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Abstract. Developing a hydrological forecasting model based on past records is crucial to 23 

effective hydropower reservoir management and scheduling. Traditionally, time series analysis and 24 

modeling is used for building mathematical models to generate hydrologic records in hydrology 25 

and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of 26 

analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to 27 

apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive 28 

moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive 29 

neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and 30 

support vector machine (SVM) method are examined using the long-term observations of monthly 31 

river flow discharges. The four quantitative standard statistical performance evaluation measures, 32 

the coefficient of correlation (R), Nash-Sutcliffe efficiency coefficient (E), root mean squared 33 

error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the 34 

performances of various models developed. Two case study river sites are also provided to 35 

illustrate their respective performances. The results indicate that the best performance can be 36 

obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and 37 

validation phases. 38 
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1. Introduction 42 

The identification of suitable models for forecasting future monthly inflows to hydropower 43 

reservoirs is a significant precondition for effective reservoir management and scheduling. The 44 

results, especially in long-term prediction, are useful in many water resources applications such as 45 

environment protection, drought management, operation of water supply utilities, optimal 46 

reservoir operation involving multiple objectives of irrigation, hydropower generation, and 47 

sustainable development of water resources, etc. As such, hydrologic time series forecasting has 48 

always been of particular interest in operational hydrology. It has received tremendous attention of 49 

researchers in last few decades and many models for hydrologic time series forecasting have been 50 

proposed to improve the hydrology forecasting.  51 

These models can be broadly divided into three groups: regression based methods, time series 52 

models and AI-based methods. For autoregressive moving-average models (ARMA) proposed by 53 

Box and Jenkins (1970), it is assumed that the times series is stationary and follows the normal 54 

distribution. ARMA is one of the most popular hydrologic times series models for reservoir design 55 

and optimization. Extensive application and reviews of the several classes of such models 56 

proposed for the modelling of water resources time series were reported (Chen and Rao, 2002; 57 

Salas, 1993; Srikanthan and McMahon, 2001).  58 

In recent years, AI technique, being capable of analysing long-series and large-scale data, 59 

has become increasingly popular in hydrology and water resources among researchers and 60 

practicing engineers. Since the 1990s, artificial neural networks (ANNs), based on the 61 

understanding of the brain and nervous systems, was gradually used in hydrological prediction. An 62 

extensive review of their use in the hydrological field is given by ASCE Task Committee on 63 

Application of Artificial Neural Networks in Hydrology (ASCE, 2000a; ASCE, 2000b).The ANNs 64 

have been shown to give useful results in many fields of hydrology and water resources research 65 

(Campolo et al., 2003; Chau, 2006; Muttil and Chau, 2006).  66 

The adaptive neural-based fuzzy inference system (ANFIS) model and its principles, first 67 

developed by Jang (1993), have been applied to study many problems and also in hydrology field 68 

as well. Chang & Chang (2001) studied the integration of a neural network and fuzzy arithmetic 69 

for real-time streamflow forecasting and reported that ANFIS helps to ensure more efficient 70 

reservoir operation than the classical models based on rule curve. Bazartseren et al. (2003) used 71 

neuro-fuzzy and neural network models for short-term water level prediction. Dixon (2005) 72 

examined the sensitivity of neuron-fuzzy models used to predict groundwater vulnerability in a 73 

spatial context by integrating GIS and neuro-fuzzy techniques. Other researchers reported good 74 

results in applying ANFIS in hydrological prediction (Cheng et al., 2005; Keskin et al., 2006; 75 

Nayak et al., 2004). 76 

 Genetic Programming (GP), an extension of the well known field of genetic algorithms (GA) 77 

belonging to the family of evolutionary computation, is an automatic programming technique for 78 

evolving computer programs to solve problems (Koza, 1992). GP model was used to emulate the 79 

rainfall-runoff process (Whigam and Crapper, 2001) and was evaluated in terms of root mean 80 

square error and correlation coefficient (Liong et al., 2002; Whigam and Crapper, 2001). It was 81 

shown to be a viable alternative to traditional rainfall runoff models. The GP approach was also 82 

employed by Johari et al (2006) to predict the soil-water characteristic curve of soils. GP is 83 

employed for modelling and prediction of algal blooms in Tolo Harbour, Hong Kong (Muttil and 84 
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Chau, 2006) and the results indicated good predictions of long-term trends in algal biomass. The 85 

Darwinian theory-based GP approach was suggested for improving fortnightly flow forecast for a 86 

short time-series (Sivapragasam et al., 2007). 87 

The support vector machine (SVM) is based on structural risk minimization (SRM) principle 88 

and is an approximation implementation of the method of SRM with a good generalisation 89 

capability (Vapnik, 1998). Although SVM has been used in applications for a relatively short time, 90 

this learning machine has been proven to be a robust and competent algorithm for both 91 

classification and regression in many disciplines. Recently, the use of the SVM in water resources 92 

engineering has attracted much attention. Dibike et al. (2001) demonstrated its use in rainfall 93 

runoff modeling. Liong and Sivapragasam (2002) applied SVM to flood stage forecasting in 94 

Dhaka, Bangladesh and concluded that the accuracy of SVM exceeded that of ANN in 95 

one-lead-day to seven-lead-day forecasting. Yu et al.(2006) successfully explored the usefulness of 96 

