A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

Wen-Chuan Wang
Ph.D., Institute of hydropower system & Hydroinformatics, Dalian University of Technology, Dalian, 116024, P.R. China
Faculty of Water conservancy Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, P.R. China

Kwok-Wing Chau
Associate Professor, Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (Corresponding author): E-mail address: cekwchau@polyu.edu.hk Tel.: (+852) 2766 6014

Chun-Tian Cheng
Professor, Institute of hydropower system & Hydroinformatics, Dalian University of Technology, Dalian, 116024, P.R. China

Lin Qiu
Professor, Institute of environmental & municipal engineering, North China Institute of Water Conservancy and Hydroelectric power, ZhengZhou, 450011, P.R.Ch

Abstract. Developing a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), Nash-Sutcliffe efficiency coefficient (E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases.

Key words: monthly discharge time series forecasting; ARMA; ANN; ANFIS; GP; SVM
1. Introduction

The identification of suitable models for forecasting future monthly inflows to hydropower reservoirs is a significant precondition for effective reservoir management and scheduling. The results, especially in long-term prediction, are useful in many water resources applications such as environment protection, drought management, operation of water supply utilities, optimal reservoir operation involving multiple objectives of irrigation, hydropower generation, and sustainable development of water resources, etc. As such, hydrologic time series forecasting has always been of particular interest in operational hydrology. It has received tremendous attention of researchers in last few decades and many models for hydrologic time series forecasting have been proposed to improve the hydrology forecasting.

These models can be broadly divided into three groups: regression based methods, time series models and AI-based methods. For autoregressive moving-average models (ARMA) proposed by Box and Jenkins (1970), it is assumed that the times series is stationary and follows the normal distribution. ARMA is one of the most popular hydrologic times series models for reservoir design and optimization. Extensive application and reviews of the several classes of such models proposed for the modelling of water resources time series were reported (Chen and Rao, 2002; Salas, 1993; Srikanthan and McMahon, 2001).

In recent years, AI technique, being capable of analysing long-series and large-scale data, has become increasingly popular in hydrology and water resources among researchers and practicing engineers. Since the 1990s, artificial neural networks (ANNs), based on the understanding of the brain and nervous systems, was gradually used in hydrological prediction. An extensive review of their use in the hydrological field is given by ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (ASCE, 2000a; ASCE, 2000b). The ANNs have been shown to give useful results in many fields of hydrology and water resources research (Campolo et al., 2003; Chau, 2006; Muttil and Chau, 2006).

The adaptive neural-based fuzzy inference system (ANFIS) model and its principles, first developed by Jang (1993), have been applied to study many problems and also in hydrology field as well. Chang & Chang (2001) studied the integration of a neural network and fuzzy arithmetic for real-time streamflow forecasting and reported that ANFIS helps to ensure more efficient reservoir operation than the classical models based on rule curve. Bazartseren et al. (2003) used neuro-fuzzy and neural network models for short-term water level prediction. Dixon (2005) examined the sensitivity of neuron-fuzzy models used to predict groundwater vulnerability in a spatial context by integrating GIS and neuro-fuzzy techniques. Other researchers reported good results in applying ANFIS in hydrological prediction (Cheng et al., 2005; Keskin et al., 2006; Nayak et al., 2004).

Genetic Programming (GP), an extension of the well known field of genetic algorithms (GA) belonging to the family of evolutionary computation, is an automatic programming technique for evolving computer programs to solve problems (Koza, 1992). GP model was used to emulate the rainfall-runoff process (Whigam and Crapper, 2001) and was evaluated in terms of root mean square error and correlation coefficient (Liong et al., 2002; Whigam and Crapper, 2001). It was shown to be a viable alternative to traditional rainfall runoff models. The GP approach was also employed by Johari et al (2006) to predict the soil-water characteristic curve of soils. GP is employed for modelling and prediction of algal blooms in Tolo Harbour, Hong Kong (Muttil and
Chau, 2006) and the results indicated good predictions of long-term trends in algal biomass. The Darwinian theory-based GP approach was suggested for improving fortnightly flow forecast for a short time-series (Sivapragasam et al., 2007).

The support vector machine (SVM) is based on structural risk minimization (SRM) principle and is an approximation implementation of the method of SRM with a good generalisation capability (Vapnik, 1998). Although SVM has been used in applications for a relatively short time, this learning machine has been proven to be a robust and competent algorithm for both classification and regression in many disciplines. Recently, the use of the SVM in water resources engineering has attracted much attention. Dibike et al. (2001) demonstrated its use in rainfall runoff modeling. Liong and Sivapragasam (2002) applied SVM to flood stage forecasting in Dhaka, Bangladesh and concluded that the accuracy of SVM exceeded that of ANN in one-lead-day to seven-lead-day forecasting. Yu et al. (2006) successfully explored the usefulness of SVM based modelling technique for predicting of real time flood stage forecasting on Lan-Yang river in Taiwan 1 to 6 hours ahead. Khan and Coulibaly (2006) demonstrated the application of SVM to time series modeling in water resources engineering for lake water level prediction. The SVM method has also been employed for stream flow predictions (Asefa et al., 2006; Lin et al., 2006).

