good search ability.
However, it changes the fundamental concept that the
crossover operation combines the parents to generate
offspring, not mixing the parents. Blend crossover (BLX-
a) was proposed by Eshelman et. al. [8], which shows a
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good search ability for separable functions. It combines
the parents to generate offspring. However, BLX-ca has
difficulty in handling non-separability optimisation
problems. Also, the above crossover operations are not
suitable to handle optimisation problems with the optimal
point located near the domain boundary. For mutation
operations, uniform mutation and non-uniform mutation
can be found [4]. Uniform mutation is to change the value
of a randomly selected gene to a value between its upper
and lower bounds. Non-uniform mutation is capable of
fine-tuning the parameters by increasing or decreasing the
value of a randomly selected gene by a weighted random
number. The weight is usually a monotonic decreasing
function of the number of iteration.

In this paper, new genetic operations of crossover and
mutation are proposed. The crossover operation is called
the average-bound crossover (AveBXover), which
combines the average crossover and bound crossover. The
average crossover manipulates with the selected parents,
the minimum and maximum values of the genes. The
bound crossover is capable of moving the offspring near
the domain boundary. On realizing the AveBXover
operation, the offspring spreads over the domain so that a
higher chance of reaching the global optimum can be
obtained. The proposed mutation operation is called the
wavelet mutation (WM), which applies the wavelet theory
[9]. Wavelet is a tool to model seismic signals by
combining dilations and translations of a simple,
oscillatory function (mother wavelet) of finite duration.
The wavelet function has two properties: 1) the function
integrates to zero, and 2) it is square integrable, or
equivalently has finite energy. Owing to the properties of
the wavelet, the convergence and solution stability are
improved. By introducing these genetic operations, the
GA performs more efficiently and provides a faster
convergence than the GA with conventional genetic
operations in a suite of six benchmark test functions [10].
In addition, the GA with the proposed operations gives
smaller standard deviation of results, i.e. the solution
quality of the GA with the proposed operations is more
stable.

This paper is organized as follows. Section II
presents the RCGA with the proposed genetic operations.
Six benchmark test functions are used to evaluate the
performance of the proposed method in section III. An
application example on associative memory is given in
section IV. A conclusion will be drawn in section V.
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Il. AVERAGE-BOUND CROSSOVER AND WAVELET
MUTATION FOR RCGA

The Real-Coded Genetic Algorithm (RCGA) process
[34] is shown in Fig. 1. First, a set of population of
chromosomes P is created. Each chromosome p contains
some genes (variables). Second, the chromosomes are
evaluated by a defined fitness function. The better
chromosomes will return higher values in this process.
Third, some of the chromosomes are selected to undergo
genetic operations for reproduction by the method of
normalized geometric ranking [3]. Normalized geometric
ranking is a ranking selection function based on the non-
stationary penalty function. The non-stationary penalty is
a function of the generation number; as the number of
generations increases so does the penalty. Therefore, as
the penalty increases it puts more and more selective
pressure on the RCGA to find a feasible solution. Fourth,
genetic operations of crossover are performed. The
crossover operation is mainly for exchanging information
between two parents that are obtained by a selection
operation. In the crossover operation, one of the
parameters is the probability of crossover p, which gives
us the expected number p, x pop _ size (where pop _ size
is the number of chromosomes in the population) of
chromosomes that undergo the crossover operation.

We propose a new crossover. First, four
chromosomes will be generated (instead of two
chromosomes in the conventional GA). Second, the best
two offspring in terms of the fitness value will be selected
to replace their parents. After the crossover operation, the
mutation operation follows. It operates with the parameter
of the probability of mutation ( Pm ). The mutation
operation is to change the genes of the chromosomes in
the population such that the features inherited from their
parents can be changed. After going through the mutation
operation, the new offspring will be evaluated using the
fitness function. The new population will be formed when
the new offspring replaces the chromosome with the
smallest fitness value. After the operations of selection,
crossover and mutation, a new population is generated.
This new population will repeat the same process. Such
an iterative process will be terminated when a defined
condition is met. The details about the proposed crossover
and mutation operations are given as follows.

