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Abstract — This paper presents the tuning of the structure
and parameters of a neural network using an improved
genetic algorithm (GA). The improved GA is implemented
by floating-point number. The processing time of the
improved GA is faster than that of the GA implemented by
binary number as coding and decoding are not necessary.
By introducing new genetic operators to the improved GA, it
will also be shown that the improved GA performs better
than the traditional GA based on some benchmark test
functions. A neural network with switches introduced to
links is proposed. By doing this, the proposed neural
network can learn both the input-output relationships of an
application and the network structure. Using the improved
GA, the structure and the parameters of the neural network
can be tunmed. An application example on sunspot
forecasting is given to show the merits of the improved GA
and the proposed neural network.

1. 'INTRODUCTION

GA is a directed random search technique invented by
Holland [1] in 1975, which is a widely applied in optimization
problems [1-2, 5]. This is especially useful for complex
optimization problems where the number of parameters is large
and the. analytical solutions are difficult to obtain. GA can help
to find out the optimal solution globally over a domain [1-2, 5].
It has been applied in different areas such as fuzzy control [9-11,
15], path planning [12], greenhouse climate control [13],
modeling and classification [14] etc..

Neural network was proved to be a universal approximator
[16). A 3-layer feed-forward neural network can approximate
any nonlinear continuous function to an arbitrary accuracy.
Neural networks are widely applied in areas such as prediction
[7], system modeling and control [16]. Owing to its particular
structure, a neural network is very good in leamning [2] using
some learning algorithms such as GA [1] and back propagation
algorithm [2]. In general, the learning steps of the neural
network are as follows. First, a network structure is defined with
fixed numbers of inputs, hidden nodes and outputs. Second, a
learning algorithm is chosen to realize the learning process. It
can be seen that the fixed structure may not provide the optimal
performance within a defined training period. Sometimes, the
chosen neural network is large enough to provide a perform'ance
better than it should have. When this happens, the training
period may have to be longer (as the performance is not met) and
the implementation cost will also be increased.

The contributions of this paper are six-fold. First, new
genetic operators are introduced to the improved GA. It will be
shown that the improved GA performs more efficiently than the
traditional GA [1-2, 5] based on some benchmark De Jong’s test
functions [3-4, 6, 17]. Second, an improved GA is proposed.
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This improved GA is implemented in floating-point number;
hence, the processing time is much faster than that of the
traditional GA [1-2, 5]. Third, the improved GA has only one
parameter (population size), instead of three parameters, to be
chosen by the user. This makes the improved GA simple and
easy to use, especially for the users who do not have too much
knowledge on tuning. Fourth, a three-layer neural network with
switches introduced in some links is proposed to facilitate the
tuning of the network structure. As a result, for a given fully
connected neural network, it may no longer be a fully connected
network after learning.  This implies that the cost of
implementing the proposed neural network, in terms of
hardware implementation, processing time and simulation time
can be reduced. Fifth, the improved GA is able to help tuning
the structure as well as the parameters of the proposed neural
network. Sixth, as an application example, the proposed neural
network tuned by the improved GA is used to estimate the
numbers of sunspot [7-8]. It will be shown that a better
performance can be obtained as compared with that from a
traditional feed-forward neural network [2] tuned by the
traditional GA [1-2, 5].

II. IMPROVED GENETIC ALGORITHM

Genetic algorithms (GAs) are powerful searching algorithms.
The traditional GA process [1-2, 5] is shown in Fig. 1. First, a
population of chromosomes is created. Second, the
chromosomes are evaluated by a defined fitness function. Third,
some of the chromosomes are selected for performing genetic
operations. Forth, genetic operations of crossover and mutation
are performed. The produced offspring replace their parents in
the initial population. This GA process repeats until a
user-defined criterion is reached. However, a superior offspring
is not guaranteed to produce in each reproduction process. In
this paper, the traditional GA is modified and new genetic
operators are introduced to improve its performance. Our
improved GA is implemented by floating-point numbers, and
the processing time is shorter than the GA implemented by
binary numbers as the coding and decoding processes are not
needed [1-2, 5]. Two parameters, the probabilities of crossover
and mutation, in the traditional GA are no longer needed. Only
the population size is needed to be defined. The improved GA
process is shown in Fig. 2. Its details will be given as follows.