SVM based modelling technique for predicting of real time flood stage forecasting on Lan-Yang 97 

river in Taiwan 1 to 6 hours ahead. Khan and Coulibaly (2006) demonstrated the application of 98 

SVM to time series modeling in water resources engineering for lake water level prediction. The 99 

SVM method has also been employed for stream flow predictions (Asefa et al., 2006; Lin et al., 100 

2006). 101 

The major objectives of the study presented in this paper are to investigate several AI 102 

techniques for modelling monthly discharge time series, which include ANN approaches, ANFIS 103 

techniques, GP models and SVM method, and to compare their performance with other traditional 104 

time series modelling techniques such as ARMA. Four quantitative standard statistical 105 

performance evaluation measures, i.e., coefficient of correlation (R), Nash-Sutcliffe efficiency 106 

coefficient (E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are 107 

employed to validate all models. Brief introduction and model development of these AI methods 108 

are also described before discussing the results and making concluding remarks. The performances 109 

of various models developed are demonstrated by forecasting monthly river flow discharges in 110 

Manwan Hydropower and Hongjiadu Hydropower. 111 

2 Description of Selected Models 112 

Several AI techniques employed in this study include ANNs, ANFIS techniques, GP models and 113 

SVM method. A brief overview of these techniques is presented here. 114 

2.1 Artificial Neural Networks (ANNs) 115 

Since early 1990s, ANNs, and in particular, feed-forward back-propagation perceptrons have been 116 

used for forecasting in many areas of science and engineering (Chau and Cheng, 2002). An ANN 117 

is an information processing system composed of many nonlinear and densely interconnected 118 

processing elements or neurons, which is organized as layers connected via weights between 119 

layers. An ANN usually consists of three layers: the input layer, where the data are introduced to 120 

the network; the hidden layer or layers, where data are processed; and the output layer, where the 121 

results of given input are produced. The structure of a feed-forward ANN is shown in Fig. 1. 122 

A multi-layer feed-forward back-propagation network with one hidden layer has been used 123 
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throughout the study (Haykin, 1999). In a feed-forward back-propagation network, the weighted 124 

connections feed activations only in the forward direction from an input layer to the output layer. 125 

These interconnections are adjusted using an error convergence technique so that the network’s 126 

response best matches the desired response. The main advantage of the ANN technique over 127 

traditional methods is that it does not require information about the complex nature of the 128 

underlying process under consideration to be explicitly described in mathematical form. 129 

2.2 Adaptive neural-based fuzzy inference system (ANFIS) 130 

The ANFIS used in the study is a fuzzy inference model of Sugeno type, and is a 131 

composition of ANNs and fuzzy logic approaches (Jang, 1993; Jang et al., 1997). The model 132 

identifies a set of parameters through a hybrid learning rule combining the back-propagation 133 

gradient descent and a least squares method. It can be used as a basis for constructing a set of 134 

fuzzy IF-THEN rules with appropriate membership functions in order to generate the previously 135 

stipulated input-output pairs (Keskin et al., 2006). 136 

The Sugeno fuzzy inference system is computationally efficient and works well with linear 137 

techniques, optimization and adaptive techniques. As a simple example, we assume a fuzzy 138 

inference system with two inputs x and y and one output z. The first-order Sugeno fuzzy model, a 139 

typical rule set with two fuzzy If-Then rules can be expressed as: 140 

Rule 1:If x is A1 and y is B1，then 1111 ryqxpf   141 

Rule 2:If x is A2 and y is B2，then 2222 ryqxpf   142 

The resulting Sugeno fuzzy reasoning system is shown in Fig. 2. It illustrates the fuzzy 143 

reasoning mechanism for this Sugeno model to derive an output function (f) from a given input 144 

vector [x, y]. The corresponding equivalent ANFIS architecture is a five-layer feed forward net 145 

work that uses neural net work learning algorithms coupled with fuzzy reasoning to map an input 146 

space to an output space. It is shown in Fig.3. The more comprehensive presentation of ANFIS for 147 

forecasting hydrological time series can be found in the literature (Cheng et al., 2005; Keskin et al., 148 

2006; Nayak et al., 2004). 149 

2.3 Genetic programming (GP) 150 

GP is a search methodology belonging to the class of ‘intelligent’ methods which allows the 151 

solution of problems by automatically generating algorithms and expressions. These expressions 152 

are codified or represented as a tree structure with its terminals (leaves) and nodes (functions). GP, 153 

similar to GA, initializes a population that compounds the random members known as 154 

chromosomes (individual). Afterward, fitness of each chromosome is evaluated with respect to a 155 

target value. GP works with a number of solution sets, known collectively as a “population”, 156 

rather than a single solution at any one time; the possibility of getting trapped in a “local 157 

optimum” is thus avoided. GP differs from the traditional GA in that it typically operates on parse 158 

trees instead of bit strings. A parse tree is built up from a terminal set (the variables in the problem) 159 

and a function set (the basic operators used to form the function). GP is provided with evaluation 160 

data, a set of primitives and fitness functions. The evaluation data describe the specific problem in 161 
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terms of the desired inputs and outputs. They are used to generate the best computer program to 162 

describe the relationship between the input and output very well (Koza, 1992). 163 