A. Average-bound crossover
The crossover operation is mainly for exchanging

information from the two parents, chromosomes pi and P2.
obtained in the selection process. The two parents will
finally produce two offspring. The average-bound
crossover (AveBXover) comprises two operations:
average crossover and bound crossover. The details of the
crossover operation are as follows,
Average crossover
0 (=(pl +p2)/2 (1)
0°s =((P max + Pmin)(V-wa) + (Pi + P2)Wa)/2 (2)
Bound crossover

0°3 = P max(1- wb) + max(pIpP2)wb
0°4 =p mjn(1- wb) + min(p 1,p 2)wb

(3)

(4)

where

° k = k O k *-- k 1, k=1, 2, 3, 4.
SC Si S2 Sno *,r

Pi =[Pi Pi, * - Pij *-- , i = 1, 2; j = 1,
2, ..., no_vars,

paramin < pij < paramax s

Pmax =[paramax paramax parama-va ]

Pmin [paramin paramin ... param-ivars

(5)
(6)

(7)

(8)
where no_vars denotes the number of variables to be tuned;
para.1j and para4n are the minimum and maximum
values ofpij respectively for all i; wa,wb E[0 1] denotes

the weight of average crossover and bound crossover to be
determined by users respectively, max(p1,p2) denotes the
vector with each element obtained by taking the maximum
between the corresponding element of pi and P2. For
instance,maxal -2 31[2 3 1D= [2 3 3]. Similarly,
min(p1,p2) gives a vector by taking the minimum value.
For instance, min([l -2 31J[2 3 ID =[I -2 1] -
Among o., to oS4' the two with the largest fitness value

c c

are used as the offspring of the crossover operation. These
two offspring are put back into the population to replace
their parents.
The rationale behind the AveBXover is that if the
offspring spreads over the domain, a higher chance of
reaching the global optimum can be obtained. As seen
from (1) to (4): (1) and (2) will move the offspring near

the centre region of the concemed domain (as wa in (2)
approaches 1, 0s2 approaches (pI +P2)/2, which is the

average of the selected parents; and as wa approaches 0,

os2 approaches (Pmax +Pimn)/2, which is the average of
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Procedure of the RCGA
begin

r-+O 11 r: iteration number
Initialize P( z IIP(r): population for iteration r
EvaluateftP( r)) IfiP( r)) :fitness function

while (not termination condition) do
begin

r-H z+ I
Perform selection operation
Determine the number of crossover based on p,

Select 2 parents p, and P2 from P( r- )
Perform crossover operation
Four chromosomes will be generated
Select the best 2 offspring in terms of the fitness value
Perform mutation operation for the whole population
based on pm
Reproduce a new P( r)
EvaluateflP( r))

end
end

Fig. 1. RCGA process
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the domain boundary), while (3) and (4) will move the
offspring near the domain boundary (as wb in (3) and (4)
approaches 0, °S3 and o 4 approaches Pm. and Pmin

respectively). The result of the crossover depends on the
p,tp P2 P2

1 I ~=IV Wb

Pi P2 Pi P,
is,J=O0.75 I wb=0.75

P-'-ThA P2

0, P.

2- PI P.

* parn P
( offspnng 0

- a,, = 0.5
0
g3=-* W=0.5

-7 w, = 0.25 w * *( w = 0.25
v,o,~~~~~~~~~~~l

P.-,6.P-.'.- P, P2
.IEo=O - -

In other words, the total positive energy of sV(x) is equal
to the total negative energy of yV(x).
Property 2:

fv(X)12dX < C

I1
1I

P- Wv-( , =b

Fig.2. Parents and offspring under different values of the weights w, and

Wb (w ,, Wb = 0, 0.25, 0.5, 0.75 and 1.)
a=t a=5 a=10 a=so

1 1 1 1

0.5 0.5 0.51 0.5

-0.5 I' -0. -0.5 -0.5

-t -1 ~-1 -1
-2 0 2 -2 0 2 -2 0 2 -2 0 2

a=100 a=50 a=1000 a=10000

0.5 0.5 0.51 0.5

O 0

-0.5 -0.5 - .5 -0.5

-2 0 2 -2 0 2 -2 0 2 -2 0 2

Fig. 3. A Mornet wavelet dilated by various values of the parameter a (x-
axis: x, y-axis: 6a,O (X) .)