A. Initial Population
The initial population is a potential solution set P. The first
set of population is usually generated randomly.

P={p|’p27"'»ppup_nze} 0))
pP;:= [pq pi, Py p",..,/.w} , =12 .,
pop_size; j=1,2, ..., no_vars 2)
para,{lin < P, < para,{m i=1,2,..,pop size;j=1,2, ...,
no_vars 3
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where pop_size denotes the population size; no_vars denotes the
number of variables to be tuned; pii= 1,2, ..., pop_size;j=

1, 2, ..., no_vars, are the parameters to be tuned; para,’,;i“ and

j

T are the minimum and maximum values of the

para

parameter p, . It can be seen from (1) to (3) that the potential

solution set P contains some candidate solutions

P;
(chromosomes). The chromosome p; contains some variables

P, (genes).

B. Evaluation

Each chromosome in the population will be evaluated by a
defined fitness function. The better chromosomes will return
higher values in this process. The fitness function to evaluate a
chromosome in the population can be written as,

fitness = f(p,)

The form of the fitness function depends on the application.

“

C. Selection

Two chromosomes in the population will be selected to
undergo genetic operations for reproduction. It is believed that
the high potential parents will produce better offspring (survival
of the best ones). The chromosome having a higher fitness value
should therefore have a higher chance to be selected. The
selection can be done by assigning a probability g; to the

chromosome p, :

_ S

9, = pop_size

2./®)

The cumulative probability ¢, for the chromosome p, is
defined as, )

,i=1,2,...,pop_size

&)

©

The selection process starts by randomly generating a nonzero
floating-point number, d € [O 1] , for each chromosome.

g, = Zqi ,i=1,2, ..., pop_size
=

Then, the chromosome p, is chosenif g, , <d <g,,i=1,2,

..., pop_size, and g, =0 . It can be observed from this

selection process that a chromosome having a larger f{p; ) will

have a higher chance to be selected. Consequently, the best
chromosomes will get more copies, the average will stay and the
worst will die off. In the selection process, only two
chromosomes will be selected to undergo the genetic operations.

D. Genetic Operations

The genetic operations are to generate some new
chromosomes (offspring) from their parents after the selection
process. They include the averaging and the mutation
operations. The average operation is mainly for exchanging
information from the two parents obtained in the selection
process. The operation is realized by taking the average of the
parents. For instance, if the two selected chromosomes are p,
and p,, the offspring generated by the averaging process is given
by,

0s = [osl 0s, osna_var: ] = b_;& (7)
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This offspring (7) will then undergo the mutation operation.
The mutation operation is to change the genes of the
chromosomes. Consequently, the features of the chromosomes
inherited from their parents can be changed. Three new
offspring will be generated by the mutation operation as defined
by,

nos :[os,’ os; os,’m_\m]

s J
+[blAnosl b2 Anosl brm_vnr:Anosno_var:]
=1,2,3 (8)
where b;, i =1, 2, ..., no_vars, can only take the value of 0 or 1,
Anos,,i=1,2, ..., no_vars, are randomly generated numbers

The first new
offspring (j = 1) is obtained according to (8) with that only one
b, (i being randomly generated within the range) is allowed to

such that para’, <os/ +Anos, < paral .

be 1 and all the others are zeros. The second new offspring is
obtained according to (8) with that some b; chosen randomly are
set to be 1 and others are zero. The third new offspring is
obtained according to (8) with all b, = 1. These three new
offspring will then be evaluated using the fitness function of (4).
The one with the largest fitness value f, will replace the

chromosome with the smallest fitness value f, in the

population if f, > f, .

After the operation of selection, averaging, and mutation, a
new population is generated. This new population will repeat
the same process. Such an iterative process can be terminated
when the result reaches a defined condition, e.g., the change of
the fitness values between the current and the previous iteration
is less than 0.001. For the traditional GA process depicted in
Fig. 1, the offspring generated may not be better than their
parents. This implies that the searched target is not necessarily
approached monotonically after each iteration. Under the
proposed improved GA process, however, if f, < f,, the

previous population is used again in the next genetic cycle.