The representation of GP can be viewed as a parse tree-based structure composed of the 164 

function set and terminal set. The function set is the operators, functions or statements such as 165 

arithmetic operators ({+, -, *, /}) or conditional statements (if… then…) which are available in the 166 

GP. The terminal set contains all inputs, constants and other zero-argument in the GP tree. An 167 

example of such a parse tree can be found in Fig. 4. Once a population of the GP tree is initialized, 168 

the following procedures are similar to GAs including defining the fitness function, genetic 169 

operators such as crossover, mutation and reproduction and the termination criterion, etc. In GP, 170 

the crossover operator is used to swap the subtree from the parents to reproduce the children using 171 

mating selection policy rather than exchanging bit strings as in GAs. 172 

The genetic programming introduced here is one of the simplest forms available. A more 173 

comprehensive presentation of GP can be found in the literature (Borrelli et al., 2006; Koza, 174 

1992). 175 

2.4 Support vector machine (SVM) 176 

SVM is the state-of-the-art neural network technology based on statistical learning (Vapnik, 1995; 177 

Vapnik, 1998). The basic idea of SVM is to use linear model to implement nonlinear class 178 

boundaries through some nonlinear mapping of the input vector into the high-dimensional feature 179 

space. The linear model constructed in the new space can represent a nonlinear decision boundary 180 

in the original space. In the new space, SVM constructs an optimal separating hyperplane. If the 181 

data is linearly separated, linear machines are trained for an optimal hyperplane that separates the 182 

data without error and into the maximum distance between the hyperplane and the closest training 183 

points. The training points that are closest to the optimal separating hyperplane are called support 184 

vectors. Fig. 5 exhibits the basic concept of SVM. There exist uncountable decision functions, i.e. 185 

hyperplanes, which can effectively separate the negative and positive data set (denoted by ‘x’ and 186 

‘o’, respectively) that has the maximal margin. This indicates that the distance from the closest 187 

positive samples to a hyperplane and the distance from the closest negative samples to it will be 188 

maximized. 189 

Given a set of training data N
iii dx )},{( (xi is the input vector, di is the desired value and N is the 190 

total number of data patterns), the regression function of SVM is formulated as follows: 191 

bxwxfy ii  )()(                                             (1) 192 

where )(xi  is the feature of inputs, and iw and b are coefficients. The coefficients 193 
( iw and b) are estimated by minimizing the following regularized risk function (Vapnik, 194 
1995; Vapnik, 1998): 195 
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In Eq. (2), the first term is the empirical error (risk). They are measured by Eq. (3). ),( ydL  is 199 

called the  -insensitive loss function, the loss equals zero if the forecast value is within the 200 

 -tube and Fig. 6. The second term is used as a measure of the flatness of the function, 201 

Hence, C is referred to as the regularized constant and it determines the trade-off between 202 

the empirical risk and the regularization term. Increasing the value of C will result in an 203 

increasing relative importance of the empirical risk with respect to the regularization term. 204 

  is called the tube size and it is equivalent to the approximation accuracy placed on the 205 

training data points. Both C and   are user-prescribed parameters, two positive slack 206 

variables  and * , which represent the distance from actual values to the corresponding 207 

boundary values of  -tube (Fig. 6), are introduced. Then, Eq. (2) is transformed into the 208 

following constrained form. 209 

Minimize: 
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This constrained optimization problem is solved using the following primal Lagrangian form: 212 
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Eq. (5) is minimized with respect to primal variables i , b , and * , and maximized with 215 
respect to the nonnegative Lagrangian multipliers i

*
i i and *

i , Finally, Karush-Kuhn- 216 
Tucker conditions are applied to the regression, and Eq. (5) has a dual Lagrangian form: 217 
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with the constraints, 219 
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In Eq. (6), the Lagrange multipliers satisfy the equality 0* * ii  , The Lagrange multipliers 221 

i and *
i  are calculated, and the optimal desired weight vector of the regression hyperplane is 222 
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Therefore, the regression function can be given as 224 
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Here, ),( ixxK  is called the Kernel function. The value of the Kernel is inner product of the two 226 

vectors xi and xj in the feature space )(x and )( jx , so )(*)(),( jj xxxxK  , and function 227 

that satisfies Mercer’s condition (Vapnik, 1998) can be used as the Kernel Function. In general, 228 

three kinds of kernel function are used as follows: 229 
Polynomial: 230 

n
jj xxxxK )1(),(                                            (9) 231 

Radial basis function (RBF) 232 

)2/||||exp(),( 22 jj xxxxK                                (10) 233 

Two-layer neural networks 234 

n
jj xkxxxK )tanh(),(                                      (11) 235 

3 Study area and data 236 

In this study, Manwan Hydropower in Lancangjiang River is selected as a study site. The 237 

monthly flow data from January 1953 to December 2004 are studied. The data set from January 238 

1953 to December 1999 is used for calibration whilst that from January 2000 to December 2004 is 239 

used for validation (Fig.7). Lancangjiang River is a large river in Asia, which originates from 240 

Qinghai-Tibet Plateau, penetrates Yunnan from northwest to the south and passes through Laos, 241 