values of the weights wa and Wb. They vary with the
optimisation problem and are chosen by trial and error.
Fig. 2 shows the relationship between the parents and the
offspring under different values of the weights. In this
figure, the line represents the domain of a gene. The end
points of the line represent the minimum and maximum
values of the gene. The dot ( * ) represents the parents and
the circle-dot (0) represents the offspring. According to
(1) to (4), the offspring o i are generated. We can see

s,

how the offspring spreads over the domain under different
values of wa and wb.

B. Wavelet Mutation
Before presenting the wavelet mutation operation, we

first discuss the wavelet theory.
B. I Wavelet theory

Certain seismic signals can be modelled by combining
translations and dilations of an oscillatory function with
finite duration called a "'wavelet". A continuous time
function y/(x) is called a "mother wavelet" or "wavelet" if
it satisfies the following properties:
Property 1:

F. V(x)dx= 0 (9)

(10)

r/T
Fig. 4. The effect of the shape parameter , to a.

where most of the energy in yi(x) is confined to a finite
duration and bounded. Morlet wavelet is an example
mother wavelet, which is proposed by Daubechies [9]:
y/r(x) = e-X 12 COS(5x) (I 1 )

The Morlet wavelet integrates to zero (Property 1).
Over 99% of the total energy of the function is contained
in the interval of -2.5 < x < 2.5 (Property 2).

In order to control the magnitude and the position of
YI(X), Vab (X) is defined as:

la.b (X) =-y{x-b (12)
,a a

where a is the dilation parameter and b is the translation
parameter. Notice that
Vi,o(X) = yv(X) (13)
As

Ya,Oo(X) = - (14)

it follows, that YV.ao(x) is an amplitude-scaled version of

sV(x). Fig. 3 shows different dilations of the Morlet
wavelet. The amplitude of YraO(x) will be scaled down
as the dilation parameter a increases.

B.2 Wavelet Mutation
We propose a mutation operation based on the

wavelet theory, and is called the "Wavelet Mutation"
(WM). The details of the operation are as follows. Every
gene of the chromosomes will have a chance to mutate
governed by a probability of mutation, Pm E [0 1], which
is defined by the user. This probability gives an expected
number (Pm x pop_size x no_vars) of genes that undergo
the mutation. For each gene, a random number between 0
and 1 will be generated such that if it is less than or equal
to Pm, the mutation will take place on that gene which is

updated instantly. If os = SoI,, OSo,. ° Sva is the

selected chromosome and the element Os] is randomly
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selected for mutation (the value of osj is inside

[par4 in,paramax]), the resulting chromosome is given

by s = oSi, *--6 , o- ] , where j E 1,
2, ... no_vars, and

+ 6X>( aram axv Osj if d > °
{o isxsri ~)i60(15)

osj +8 x(oj - paraJin if <0°

6 =at (0) (16)

tl Iao (17)

By using the Morlet wavelet in ( 11) as the mother wavelet,

ef /2 co( (v) ( 18)
If 6 is positive (6a > 0 ) approaching 1, the mutated gene
will tend to the maximum value of o,j . Conversely, when

6 is negative (60< O ) approaching -1, the mutated gene
will tend to the minimum value of o*j. A larger value of

161 gives a larger searching space foroSi. When 161 is

small, it gives a smaller searching space for fine-tuning the
gene. Referring to Property 1 of the wavelet, the total
positive energy of the mother wavelet is equal to the total
negative energy of the mother wavelet. Then, the sum of
the positive 6 should be equal to the sum of the negative
6 when the number of samples is large. That is,