III. BENCHMARK TEST FUNCTIONS
De Jong’s Test Functions [3-4, 6, 17] are used as the
benchmark test functions to examine the applicability and

efficiency of the improved GA. Five test functions, f;(x),i=1,

x] -
integer denoting the dimension of the vector x. The five test
functions are defined as follows,

2, 3, 4, 5, will be used, where x :[x[ X nis an

£ =3 x, -5.12<x, <5.12 ©)
where n =I=31 and the minimum point is at £;(0, 0, 0) =0

£,(x) = "Z_I(IOOX(x,H 52 +(x, —1)1) ,

—-2.048 S’—)lc,, £2.048 (10)
where » = 2 and the minimum point is at £,(0, 0) = 0.
£,x)=6xn+3 floor(x,), 5.12 < x, <5.12 an

il
where n =5 and the minimum point is at £5([5.12, 5}, ..., [5.12,
5]) = 0. The floor function, floor(-), is to round down the
argument to an integer.

fox) =Y ixx} +Gauss(0,1), -1.28 < x, <1.28 (12)
i=l

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 03:15 from IEEE Xplore. Restrictions apply.



IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

where #» = 30 and the minimum point is at f4(0, ..., 0) = 0.
Gauss(0, 1) is a function to generate uniformly a floating-point
number between 0 and 1 inclusively.

1 & 1
fs(x) —’:+Z 2 s
P, )
i=1

—65.356 < x; <65.356 (13)
where
—~32 -16 0 16 32 =32 —-16 0 16 32
‘={"i}=[
32 32 32 32 32 -16 -16 -16 —16 ~16

-32 -16 0 16 32 =32 ~16 0 16 32 =32 -16 0 16 32
0 0 00 0 16 16 16 16 16 32 32 323232]’
k=500 and the minimum point is at f5(32, 32) = 1.
It should be noted that the minimum values of all functions in

the defined domain are zero except for f;(x). The fitness
function for f, to f, is defined as,
1
itness =———,i=1,2,3,4. 14
Si T 14
and the fitness function for f; is defined as,
1
fitness = (15)
J5(x)

The improved GA goes through these five test functions. The
results are compared with those obtained by the traditional GA
[5]. For each test function, the simulation takes 500 iterations
and the population size is 20. Each parameter of the traditional
GA is encoded into a 40-bit chromosome and the probabilities of
crossover and mutation are 0.25 and 0.03 respectively. The
initial values of x in the population for a test function are set to

be the same. For tests 1 to 5, the initial value are [1 1 1],
[o.s 05], [t 1], [o5 0.5] and [10 10]

respectively. The results of the average fitness values over the
30 times of simulations of the improved and traditional GAs are
tabulated in Table I. It can be seen from Table I that the
performance of the improved GA is better than that of the
traditional GA. From Table I, the processing time of the
improved GA is much shorter than that of the traditional GA.

1V. NEURAL NETWORK WITH LINK SWITCHES AND TUNING USING
THE IMPROVED GA
In this section, a neural network with link switches is
presented. By introducing a switch to a link, not only the
parameters but also the structure of the neural network can be
tuned using the improved GA.

A. Neural Network with Link Switches

Neural networks [5] for tuning usually have a fixed structure.
The number of connections must be large enough to fit a given
application. This may cause the neural network structure to be
unnecessarily complex, and increase the implementation cost.
In this section, a multiple-input-muitiple-output three-layer
neural network is proposed as shown in Fig. 3. The main
different point is that a unit step function is introduced to each
link. Such a unit step function is defined as,

6((1):{0 ifa<0

. ,aeR
lifaz20
This is equivalent to adding a switch to each link of the neural
network. Referring to Fig. 3, the input-output relationship of the
proposed multiple-input multiple-output three-layer neural

(16)
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network is as follows,

7= 663 )w,-,/ogsig[z" (605 )v, 2, ()~ (s 0!
j3

)]—6@3)13:
i=1 \
Jk=1,2,...,n, 17
z(t),i=1,2, ..., n,, , are the inputs which are functions of a

i=12, ..,

ut

variable #; m,, denotes the number of inputs; v;,

n,;j=1,2,..., n,, denote the weight of the link between the
i~th input and the j-th hidden node; 7, denotes the number of

the hidden nodes; s,; ,i=1,2,...,
the parameter of the link switch from the i-th input to the j-th

hidden node; s%,j=1,2,..., m;k=1,2, ..,

n,;j=1,2,..., n,, denotes

n,. ,denotes the

out ?
parameter of the link switch from the j-th hidden node to the k-th
output; n,,, denotes the number of outputs of the proposed

neural network; bj and b} denote the biases for the hidden

nodes and output nodes respectively; s; and 5] denote the

parameters of the link switches of the biases to the hidden and
output layers respectively; logsig(-) denotes the logarithmic
sigmoid function:

,aeR

(18)

is the k-th output of the proposed neural

logsig(a) = ——
1+e™
»®,k=1,2,..,n

ont >

network. By introducing the switches, the weights v, and the

switch states can be tuned. It can be seen that the weights of the
links govern the input-output relationship of the neural network
while the switches of the links govern the structure of the neural
network.

B. Tuning of the Parameters and Structure

In this section, the proposed neural network is employed to
learn the input-output relationship of an application using the
improved GA. The input-output relationship is described by,

yi@) = g(zd(t)>, t=1,2,..., n,
v'o=pio vio
20=l0 o

the desired outputs of an unknown nonlinear function g(-)

(19)
0] and

z,‘: (t)] are the given inputs and

where

respectively. #, denotes the number of input-output data pairs.
The fitness function is defined as,

20)

fitness =
+err
Pl
DX HORENG|
err=) —“4——— 1
=1 ny

The objective is to maximize the fitness value of (20) using the
improved GA by setting the chromosome to be

[sf,( Wy sp v, S, b s b,f] for all i, j, k.
Referring to (21), the maximum fitness value sometimes will be
dominated by the error value of certain outputs that may not be
of great interest. To avoid this, n,,k=1,2, ..., n,, are chosén
to reduce the effects of the error from these dominated outputs.
It can be seen from (20) and (21) that a larger fitness value
implies a smaller error value.
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V. APPLICATION EXAMPLE

An application example on forecasting of the sunspot number
[7-8] will be given in this section. The sunspot cycles from 1700
to 1980 are shown in Fig. 4. The cycles generated are non-linear,
non-stationary, and non-Gaussian which are difficult to model
and predict. We use the proposed 3-layer neural network
(3-input-single-output) with link switches for the sunspot
number forecasting. The inputs, z;, of the purposed neural
network are defined as z,(£) = y{ (t = 1), z,(¢) =y,d (t-2)
and z,(¢) = y7 (¢ —3) where  denotes the year and y(f) is

the sunspot numbers at the year 7. The sunspot numbers of the
first 180 years (i.e., 1705 <¢ <1884 ) are used to train the
proposed neural network. Refer to (17), the proposed neural
network used for the sunspot forecasting is governed by,

(= Zd(sj,)wﬂlogslg[ (6(: W,z (8) = 8(s})b; )}—5(55)@2 (22)

The value of n, are changed from 3 to 7 to test the learning
performance. The fitness function is defined as follows,

fitness = (23)
I+err
i (0-2,0)
err = —_ 24
180

t=1705
The improved GA is employed to tune the parameters and
structure of the neural network of (22). The objective is to
maximize the fitness function of (23). The larger value of the
fitness function indicates the smaller value of err of (24). The
best fitness value is 1 and the worst one is 0. The population size
used for the improved GA is 20. The lower and the upper

bounds of the link weights are  defined as
1 2
‘/,_y, ™ ), > 1>sjl,sy,s.,s121,z—
1,2,...3;5=12,....n, k— 1. The chromosomes used for the
improved GA are [sjz.l W s}/. vy S; b} s} bf] .

The initial values of the link weights are randomly generated.
For comparison purpose, a fully connected 3-layer feed-forward
neural network (3-input-single-output) [2] trained by the
traditional GA [1-2, 5] is used for the sunspot number
forecasting . The working conditions are exactly the same as
those mentioned above. Additionally, a bit length of 10 is used
for the parameter coding. The probabilities of the crossover and
mutation are 0.25 and 0.03 respectively. In both approaches, the
learning processes are carried out by a personal computer with
PIII 500Hz CPU. The number of iterations to train the neural
network is 2000 for both approaches.