Burma, Thailand, Cambodia and Vietnam, ingresses into South China Sea finally. The river is 242 

about 4,500 km long and has a drainage area of 744,000 km2. Manwan Hydropower merges on the 243 

middle reaches of Lancang River and at borders of Yunxian and Jingdong counties. The catchment 244 

area at Manwan dam site is 114,500 km2, the length above Manwan is 1,579 km, and the mean 245 

elevation is 4,000 km. The average yearly runoff is 1,230 cubic meters per at the dam site. Rainfall 246 

provides most of the runoff and snow melt accounts for 10%. Nearly 70% of the annual rainfall 247 

occurs from June to September. Locations of Lancang River and Manwan Hydropower are shown 248 

in Fig.8 (A). 249 

The second study site is at Hongjiadu Hydropower on Wujiang River in southwest China. The 250 

monthly flow data from January 1951 to December 2004 are studied. The data set from January 251 

1951 to December 1994 is used for calibration whilst that from January 1995 to December 2004 is 252 

used for validation (Fig.9). Wujiang River, originating from Wumeng foothill of Yun-Gui Plateau, 253 

is the biggest branch at the southern bank of Yangtze River, which covers 87,920km2, total length 254 

of 1,037km, centralized fall of 2,124m, and with approved installed capacity 8,800MW. Nowadays, 255 

Hongjiadu hydropower station is the master regulation reservoir for the cascade hydropower 256 

stations on Wujiang River. The catchment area at Hongjiadu dam site is 9,900 km2 and the average 257 

yearly runoff is 155 cubic meters at the dam site. Rainfall provides most of the runoff. Locations 258 

of Wujiang River and Hongjiadu Hydropower are shown in Fig.8 (B). 259 

 260 

In ANN, ANFIS and SVM modeling processes, large attribute values might cause numerical 261 

problems because the neurons in ANN and ANFIS are combined Sigmoid function as excitation 262 

function, and the kernel values in SVM usually depend on the inner products of feature vectors, 263 

such as the linear kernel and the polynomial kernel. There are two main advantages to normalize 264 
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features before applying ANN, ANFIS and SVM to prediction. One advantage is to avoid 265 

attributes in greater numeric ranges dominating those in smaller numeric ranges, and another 266 

advantage is to avoid numerical difficulties during the calculation. It is recommended to linearly 267 

scale each attribute to the range [-1, +1] or [0, 1]. In the modeling process, the data sets of river 268 

flow were scaled to the range between 0 and 1 as follow: 269 

 
min

min'

qq

qq
q

maz

i
i 


                                                        (12) 270 

where '
iq  is the scaled value, iq  is the original flow value and minq , mazq  are respectively 271 

the minimum and maximum of flow series. 272 

4. Prediction modeling and input selection 273 

We are interested in hydrological forecasting model that predict outputs from inputs based on 274 

past records. There are no fixed rules for developing these AI techniques (ANN, ANFIS, GP, 275 

SVM), even though a general framework can be followed based on previous successful 276 

applications in engineering (Cheng et al., 2005; Lin et al., 2006; Nayak et al., 2004; Sudheer et al., 277 

2002). The objective of studies focus on predicting discharges using antecedent values is to 278 

generalize a relationship of the following form: 279 

     )( mXfY                                                            (13) 280 

where Xm is a m-dimensional input vector consisting of variables x1,…,xi,…xm, and Y is the output 281 

variable. In discharge modeling, values of xi may be flow values with different time lags and the 282 

value Y is generally the flow in the next period. Generally, the number of antecedent values 283 

included in the vector Xm is not known a priori.  284 

In these AI techniques, being typical in any data-driven prediction models, the selection of 285 

appropriate model input vector would play an important role in their successful implementation 286 

since it provides the basic information about the system being modeled. The parameters 287 

determined as input variables are the numbers of flow values for finding the lags of runoff that 288 

have a significant influence on the predicted flow. These influencing values corresponding to 289 

different lags can be very well established through a statistical analysis of the data series. 290 

Statistical procedures were suggested for identifying an appropriate input vector for a model (Lin 291 

et al., 2006; Sudheer et al., 2002). In this study, two statistical methods (i.e. the autocorrelation 292 

function (ACF) and the partial autocorrelation function (PACF)) are employed to determine the 293 

number of parameters corresponding to different antecedents values. The influencing antecedent 294 

discharge patterns can be suggested by the ACF and PACF in the flow at a given time. The ACF 295 

and PACF are generally used in diagnosing the order of the autoregressive process and can also be 296 

employed in prediction modeling (Lin et al., 2006). The values of ACF and PACF of monthly flow 297 

sequence (1953/1~1999/12) is calculated for lag 0 to 24 in Manwan, which are presented in Fig.10. 298 

Similarly, the values of ACF and PACF of monthly flow sequence (1951/1~1994/12) is calculated 299 

for lag 0 to 24 in Hongjiadu, which are presented in Fig.11. From Fig.10(a) and Fig.11(a), the ACF 300 

exhibits the peak at lag 12. In addition, Fig.10(b) and Fig.11(b) showed a significant correlation of 301 

PACF at 95% confidence level interval up to 12 months of flow lag. Therefore twelve antecedent 302 

flow values have the most information to predict future flow and are considered as input for 303 
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monthly discharge time series modeling. 304 