- = 0 for N -o, (19)NN
where N is the number of samples.
Hence, the overall positive mutation and the overall
negative mutation throughout the evolution are nearly the
same. As over 99% of the total energy of the mother
wavelet function is contained in the interval [-2.5, 2.5], (o
can be generated from [-2.5, 2.5] randomly. The value of
the dilation parameter a can be set to vary with the value
of r/T in order to meet the fine-tuning purpose, where T
is the total number of iteration and r is the current
number of iteration. In order to perform a local search
when r is large, the value of a should increase as r/T
increases so as to reduce the significance of the mutation.
Hence, a monotonic increasing function goveming a and
r/T is proposed as follows.

-In(g}{i(L)n(g)
a=e T (20)
where ; is the shape parameter of the monotonic
increasing function, g is the upper limit of the parameter a.
In this paper, g is set as 10000. The effects of the various
values of the shape parameter 4; to a with respect to rnT
are shown in Fig. 4. The value of a is between 1 and
10000. Referring to (18), the maximum value of 6 is I
when the random number of (p=0 (and a = 1). Then

referring to (15), the offspring gene
0 =0 +lx(paraiax -0 It ensures that a large
search space for the mutated gene is given. When the
value rIT is near to 1, the value of a is so large that the
maximum value of 6 will become very small. For
example, at r/T = 0.9 and ; = 1, the dilation parameter a
= 4000. If the random value of q is zero, the value of 6
will be equal to 0.0158.
With °si =o0 + 0.0158x(paraJr - ), a small

searching space for the mutated gene is given for fine-
tuning.

III. EXPERIMENTAL STUDIES AND ANALYSIS

A. Benchmark testfinctions and experiment setup
A suite of six benchmark test functions [10] are used

to test the. performance of the GA with the proposed
genetic operations. Many different kinds of optimization
problems are covered by these benchmark test functions.
They are divided into three categories: unimodal functions,
multimodal functions with only a few local minima, and
multimodal functions with many local minima. The six
benchmark test functions are detailed in Table 1. They can
test the searching ability of the proposed algorithm
comprehensively. In other words, the proposed algorithm
is not biased to some chosen problem. To avoid the
crossover operation having a strong bias to
that (pma + Pmin )/2 is also the location of the optimum,
in this paper, the ranges of the domain boundary of some
test functions are different from those in [10] in order to
shift the location of the optima.

The crossover operation for comparison is the
UNDXBXover, which consists of 2 published crossover
operations: Unimodal normal distribution crossover
(UNDX) [7] and Blend crossover (BLX-a) [8]. The
mutation operation for comparison is the non-uniform
mutation (NUM) [4]. The population size is set at 100. All
the results -are the averaged ones out of 50 runs. The
weight wa, of the AveBXover is set at 0.5 for all functions.
The weight wb is set at 0.5 for f1 to f4 and f6 , Wb =1 for
f5. The parameter ; for WM is chosen by trial and error
through experiments for good performance. ; is set at 5,
5, 0.5, 0.5, 2, and 5 for f1 to f6 respectively. The
probability of crossover is set at 0.8 and the probability of
mutation is set at 0.5 for f1 to f3 and f6, 0.8 for f4
and f5 . In this paper, RCGA with Avergae-Bound
Crossover and Wavelet Mutation (AveBXover+WM),
RCGA with Avergae-Bound Crossover and Non-Uniform
Mutation (AveBXover+NUM), RCGA with Unimodal
Normal Distribution and Blend Crossover and Wavelet
Mutation, (UNDXBXover+WM), and RCGA with
Unimodal Normal Distribution and Blend crossover and
Non-Uniform Mutation (UNDXBXover+NUM) are used
to test the benchmark test functions.
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TABLE 1. BENCHMARK TEST FUNCTIONS