The tuned neural networks are used to forecast the sunspot
number during the years 1885-1980. Fig. 6 shows the
simulation resuits of the forecasting of the sunspot number
during the years 1885-1980 using the proposed neural network
trained with improved GA (dashed lines), and the traditional
feed-forwards trained with traditional GA (dotted lines). The
actual sunspot numbers are represented in solid lines. The
number of hidden nodes n;, changes from 3 to 7. The simulation
results are tabulated in Table II and Table III. From the Table II,
it is observed that the proposed neural network trained with the
improved GA provides better results than those of traditional
feed-forward neural network trained with traditional GA in
terms of accuracy (fitness values), number of links and learning
time. The training error (governed by (24)) and the forecasting

1980 |V (f) »(@)

p) ), represented in mean
1=1885 96

error (governed by

\
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absolute error (MAE), are tabulated in Table III. It can be
observed in Table III that our approach performs better than the
traditional approach. Refer to Table III, the best result is
obtained when the number of hidden node is 4 and the number of
iterations for learning process is 2000. The number of
connected link is 16 after leamming (the number of fully
connected links is 21 which includes the bias links). It is about
24% reduction of the links after learning. The training error and
the forecasting error in term of mean absolute error (MAE) are
11.8869 and 13.0378 respectively.

V1. CONCLUSION

An improved GA has been proposed in this paper. The
improved GA is implemented by floating-point numbers. As no
coding and encoding of the chromosomes are necessary, the
process time for learning using the improved GA is faster. New
genetic operators have been introduced to the improved GA. By
using the benchmark De Jong’s test functions, it has been shown
that the improved GA performs more efficiently than the
traditional GA. Besides, by introducing a switch to each link, a
neural network that facilitates the tuning of its structure has been
proposed. Using the improved GA, the proposed neural network
is able to learn both the input-output relationship of an
application and the network structure. As a result, a given fully
connected neural network can be reduced to a partly connected
network after learning.  This implies that the cost of
implementation of the neural network can be reduced. An
application example on forecasting the sunspot numbers using
the proposed neural network trained with the improved GA has
been given. The simulation results have been compared with
those obtained by a traditional feed-forward networks trained by
the traditional GA. It has been shown that our proposed network
trained by the improved GA can perform better.
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Fig. 4. Sunspot cycles from year 1700 to 1980
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(a) Number of hidden nodes (n, ) =3
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Sunspot numbers.
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(b). Number of hidden nodes (n, ) =4
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Sunspot numbers.
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(d). Number of hidden nodes (#;, )= 6

Sunspot numbers
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(e). Number of hidden nodes (n;,)=7

Fig. 6. Simulation results of a 96-year prediction using the proposed
neural network with the proposed GA (dashed line) and the traditional
network with the traditional GA (dotted line), compared with actual

0-7803-7108-9/01/$10.00 (C)2001 IEEE

sunspot numbers (solid line) for the years 1885-1980.

Improved GA Traditional GA
Test Fitness Searching Fitness Searching
Functions Values Time () Values Time (s)
70 0.999955 121 0.999382 8.35
fr(x) 0.984039 1.22 0.810813 8.36
£(x) 0.583333 1.09 0.520833 10.93
fi®) 0.737526 2.69 0.14211 7421
£,(x) 0.995509 6.15 0.982912 21.13
Table I. Simulation results of the improved and the traditional GAs.
Our Approach Traditional Approach
n, Fitness | Learning | Number | Fitness | Learning | Number
Values | Time(s) | of Links | Values | Time(s) | of Links
3 0.9398 2438.6 11 0.9316 3558.9 16
4 0.9439 2799.6 16 0.9342 6177.9 21
5 0.9414 31984 19 0.9338 6875.1 26
6 0.9356 3524.2 27 0.9294 7541.3 31
7 0.9351 3950.8 29 0.9287 8364.1 36

30

Table II. Simulation results of the application example on forecasting
the sunspot number after 2000 iterations of learning.

Our Approach
n, Training error Forecasting error
3 12.8112 14.6383
4 11.8869 13.0378
5 12.4495 14.3853
6 13.7666 15.4244
7 13.8809 13.9724
Traditional Approach
n, Training error Forecasting error
3 14.6844 17.5568
4 14.0869 17.2024
5 14.1786 15.5637
6 15.1926 18.0312
7 15.3548 17.1553

Table 11I. Training error and forecasting error represented in mean
absolute error (MAE).
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