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Abstract: A high fuel efficiency management scheme for plug-in hybrid electric vehicles 

(PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive 

genetic algorithm scheme has been designed to adaptively manage the energy resource 

usage. The objective function of the genetic algorithm is implemented by designing a fuzzy 

logic controller which closely monitors and resembles the driving conditions and 

environment of PHEVs, thus trading off between petrol versus electricity for optimal 

driving efficiency. Comparison between calculated results and publicized data shows that 

the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing 

schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 

emissions worldwide every day. 
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1. Introduction 

Global warming has gradually become a big issue and it is aggravating because of increasing CO2 

emissions [1]. In order to minimize CO2 and potential pollutants generated by burning fuels, much 

cleaner alternative energy sources for the next generation of vehicles are desperately sought for [2,3]. 

Hybrid Electric Vehicles (HEVs) are new cars manufactured for the purpose of generating little or 

minimum pollutants. A higher HEV fuel efficiency will help to alleviate the carbon release issue. In 

HEVs, fuel and electric power are available energy sources and may provide energy at the same time [4]. 

The fuel efficiency of HEV, ηH, is defined as the percentage of energy consumption due to fuel 

combustion among the total energy consumed. In particular, in plug-in Hybrid Electric Vehicles 

(PHEVs), the internal combustion engine is connected directly to the wheels in parallel to the electric 

motor. Thus, the fuel efficiency of PHEV, ηP, in general surpasses the respective ηH. Higher efficiency 

(η) implies less contamination, rendering a greener environment. A careful review of the existing fuel 

efficiency schemes reveals that there is still room for improvement of ηP. Intuitively, if the driving 

control mechanism conforms to the road conditions, a higher ηP will be achieved. In existing PHEV 

energy consumption schemes, it is observed that under the circumstance of fast speed and high 

acceleration, more pollutants will be produced than during uniform driving because more fuel is 

consumed. Thus a more efficient scheme to trade-off fuel-versus-electricity (FVE) is needed. In this 

communication, an efficient optimization algorithm for PHEV that pertains to road and driving 

conditions has been developed to achieve the FVE target.  

Genetic algorithm (GA) is a good candidate for global optimization [5,6] and former optimizations 

of ηP were attempted [7–9]. It is noted that in former works, vital parameters of PHEVs such as the 

battery State of Charge (SOC) and the fuel capacity (C), were not considered as key factors in the 

optimization of ηP. In this new scheme, the choice of resource consumption between fuel and 

electricity must take into account the road (e.g., uphill, downhill etc.) effect and car condition (e.g., 

high battery level and/or low fuel level etc.). The status of SOC and C thus are indicative of the road and 

car conditions. In reality, clearcut boundaries must be devised to help decision making for choice of 

resources. The existing scheme incorporates a fuzzy logic controller (FLC) which fuzzifies the inputs, 

namely SOC and C. The fuzzification will moderate the objective function of GA. This process is 

referred as Fuzzified GA (FGA) which is the key contribution in this investigation. The output from 

the FGA will then drive the PHEV. Such a process will ensure the best ηP that pertains to the ever 

changing road conditions. The fuzzified GA scheme (FGAS) will then trade off FVE. By virtue of the 

characteristics of FGAS, a plurality of stable objective functions is achieved, rendering a high ηP. It will 

be shown from simulated results that FGAS is more efficient than the traditional GA scheme (TGAS). 

2. Design of TGAS for PHEV 

Basic vital parameters that may affect significantly the efficiency of a traditional GAS are listed in 

Table 1. Settings of the population size and maximum generations conform to the Allele Coverage [10,11]. 

Such a setting is representative in the design of TGAS. 

It was explained that both C and SOC are key parameters of PHEVs. In Table 1, in the ten bits of 

individuals, the first five binary bits represent the current SOC and the last five bits indicate the current 
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percentage of C. The “SOC” and “C” status divide the whole range [0%, 100%] into thirty-two stages, 

with intervals of less than 4%, which is sufficient to represent the state of SOC and C accurately.  

Table 1. GA (FGA) parameters of population and selection. 

GA (FGA) Parameters Designed Data of GA (FGA) Parameters 

Population size 100 
Number of maximum generations 100 

Number of bits of individuals 10 
Selection method Roulette Wheel Selection (RWS) 

Uniform crossover with a rate of 0.6 and mutation with a rate of 0.01 are adopted as the main 

genetic operations based on natural experience [12–14]. Objective functions are vital elements of the 

TGAS. The objective function, , is shown in Equation (1). 

MAX: = ( ) (1)

where  is the fitness value of the objective function for the individual ,  is the binary bit  of the 

individual, ( ) is the value of  and ( ) is designed as: ( ) = 7 − , ∈ [1,5]− 11, ∈ [6,10] (2)

The output  of TGAS represents ηP, which is calculated as the ratio of consumed electric power to 

the total energy consumption. 

3. Design of FGAS for PHEV 

The working principle of FGAS is shown in Figure 1. The initialization values of GA and FGA are 

the same and are shown in Table 1. It was explained in earlier context that SOC and C from PHEV are 

representative of road conditions. At time t, the PHEV provides output PHEV feedback 
variables,	SOC ,  and C , , to the GA. The output GA variable 1, SOC  and C , at the output of 

the GA are then fuzzified by the FLC. The output fuzzified variable, , moderates the GA variables, SOC  and C , to yield an adaptive η , . The η ,  will trade off fuel versus electricity for PHEV 

steering and generate SOC ,  and ,  which in turn generate SOC  and C . The 

feedback control process reiterates until the optimal ηP is achieved. 