The major objectives of the study presented in this paper are to investigate several AI techniques for modelling monthly discharge time series, which include ANN approaches, ANFIS techniques, GP models and SVM method, and to compare their performance with other traditional time series modelling techniques such as ARMA. Four quantitative standard statistical performance evaluation measures, i.e., coefficient of correlation (R), Nash-Sutcliffe efficiency coefficient (E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to validate all models. Brief introduction and model development of these AI methods are also described before discussing the results and making concluding remarks. The performances of various models developed are demonstrated by forecasting monthly river flow discharges in Manwan Hydropower and Hongjiadu Hydropower.

2 Description of Selected Models

Several AI techniques employed in this study include ANNs, ANFIS techniques, GP models and SVM method. A brief overview of these techniques is presented here.

2.1 Artificial Neural Networks (ANNs)

Since early 1990s, ANNs, and in particular, feed-forward back-propagation perceptrons have been used for forecasting in many areas of science and engineering (Chau and Cheng, 2002). An ANN is an information processing system composed of many nonlinear and densely interconnected processing elements or neurons, which is organized as layers connected via weights between layers. An ANN usually consists of three layers: the input layer, where the data are introduced to the network; the hidden layer or layers, where data are processed; and the output layer, where the results of given input are produced. The structure of a feed-forward ANN is shown in Fig. 1.

A multi-layer feed-forward back-propagation network with one hidden layer has been used
throughout the study (Haykin, 1999). In a feed-forward back-propagation network, the weighted connections feed activations only in the forward direction from an input layer to the output layer. These interconnections are adjusted using an error convergence technique so that the network’s response best matches the desired response. The main advantage of the ANN technique over traditional methods is that it does not require information about the complex nature of the underlying process under consideration to be explicitly described in mathematical form.

2.2 Adaptive neural-based fuzzy inference system (ANFIS)

The ANFIS used in the study is a fuzzy inference model of Sugeno type, and is a composition of ANNs and fuzzy logic approaches (Jang, 1993; Jang et al., 1997). The model identifies a set of parameters through a hybrid learning rule combining the back-propagation gradient descent and a least squares method. It can be used as a basis for constructing a set of fuzzy IF-THEN rules with appropriate membership functions in order to generate the previously stipulated input-output pairs (Keskin et al., 2006).

The Sugeno fuzzy inference system is computationally efficient and works well with linear techniques, optimization and adaptive techniques. As a simple example, we assume a fuzzy inference system with two inputs x and y and one output z. The first-order Sugeno fuzzy model, a typical rule set with two fuzzy If-Then rules can be expressed as:

Rule 1: If x is A1 and y is B1, then $f_1 = p_1 x + q_1 y + r_1$

Rule 2: If x is A2 and y is B2, then $f_2 = p_2 x + q_2 y + r_2$

The resulting Sugeno fuzzy reasoning system is shown in Fig. 2. It illustrates the fuzzy reasoning mechanism for this Sugeno model to derive an output function (f) from a given input vector $[x, y]$. The corresponding equivalent ANFIS architecture is a five-layer feed forward network that uses neural network learning algorithms coupled with fuzzy reasoning to map an input space to an output space. It is shown in Fig. 3. The more comprehensive presentation of ANFIS for forecasting hydrological time series can be found in the literature (Cheng et al., 2005; Keskin et al., 2006; Nayak et al., 2004).

2.3 Genetic programming (GP)

GP is a search methodology belonging to the class of ‘intelligent’ methods which allows the solution of problems by automatically generating algorithms and expressions. These expressions are codified or represented as a tree structure with its terminals (leaves) and nodes (functions). GP, similar to GA, initializes a population that compounds the random members known as chromosomes (individual). Afterward, fitness of each chromosome is evaluated with respect to a target value. GP works with a number of solution sets, known collectively as a “population”, rather than a single solution at any one time; the possibility of getting trapped in a “local optimum” is thus avoided. GP differs from the traditional GA in that it typically operates on parse trees instead of bit strings. A parse tree is built up from a terminal set (the variables in the problem) and a function set (the basic operators used to form the function). GP is provided with evaluation data, a set of primitives and fitness functions. The evaluation data describe the specific problem in
terms of the desired inputs and outputs. They are used to generate the best computer program to
describe the relationship between the input and output very well (Koza, 1992).