5. Model performance evaluation  305 

Some techniques are recommended for hydrological time series forecasting model performance 306 

evaluation according to published literature related to calibration, validation, and application of 307 

hydrological models. Four performance evaluation criteria used in this study are computed as in 308 

the following section. 309 

The coefficient of correlation (R) or its square, the coefficient of determination (R2): It 310 

describes the degree of collinearity between simulated and measured data, which ranges from -1 to 311 

1, is an index of the degree of linear relationship between observed and simulated data. If R =0, no 312 

linear relationship exists. If R=1 or -1, a perfect positive or negative linear relationship exists. Its 313 

equation is 314 
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R and R2 have been widely used for model evaluation (Lin et al., 2006; Santhi et al., 2001; Van 316 

Liew et al., 2003), though they are oversensitive to high extreme values (outliers) and insensitive 317 

to additive and proportional differences between model predictions and measured data (Legates 318 

and McCabe, 1999). 319 

Nash-Sutcliffe efficiency coefficient (E): The Nash-Sutcliffe model efficiency coefficient is used 320 

to assess the predictive power of hydrological models (Nash and Sutcliffe, 1970). It is a 321 

normalized statistic that determines the relative magnitude of the residual variance (“noise”) 322 

compared to the measured data variance and indicates how well the plot of observed versus 323 

simulated data fits the 1:1 line (Moriasi et al., 2007). It is defined as: 324 
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1                                                   (15) 325 

Nash-Sutcliffe efficiencies ranges between (-∞, 1]: E=1 corresponds to a perfect match of 326 

forecasting discharge to the observed data; E=0 shows that the model predictions are as accurate 327 

as the mean of the observed data; and -∞<E<0 occurs when the observed mean is a better predictor 328 

than the model, which indicates unacceptable performance. 329 

Root mean squared error (RMSE): It is an often used measure of the difference between values 330 

predicted by a model and those actually observed from the thing being modeled. RMSE is one of 331 

the commonly used error index statistics (Lin et al., 2006; Nayak et al., 2004) and is defined as: 332 





n

i
f iQiQ

n
RMSE

1

2
0 ))()((

1
                                           (16) 333 

Mean absolute percentage error (MAPE): The MAPE is computed through a term-by-term 334 

comparison of the relative error in the prediction with respect to the actual value of the variable. 335 
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Thus, the MAPE is an unbiased statistic for measuring the predictive capability of a model. It is a 336 

measure of the accuracy in a fitted time series value in statistics and has been used for river flow 337 

time series prediction evaluation (Hu et al., 2001). It usually expresses accuracy as a percentage 338 

and is defined as: 339 

 340 

100
)(

)()(1

1 0

0 


 


n

i

f

iQ

iQiQ

n
MAPE                                           (17) 341 

where )(0 iQ  and )(iQf  are, respectively, the observed and forecasted discharge and 0Q , fQ  342 

denote their means, and n is the number data points considered.  343 

5. Development of models 344 

ARMA model uses the direct dependence of the previous measurements and depends on the 345 

previous innovation of the process in a moving average form. The monthly discharge series, which 346 

do fit a normal distribution with respect to the skewness coefficient, can be normalized using a 347 

log-transformation function in order to remove the periodicity in the original record (Keskin et al., 348 

2006). In order to choose the appropriate ARMA (p, q) model, the Akaike information criteria 349 

(AIC) are used to select the value of p and q, which represent respectively the number of 350 

autoregressive orders and the number of moving-average orders of the ARMA model. In this study, 351 

the models ARMA (5, 8), (6, 7), (8, 7), (9, 8) and (11, 8), have a relatively minimum AIC value 352 

based on flow series in Manwan, and the models ARMA (5, 9), (6, 10), (7, 9), (8, 9) and (10, 11) 353 

have a relatively minimum AIC value based on flow series in Hongjiadu. Table 1 and Table 2, 354 

respectively, show their AIC values and the performance of alternative ARMA models. Hence, 355 

according to their performance indices, ARMA (8, 7) is selected as the ARMA model in Mamwan, 356 

and ARMA (6, 10) is selected as the ARMA model in Hongjiadu. 357 

In this study, a typical three-layer feed-forward ANN model (Fig. 1) with a back-propagation 358 

algorithm is constructed for forecasting monthly discharge time series. The back-propagation 359 

training algorithm is a supervised training mechanism and is normally adopted in most of the 360 

engineering application. The primary goal is to minimize the error at the output layer by searching 361 

for a set of connection strengths that cause the ANN to produce outputs that are equal to or closer 362 

to the targets. The neurons of hidden layer use the tan-sigmoid transfer function, and the linear 363 

transfer function for output layer. A scaled conjugate gradient algorithm (Moller, 1993) is 364 

employed for training, and the training epoch is set to 500. The optimal number of neuron in the 365 

hidden layer was identified using a trial and error procedure by varying the number of hidden 366 

neurons from 2 to 13. The number of hidden neurons was selected based on the RMSE. The effect 367 

of changing the number of hidden neurons on the RMSE of the data set is shown in Fig. 12 and 368 

Fig. 13. It can be observed that the effect of the number of neurons assigned to the hidden layer 369 

has insignificant effect on the performance of the feed forward model. The numbers of hidden 370 

neurons were found to be four and four for Manwan and Hongjiadu, respectively.  371 