4. Design of FLC 

The fuzzy input variables of FLC, SOC and C, are shown in Table 2. The fuzzification design is 

categorized into fuzzy sets ranging from “Very low” to “very high” respectively in five levels  

(SOC -SOC , C –C ). The design of fuzzy sets of input FLC variables is shown in Table 2. 
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Figure 1. Fuzzified GA scheme (FGAS). 

Table 2. Design of fuzzy sets of inputs of FLC. 

Inputs Function Types 
Designs (L&U: Lower and Upper Bounds, C: Centre,  
W: Width of the Top Side of a Trapezoidal Function) 

SOC 
Trapezoidal: SOC1, SOC5 (L,U,C,W) = (−0.2,0.35,0.15,0.15), (0.75,1.2,0.95,0.05) 

Triangular: SOC2, SOC3, SOC4 (L,C,U) = (0.15,0.35,0.55), (0.35,0.55,0.75), (0.55,0.75,0.95) 

C 
Trapezoidal: C1, C5 (L,U,C,W) = (−0.1,0.45,0.25,0.25), (0.85,1.3,1.05,0.15) 

Triangular: C2, C3, C4 (L,C,U) = (0.25,0.45,0.65), (0.45,0.65,0.85), (0.65, 0.85,1.05) 

The design in Table 2 renders the SOC always has a larger value than C. In the design, the range of SOC ( = 1,2, … 5)  is slightly smaller than C ( = 1,2, … 5) . For instance, when 80% SOC is 

classified as “very high” (SOC ), the fuel capacity (C ) will likely be just “high”. Thus it is seen that 

with identical proportion of SOC and C, SOC is a stronger indicator than C. 

As shown in Table 2, there are twenty five fuzzy rules designed. The format is designed as IF 

THEN rules, which is shown as “IF SOC is SOC  and C is C , THEN the output FLC variable is Y ”, 

where Y  are the fuzzy sets at the output. Finally, the deffuzified output at the moment t, , is 

calculated by using the centre of area method [9] and given by Equation (3): = ∑ ( )Y∑ ( )  (3)

where ( ) is strength of the output belonging to the fuzzy sets Y  at time t (x = 1,2,…,5). 

The fuzzified output FLC variable, , will then become the input GA variable 1. Attention is drawn 

to the point that the GA functions of FGAS and GAS are different. In FGAS, the GA function is given 

by Equation (4): ( ) = (7 − ), ∈ [1,5]( − 11), ∈ [6,10] (4)

5. Simulated Results and Discussion 

The design is mainly based on the practical facts of private vehicles in Hong Kong. Under the 

uniform driving condition, various initial values of SOC and C are used for simulation. The objective is to 

investigate if FGAS is more adaptive and efficient than TGA in improving η of PHEVs. TOYOTA 
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PRIUS, a popular PHEV in the market, is chosen as a benchmark. Detailed design of the scenarios is 

described in Table 3. 

Table 3. Scenario settings for the comparison of FGAS versus TGAS. 

Parameters Designed Data 

Driving condition Uniform driving  
Average speed 50 km/h 

SOC (%) 100–10 k (k = 0,1,2, …, 9) 
C (%) 100–10 m (m = 0,1,2, …, 9) 

Max. capacity of fuel tank 36 Litre 
Max. electric power 45 kW 

In the design, 10 states of both SOC and C are used. There will be in total 100 scenarios, which are 

sufficient to elaborate the practical states of PHEVs. During a 50 km drive in a fluctuating 

environment, initial values of both SOC and C deviate from the initial state of PHEVs by varying the 

charge of the battery and fuel level in the fuel tank. It is expected that with an adaptive scheme, a higher 

accurate and more efficient performance can be achieved. The simulated results of all the 100 scenarios 

are shown in Figure 2. The average improvement of GA is 8.7%. However, FGA can achieve  

an improvement of about 18.9%. With unchanged objective functions of TGA, the performance is 

similar with FGA in those scenarios with high SOC and C. However, in most other scenarios, the 

premature convergence of TGA occurs frequently. Alternatively, FGA can adjust the objective 

functions by the fuzzy control action pertaining to the environment to provide a better performance. 

Therefore, higher fuel efficiency can be achieved by FGA. 

 

Figure 2. Fuel capacity after one hour (100 scenarios in total). 

As an illustration, the cumulative sales volume of PHEV is more than 7 million units, among which 

there are more than 4.2 million current users [15]. Based on these figures and from TOYOTA PRIUS-C [16], 

the average distance that one PHEV travels per day is 28 km which is equivalent to 1 L fuel 

consumption. It is evidenced that 1 L fuel produces 2.2 kg CO2 [17] and that the improvement of 

FGAS is 10%. As a result, more than 186,880 L of fuel can be saved. This represents a reduction of 

emissions of CO2 by 613 tons every day. 
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6. Conclusions 

A fuzzified genetic algorithm (FGA) has been developed to deal with the fuel efficiency 

management of PHEVs. In FGA, a fuzzy logic controller has been designed to provide control input to 

the objective functions of genetic algorithm (GA) scheme to ensure FGA be adaptive to the ever 

changing environment. As a result, the FGA is more efficient than traditional GA (TGA) schemes 

under unchanged objective functions. Simulated results indicate that FGA has an average improvement 

of 18.9% while TGA achieves an improvement of 8.7%. Therefore the efficiency of the FGA is 10% 

better than TGA. With such an improvement, FGA can reduce the CO2 emissions by over 600 tons 

worldwide every day if all PHEVs were to adopt FGA, hence FGAS is a more efficient scheme for the 

fuel efficiency management of PHEVs. 
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