The representation of GP can be viewed as a parse tree-based structure composed of the
function set and terminal set. The function set is the operators, functions or statements such as
arithmetic operators (+, -, *, /) or conditional statements (if... then...) which are available in the
GP. The terminal set contains all inputs, constants and other zero-argument in the GP tree. An
example of such a parse tree can be found in Fig. 4. Once a population of the GP tree is initialized,
the following procedures are similar to GAs including defining the fitness function, genetic
operators such as crossover, mutation and reproduction and the termination criterion, etc. In GP,
the crossover operator is used to swap the subtree from the parents to reproduce the children using
mating selection policy rather than exchanging bit strings as in GAs.

The genetic programming introduced here is one of the simplest forms available. A more
comprehensive presentation of GP can be found in the literature (Borrelli et al., 2006; Koza,

2.4 Support vector machine (SVM)

SVM is the state-of-the-art neural network technology based on statistical learning (Vapnik, 1995;
Vapnik, 1998). The basic idea of SVM is to use linear model to implement nonlinear class
boundaries through some nonlinear mapping of the input vector into the high-dimensional feature
space. The linear model constructed in the new space can represent a nonlinear decision boundary
in the original space. In the new space, SVM constructs an optimal separating hyperplane. If the
data is linearly separated, linear machines are trained for an optimal hyperplane that separates the
data without error and into the maximum distance between the hyperplane and the closest training
points. The training points that are closest to the optimal separating hyperplane are called support
vectors. Fig. 5 exhibits the basic concept of SVM. There exist uncountable decision functions, i.e.
hyperplanes, which can effectively separate the negative and positive data set (denoted by ‘x’ and
‘o’, respectively) that has the maximal margin. This indicates that the distance from the closest
positive samples to a hyperplane and the distance from the closest negative samples to it will be
maximized.

Given a set of training data \( \{(x_i, d_i)\}_{i=1}^{N} \) (\( x_i \) is the input vector, \( d_i \) is the desired value and \( N \) is the
total number of data patterns), the regression function of SVM is formulated as follows:
\[
y = f(x) = w_i \phi_i(x) + b
\]
where \( \phi_i(x) \) is the feature of inputs, and \( w_i \) and \( b \) are coefficients. The coefficients
\( (w_i \) and \( b \)) are estimated by minimizing the following regularized risk function (Vapnik,
1995; Vapnik, 1998):
\[
r(C) = C \frac{1}{N} \sum_{i=1}^{N} L_\varepsilon (d_i, y_i) + \frac{1}{2} \left\| \omega \right\|^2
\]
where
\[
L_\varepsilon (d, y) = \begin{cases} 
|d - y| - \varepsilon & \text{if } |d - y| \geq \varepsilon \\
0 & \text{otherwise}
\end{cases}
\]
In Eq. (2), the first term is the empirical error (risk). They are measured by Eq. (3). \( L_\varepsilon(d, y) \) is called the \( \varepsilon \)-insensitive loss function, the loss equals zero if the forecast value is within the \( \varepsilon \)-tube and Fig. 6. The second term is used as a measure of the flatness of the function, hence, \( C \) is referred to as the regularized constant and it determines the trade-off between the empirical risk and the regularization term. Increasing the value of \( C \) will result in an increasing relative importance of the empirical risk with respect to the regularization term. \( \varepsilon \) is called the tube size and it is equivalent to the approximation accuracy placed on the training data points. Both \( C \) and \( \varepsilon \) are user-prescribed parameters, two positive slack variables \( \xi \) and \( \xi^* \), which represent the distance from actual values to the corresponding boundary values of \( \varepsilon \)-tube (Fig. 6), are introduced. Then, Eq. (2) is transformed into the following constrained form.

\[
\text{Minimize: } \frac{1}{2} \| \omega \|^2 + C \left( \sum_{i=1}^{N} \left( \xi_i + \xi_i^* \right) \right) \quad (4)
\]

Subject to
\[
\begin{align*}
\omega_i \phi(x_i) + b_i - d_i &\leq \varepsilon + \xi_i^*, \quad i = 1, \ldots, N \\
d_i - \omega_i \phi(x_i) - b_i &\leq \varepsilon + \xi_i, \quad i = 1, \ldots, N \\
\xi_i, \xi_i^*, \quad i = 1, 2, 3, \ldots, N
\end{align*}
\]

This constrained optimization problem is solved using the following primal Lagrangian form:

\[
L = \frac{1}{2} \| \omega \|^2 + C \left( \sum_{i=1}^{N} (\xi_i + \xi_i^*) \right) - \sum_{i} \alpha_i [\omega_i \phi(x_i) + b - d_i + \varepsilon + \xi_i] \\
- \sum_{i=1}^{N} \alpha_i^* [d_i - \omega_i \phi(x_i) - b + \varepsilon + \xi_i^*] - \sum_{i} (\beta_i \xi_i + \beta_i^* \xi_i^*) \quad (5)
\]