The ANFIS applies a hybrid learning algorithm that combines the backpropagation gradient 372 

descent and the least squares estimate method, which outperforms the original backproagation 373 

algorithm. An essential part of fuzzy logic is fuzzy sets defined by membership functions and rule 374 

bases. Shapes of the fuzzy sets are defined by the membership functions. The adjustment of 375 
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adequate membership function parameters is facilitated by a gradient vector. After determining a 376 

gradient vector, the parameters are adjusted and the performance function is minimised via 377 

least-squares estimation. For the proposed Sugeno-type model, the overall output is expressed as 378 

linear combinations of the resulting parameters. The output f in Fig. 3 can be rewritten as: 379 

2222221111112211 )()()()()()( rwqywpxwrwqywpxwfwfwf    (18) 380 

The resulting parameters (p1, q1, r1, p2, q2, r2) are computed by the least-squares method. 381 

Consequently, the optimal parameters of the ANFIS model can be estimated using the hybrid 382 

learning algorithm. For more detail, please refer to Jang and Sun (Jang et al., 1997). 383 

GP has the ability to generate the best computer program to describe the relationship between 384 

the input and output. In this study, in order to find the optimal monthly flow series forecasting 385 

model, the selection of the appropriate parameters of GP evolution is necessary. Although the 386 

fine-tuning of algorithm was not the main concern of this paper, we investigated various 387 

initialization and run approaches and the adopted GP parameters are presented in Table 3. This 388 

setup furnished stable and effective runs throughout experiments. The evolutionary procedures are 389 

similar to GAs including defining the fitness function, genetic operators such as crossover, 390 

mutation and reproduction and the termination criterion, etc. In GP, the crossover operator is used 391 

to swap the subtree from the parents to reproduce the children using mating selection policy rather 392 

than exchanging bit strings as in GAs. 393 

A kernel function has to be selected from the qualified functions in using SVM. Dibike et al. 394 

(2001) applied different kernels in SVR to rainfall- runoff modeling and demonstrated that the 395 

radial basis function (RBF) outperforms other kernel functions. Also, many works on the use of 396 

SVR in hydrological modeling and forecasting have demonstrated the favorable performance of 397 

the RBF (Khan and Coulibaly, 2006; Lin et al., 2006; Liong and Sivapragasam, 2002; Yu et al., 398 

2006). Therefore, the RBF is used as the kernel function for prediction of discharge in this study. 399 

There are three parameters in using RBF kernels: C, ε and σ. the accuracy of a SVM model is 400 

largely dependent on the selection of the model parameters. However, structured methods for 401 

selecting parameters are lacking. Consequently, some kind of model parameter calibration should 402 

be made. Recently, there are several methods developed to identify the parameters, such as the 403 

simulated annealing algorithms (Pai and Hong, 2005), GA (Pai, 2006) and the shuffled complex 404 

evolution algorithm (SCE-UA) (Lin et al., 2006; Yu et al., 2004). The SCE-UA method belongs to 405 

the family of evolution algorithm and was presented by Duan et al. (1993). In this study, the 406 

SCE-UA is employed as the method of optimizing parameters of SVM and a more comprehensive 407 

presentation can be found by Lin et al. (2006). To reach at a suitable choice of these parameters, 408 

the RMSE was used to optimize the parameters. Optimal parameters (C, ε, σ) = (19.9373, 409 

8.7775e-004, 1.2408) and (C, ε, σ) = (0.5045, 5.0814e-004, 0.6623) were obtained for Manwan 410 

and Hongjiadu, respectively. 411 

6.  Results and discussion 412 

The Manwan Hydropower, has been studied by Cheng et al. (2005) using ANFIS with 413 

discharges of monthly river flow discharges during 1953-2003, and by Lin et al. (2006) using 414 

SVM with discharges of monthly river flow discharges during 1974-2003. In their study, the R and 415 

RMSE were employed for evaluation model performance. In this paper, in order to identify more 416 
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suitable models for forecasting future monthly inflows to hydropower reservoirs, the monthly 417 

discharge time series data of two study sites in different rivers are applied. For the same basis of 418 

comparison, the same training and verification sets, respectively, are used for all the above models 419 

developed, whilst the four quantitative standard statistical performance evaluation measures are 420 

employed to evaluate the performances of various models developed. Tables 4 and 5 present the 421 

results of Manwan and Hongjiadu study sites respectively, in terms of various performance 422 

statistics  423 

It can be observed from Tables 4 and 5 that various AI methods have good performance during 424 

both training and validation, and they outperform ARMA in terms of all the standard statistical 425 

measures. For Manwan hydropower, in the training phase, the ANFIS model obtained the best R, 426 

RMSE, and E statistics of 0.932, 329.77, and 0.869, respectively; while the SVM model obtained 427 

the best MAPE statistics of 12.49. Analyzing the results during testing, it can be observed that the 428 

SVM model outperforms all other models. Similarly, for Hongjiadu hydropower, in the training 429 

phase, the ANFIS model obtained the best RMSE and E statistics of 887.38 and 0.564, 430 

respectively; while the SVM model obtained the best R and MAPE statistics of 0.753 and 28.25, 431 

respectively. Analyzing the results during testing, the SVM model obtained the best R and MAPE 432 

statistics of 0.823 and 33.77, respectively; while the GP model obtained the best RMSE, and E 433 

statistics of 86.07 and 0.654, respectively. RMSE evaluates the residual between observed and 434 

forecasted flow, and MAPE measures the mean absolute percentage error of the forecast. R 435 

evaluates the linear correlation between the observed and computed flow, while E evaluates the 436 

capability of the model in predicting flow values away from the mean. According to the figures in 437 