Test function Domain range Optimal point
30

f,(x)=ZX7 -50 <xi < 150 f1(O) = O
i=l

f2(X)= [100(x1-x2)2 +(x,-)] -2.048 < xi < 2.048 f2(t) =0
30

f,(x) = xj + o.5.y -5 <x <1 f3(0)= 0
f4(X)= -COS(Xl)- cos(r2) -300 < xl,x, < 300 f4(V, IT)

exp(- ((x1 - r)2 + (X2 - )2)) l=-

f5(0.1928, 0.1908,
9t.+ x,(br2+bx,x4 5<< 0.1231, 0.1358)

J5(x)=E[ai b' + bjx3 + X4 J 0.0003075

30 30 (f6(X)= ~ x7 -HcoI- I -1200<xi <600 fAMO=0
4000 H=

B. Experiment results
The experiment results in terms of the mean fitness

value, best fitness value, standard deviation, and the t-test
value for f1 to f6 are tabulated in Table. 1I. The
comparison between different genetic operations on fi
to f6 is shown in Fig. 5. The t-test is a statistical method
to evaluate the significant difference between two
algorithms. The t-value will be negative if the first
algorithm is better than the second. When the t-value is
more than -1.645 (degree of freedom = 49), there is a
significant difference between the two algorithms with a
95% confidence level. fi tof3 are unimodal functions.
fA is a sphere model which is probably the most widely
used test function. It is smooth and symmetric. The
performance on this function is a measure of the
convergence rate of a searching algorithm. For fA, the
results in terms of the mean and the best fitness value of
AveBXover with WM or NUM are better than those of the
corresponding UNDXBXover. Comparing AveBXover
with WM to UNDXBXover with WM, the mean fitness 4-
time is better. A much smaller standard deviation is given
by the AveBXover, which means the solution is more
stable. Comparing the mutation operations WM and NUM,
the proposed WM is more effective than NUM in termn of
the fitness value and standard deviation. Both the solution
quality and stability ofWM are better than those ofNUM.
In addition, the t value is -10.62, which implies that the
proposed genetic operations (AveXover with WM) are
better than the conventional genetic operations
(UNDXBXover with NUM). In Fig. 5, AveBXover with
WM displays a faster convergence rate than
UNDXBXover with NUM thanks to its better searching
ability. f2 is strongly non-separable and the optimum is
located in a very narrow ridge. The tip of the ridge is very
sharp, and it runs around a parabola. Algorithms that are
unable to discover good searching directions will perform
poorly in this problem. The proposed algorithm
(AveBXover with WM) outperforms the UNDXBXover
with NUM. The t value is -313.3. Although the best

fitness values on using WM with different crossover
operations are a bit worse than those on using NUM, the
mean value, standard deviation and convergence rate
offered by WM are better. f3 is a step function that is a
representative of flat surfaces. UNDXBXover performs
poorly for f3 because it mainly searches in a small local
neighbourhood, but the flat surfaces do not give any
searching direction for UNDXBXover. On the other hand,
the proposed AveBXover is good for f3 because it can
generate longer jump than UNDXBXover. Comparing
WM to NUM with UNDXBXover, the former also gives a
better solution. f4 to f5 are multimodal functions with
only a few local minima. In these 2 functions, we find
statistically different results from the proposed genetic
operations and the conventional genetic operations. The
proposed AveBXover performs better than the
conventional one. In addition, the results offered by WM
are better than those ofNUM in terms of the mean and the
best fitness values. Furthermore, WM gives a faster
convergence rate. f6 is a multimodal function with many
local minima. It can be seen from Table II that the mean
results and the best results offered by the proposed genetic
operations are better than those offered by the
conventional genetic operations. Also, the solutions have
smaller standard deviations. Therefore, in terms of the
solution quality and stability, the proposed genetic
operations are better than the conventional operations.
From Fig. 5, we can see that the convergence rate of the
proposed genetic operations is better than that of the
conventional genetic operations.