Tables 4 and 5, we can conclude that the best performance of all AI methods developed in this 438 

paper is different in terms of the different statistical measures. 439 

In addition, in the validation phase as seen in Tables 4 and 5, the values with the ANFIS, GP and 440 

SVM model prediction were able to produce a good, near forecast, as compared to those with 441 

ARMA and ANN model, whilst it can be concluded that the ANFIS model obtained the best 442 

minimum absolute error between the observed and modeled maximum and minimum peak flows 443 

in Manwan Hydropower, and the GP and SVM model obtained the best minimum absolute error 444 

between the observed and modeled maximum and minimum peak flows, respectively, in 445 

Hongjiadu Hydropower. In the validation phase, the SVM model improved the ARMA forecast of 446 

about 6.06% and 20.12% reduction in RMSE and MAPE values, respectively; Improvements of 447 

the forecast results regarding the R and E were approximately 1.22% and 1.69%, respectively in 448 

Manwan Hydropower. In Hongjiadu Hydropower, the GP model obtained the best value of RMSE 449 

during the validation phase decreases by 8.77% and the best value of E increases by 11.99% 450 

comparing with ARMA; while, the SVM model obtained the best value of R during the validation 451 

phase increases by 4.71% and the best value of MAPE decreases by  29.69% comparing with 452 

ARMA. Thus the results of this analysis indicate that the ANFIS or SVM is able to obtain the best 453 

result in terms of different evaluation measures during the training phase, and the GP or SVM is 454 

able to obtain the best result in terms of different evaluation measures during the validation phase. 455 

Furthermore, as can be seen from Tables 4 and 5 that the virtues or defect degree of forecasting 456 

accuracy is different in terms of different evaluation measures during the training phase and the 457 

validation phase. SVM model is able to obtain the better forecasting accuracy in terms of different 458 

evaluation measures during the validation phase not only during the training phase but also during 459 

the validation phase. The forecasting results of ANFIS model during the validation phase are 460 
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inferior to the results during the training phase. GP is in the middle or lower level in training 461 

phases, but the GP model is able to obtain the better forecasting result in validation phases, and 462 

especially the GP model is able to obtain the maximum peak flows among all models developed in 463 

Hongjiadu Hydropower. The performances of all prediction models developed in this paper during 464 

the training and validation periods in the two study sites are shown in Fig. 14 to. 17. 465 

7.  Conclusions 466 

An attempt was made in this study to investigate the performance of several AI methods for 467 

forecasting monthly discharge time series. The forecasting methods investigated include the ANNs 468 

ANFIS techniques, GP models and SVM method. The conventional ARMA is also employed as a 469 

benchmarking yardstick for comparison purposes. The monthly discharge data from actual field 470 

observed data in the Manwan Hydropower and Hongjiadu Hydropower were employed to develop 471 

various models investigated in this study. The methods utilize the statistical properties of the data 472 

series with certain amount of lagged input variables. Four standard statistical performance 473 

evaluation measures are adopted to evaluate the performances of various models developed. 474 

The results obtained in this study indicate that the AI methods are powerful tools to model the 475 

discharge time series and can give good prediction performance than traditional time series 476 

approaches. The results indicate that the best performance can be obtained by ANFIS, GP and 477 

SVM, in terms of different evaluation criteria during the training and validation phases. SVM 478 

model is able to obtain the better forecasting accuracy in terms of different evaluation measures 479 

during the validation phase during both the training phase and the validation phase. The 480 

forecasting results of ANFIS model during the validation phase are inferior to the results during 481 

the training phase. GP is in the middle or lower level in training phases, but the GP model is able 482 

to obtain the better forecasting result in validation phases. The ANFIS and GP model obtain the 483 

maximum peak flows among all models developed in different studies sites, respectively. 484 

Therefore, the results of the study are highly encouraging and suggest that ANFIS, GP and SVM 485 

approaches are promising in modeling monthly discharge time series, and this may provide 486 

valuable reference for researchers and engineers who apply AI methods for modeling long-term 487 

hydrological time series forecasting. It is hoped that future research efforts will focus in these 488 

directions, i.e. more efficient approach for training multi-layer perceptrons of ANN model, the 489 

increased learning ability of the ANFIS model, the fine-tuning of algorithm for selecting more 490 

appropriate parameters of GP evolution, saving computing time or more efficient optimization 491 

algorithms in searching optimal parameters of SVM model etc to improve the accuracy of the 492 

forecast models in terms of different evaluation measures for better planning, design, operation, 493 

and management of various engineering systems. 494 
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 600 

Table.1. AIC value and performance indices of alternative ARMA models for Manwan 601 

hydropower 602 

(p, q) AIC 
Training Validation 

R E RMSE MAPE R E RMSE MAPE
(5, 8) 12.043 0.916 0.839 365.60 17.56 0.927 0.878 359.22 15.72 
(6, 7) 12.045 0.915 0.838 366.78 17.42 0.925 0.874 355.18 15.56 
(8, 7) 11.786 0.922 0.849 354.27 16.77 0.928 0.869 354.35 15.43 
(9, 8) 11.813 0.921 0.847 356.98 16.47 0.923 0.856 380.69 15.89 
(11, 8) 11.817 0.921 0.848 355.95 16.13 0.928 0.859 376.04 15.26 
 603 