IV. APPLICATION EXAMPLE

Application example on tuning associative memory is
given in this section. The associative memory, which
maps its input vector into itself, has ten inputs and ten
outputs. Thus, the desired output vector is its input vector.
50 input vectors are used for the leaming. The associative
memory is given by:

10

Yk(t)-=Wjkzj(t),k= 1, 2, ..., 10 (21)
j=1

where z(t) is the input vector and wjk is the weight of the
link between the input and the output. The objective is to
minimize the mean square error (MSE), which is defined
as follows:

10 50

2: 2 ( k (t)-Yk (t)
MSE = (22)

10x50
The initial range of the weight wjk is between -2 to 2. The
experimental results are tabulated in Table III, and the
comparison between different genetic operations is shown
in Fig. 6. As can be seen from the table, the mean and the
best fitness value offered by AveBXover and WM are
better. In Addition, the smaller standard deviation implies
a more stable solution. The t-value for this function is
-24.67, which is a relatively large figure. In short, the
improved GA is good for training associative memory.
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V. CONCLUSION
RCGA with improved genetic operations (crossover

and mutation) has been presented. A suit of benchmark
test functions has been used to illustrate the merits of the
improved genetic operations.
memory has also been given.
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t-test ([AveBXover+WM]-[ UNDXBXover+NUM]) = -10.62

.i ( x 10 2 ), number of iteration: 500-~~~~~~~~~
AveBXover+WM AveBXover+NUM UNDXBXover+WM UNDXBXover+NUM

Mean 0.24781 0.38064 2768.9 2785.1
Best 0.02396 0.01624 2660.0 2638.0

Std Dev 0.16678 0.35854 59.999 62.845
t-test ([AveBXover+WM]-[ UNDXBXover+NUM]) = -313.3

1/ ( x 100 ), number of iteration: 200
AveBXover+WM AveBXover+NUM UNDXBXover+WM UNDXBXover+NUM

Mean 0 0 10.180 12.640
Best 0 0 1.0000 3.0000

Std Dev 0 0 5.0130 5.6524
t-test ([AveBXover+WM]-[ UNDXBXover+NUM]) = -1 5.81

f4 ( x 100 ), number of iteration: 100
AveBXover+WM AveBXover+NUM UNDXBXover+WM UNDXBXover+NUM

Mean -0.9721 -0.9549 -0.8679 -0.8365
Best -1.0000 -0.9999 -1.0000 -1.0000

Std Dev 0.0530 0.1198 0.3277 0.3689
t-test ([AveBXover+WMI-[ UNDXBXover+NUM]) = -2.57

f5 ( x 104 ), number of iteration: 200
AveBXover+WM AveBXover+NUM UNDXBXover+WM UNDXBXover+NUM

Mean 5.9125 6.3380 17.863 29.451
Best 3.1002 3.3428 3.3147 5.1236

Std Dev 2.7085 2.6445 36.986 5.5539
t-test ([AveBXover+WM]-[ UNDXBXover+NUM]) = -26.94

f6 ( x 10-5 ), number of iteration: 500

AveBXover+WM AveBXover+NUM UNDXBXover+WM UNDXI3Xover+NUM
Mean 6.3267 109.63 1174.3 1797.4
Best 0.1832 5.0020 1.7688 6.0472

Std Dev 6.1773 81.434 5773.2 6998.2
t-test ([AveBXover+WM]-[ UNDXBXover+NUM]) = -1.81

TABLE III. SIMULATION RESULTS FOR EXAMPLE OF ASSOCIATIVE
MEMORY

MSE ( x 10-4 ), number of iteration: 2000
AveBXover+WM AveBXover+NUM UNDXBXover+WM UNDXI3Xover+NUM

Mean 3.3939 4.7965 7.4178 9.5312
Best 2.5154 2.8983 4.1872 5.8292

Std Dev 0.4728 0.9566 2.1383 1.6943
t-test ([AveBXover+-WM]-[ UNDXBXovcr+NUM]) = -24.67
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