 604 

Table.2. AIC value and performance indices of alternative ARMA models for Hongjiadu 605 

hydropower 606 

(p, q) AIC 
Training Validation 

R E RMSE MAPE R E RMSE MAPE
(5,9) 9.231 0.722 0.523 91.57 44.06 0.760 0.557 97.32 49.76

(6,10) 9.221 0.725 0.521 91.57 46.42 0.786 0.584 94.34 48.03

(7,9) 9.242 0.724 0.520 91.89 44.91 0.748 0.538 99.39 48.50

(8,9) 9.252 0.726 0.516 92.24 45.56 0.754 0.540 99.21 47.60

(10,11) 9.268 0.722 0.501 93.68 42.30 0.760 0.540 99.22 46.29

 607 

Table 3. Values of primary parameters used in GP runs 608 

Parameter  Value 

Terminal set Variable x, random (0,1) 

Function set +, -, *, /, sin, cos, ^ 

Population: 2000 individuals 

The maximum number of generations: 100 

Crossover rate:  0.9 

Mutation rate:  0.05 

Selection: Tournament with elitist strategy 

Initial population: Ramped-half-and-half 

The maximum depth of tree representation  9 

609 
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 610 

Table.4. Forecasting performance indices of models for Manwan hydropower 611 

Model 
Training Validation 

R RMSE MAPE E R RMSE MAPE E Min Max 

Observed         334.0 3821.0 

ARMA 0.922 354.27 16.77 0.849 0.928 354.35 15.63 0.869 373.4 3115.7 

ANN 0.925 346.31 16.16 0.856 0.932 345.37 14.01 0.867 369.6 3307.8 

ANFIS 0.9322 329.77 15.02 0.869 0.9405 335.02 14.30 0.883 343.7 3509.3 

GP 0.918 360.96 17.79 0.843 0.9408 334.04 14.69 0.8838 360.1 3321.0 

SVM 0.9315 334.07 12.49 0.866 0.9410 332.86 12.49 0.8836 369.0 3333.6 

Notes: Min means minimum peak flows, and Max means maximum peak flows 612 

 613 

 614 

Table.5. Forecasting performance indices of models for Hongjiadu hydropower 615 

Model 
Training Validation 

R RMSE MAPE E R RMSE MAPE E Min Max 

Observed         25.5 619.0 

ARMA 0.727 91.56 46.42 0.521 0.786 94.34 48.03 0.584 11.1 357.0 

ANN 0.725 91.16 46.25 0.526 0.786 91.07 46.15 0.612 39.1 358.7 

ANFIS 0.751 87.38 47.41 0.564 0.801 88.71 46.67 0.632 17.8 416.9 

GP 0.734 90.28 50.29 0.535 0.815 86.07 50.81 0.654 27.6 430.1 

SVM 0.753 89.89 28.25 0.539 0.823 87.57 33.77 0.641 24.6 382.8 

Notes: Min means minimum peak flows, and Max means maximum peak flows 616 

 617 

618 
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Fig.1. Architecture of three layers feed-forward back-propagation ANN 623 
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Fig.2. Two inputs first-order Sugeno fuzzy model with two rules 627 
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Fig.3. Architecture of ANFIS 629 
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Fig. 4. GP parse tree representing function   abacb 2)4( 2   633 
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 635 

Fig. 5. The basis of the support vector machines.  636 

 637 

 638 

Fig.6. The soft margin loss setting for a linear SVM and ε-insensitive loss function 639 

 640 
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 642 

Fig. 7. Monthly discharge at Manwan Reservoir 643 
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 646 

Fig. 8 Location of study sites 647 
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 650 

Fig. 9 Monthly discharge at Hongjiadu Reservoir 651 

 652 

 653 
Fig.10. (a) the autocorrelation function of flow series. (b)The partial autocorrelation function of 654 

flow series in Manwan 655 

 656 

 657 
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 658 

Fig.11 (a) The autocorrelation function of flow series. (b)The partial autocorrelation function of 659 

flow series in Hongjiadu. 660 

 661 

 662 
Fig. 12 Sensitivity of the number of nodes in the hidden layer on the RMSE of the neural network 663 

for Manwan hydropower 664 

 665 
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 666 

Fig. 13 Sensitivity of the number of nodes in the hidden layer on the RMSE of the neural network 667 

for Hongjiadu hydropower 668 

 669 

 670 

Fig.14 Forecasted and observed flow during training period by ARMA, ANN, ANFIS, GP and 671 

SVM for Manwan hydropower  672 

 673 
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 674 

Fig.15 Forecasted and observed flow during training period by ARMA, ANN, ANFIS, GP and 675 

SVM for Hongjiadu hydropower 676 

 677 

 678 

 679 

Fig.16 Forecasted and observed flow during validation period by ARMA, ANN, ANFIS, GP and 680 

SVM for Manwan hydropower 681 

 682 
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 683 

Fig.17 Forecasted and observed flow during validation period by ARMA, ANN, ANFIS, GP and 684 

SVM for Hongjiadu hydropower 685 