Eq. (5) is minimized with respect to primal variables \( \omega, b, \xi \) and \( \xi^* \), and maximized with respect to the nonnegative Lagrangian multipliers \( \alpha, \alpha^* \), \( \beta \), and \( \beta^* \). Finally, Karush-Kuhn-Tucker conditions are applied to the regression, and Eq. (5) has a dual Lagrangian form:

\[
\begin{align*}
\nu(\alpha, \alpha^*) &= \sum_{i=1}^{N} d_i (\alpha_i - \alpha_i^*) - \varepsilon \sum_{i=1}^{N} (\alpha_i + \alpha_i^*) - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*)K(x_i, x_j) \quad (6)
\end{align*}
\]

with the constraints,

\[
\sum_{i=1}^{N} (\alpha_i - \alpha_i^*) = 0 \quad \text{And} \quad \alpha_i, \alpha_i^* \in [0, C], \quad i = 1, 2, \ldots, N
\]

In Eq. (6), the Lagrange multipliers satisfy the equality \( \alpha^* \alpha^* = 0 \). The Lagrange multipliers \( \alpha_i \) and \( \alpha_i^* \) are calculated, and the optimal desired weight vector of the regression hyperplane is

\[
\omega^* = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*)K(x_i, x)
\]

Therefore, the regression function can be given as

\[
f(x, \alpha, \alpha^*) = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*)K(x_i, x) + b
\]
Here, \( K(x, x_j) \) is called the Kernel function. The value of the Kernel is inner product of the two
vectors \( x_i \) and \( x_j \) in the feature space \( \phi(x) \) and \( \phi(x_j) \), so \( K(x, x_j) = \phi(x) \cdot \phi(x_j) \), and function
that satisfies Mercer’s condition (Vapnik, 1998) can be used as the Kernel Function. In general,
three kinds of kernel function are used as follows:

Polynomial:
\[
K(x, x_j) = (x \cdot x_j + 1)^n
\]  (9)

Radial basis function (RBF)
\[
K(x, x_j) = \exp(-\|x - x_j\|^2 / 2\sigma^2)
\]  (10)

Two-layer neural networks
\[
K(x, x_j) = \tanh(kx \cdot x_j - \delta)^n
\]  (11)

3 Study area and data

In this study, Manwan Hydropower in Lancangjiang River is selected as a study site. The
monthly flow data from January 1953 to December 2004 are studied. The data set from January
1953 to December 1999 is used for calibration whilst that from January 2000 to December 2004 is
used for validation (Fig.7). Lancangjiang River is a large river in Asia, which originates from
Qinghai-Tibet Plateau, penetrates Yunnan from northwest to the south and passes through Laos,
Burma, Thailand, Cambodia and Vietnam, ingresses into South China Sea finally. The river is
about 4,500 km long and has a drainage area of 744,000 km\(^2\). Manwan Hydropower merges on the
middle reaches of Lancang River and at borders of Yunxian and Jingdong counties. The catchment
area at Manwan dam site is 114,500 km\(^2\), the length above Manwan is 1,579 km, and the mean
elevation is 4,000 km. The average yearly runoff is 1,230 cubic meters per at the dam site. Rainfall
provides most of the runoff and snow melt accounts for 10%. Nearly 70% of the annual rainfall
occurs from June to September. Locations of Lancang River and Manwan Hydropower are shown
in Fig.8 (A).

The second study site is at Hongjiadu Hydropower on Wujiang River in southwest China. The
monthly flow data from January 1951 to December 2004 are studied. The data set from January
1951 to December 1994 is used for calibration whilst that from January 1995 to December 2004 is
used for validation (Fig.9). Wujiang River, originating from Wumeng foothill of Yun-Gui Plateau,
is the biggest branch at the southern bank of Yangtze River, which covers 87,920km\(^2\), total length
of 1,037km, centralized fall of 2,124m, and with approved installed capacity 8,800MW. Nowadays,
Hongjiadu hydropower station is the master regulation reservoir for the cascade hydropower
stations on Wujiang River. The catchment area at Hongjiadu dam site is 9,900 km\(^2\) and the average
yearly runoff is 155 cubic meters at the dam site. Rainfall provides most of the runoff. Locations
of Wujiang River and Hongjiadu Hydropower are shown in Fig.8 (B).

In ANN, ANFIS and SVM modeling processes, large attribute values might cause numerical
problems because the neurons in ANN and ANFIS are combined Sigmoid function as excitation
function, and the kernel values in SVM usually depend on the inner products of feature vectors,
such as the linear kernel and the polynomial kernel. There are two main advantages to normalize
features before applying ANN, ANFIS and SVM to prediction. One advantage is to avoid attributes in greater numeric ranges dominating those in smaller numeric ranges, and another advantage is to avoid numerical difficulties during the calculation. It is recommended to linearly scale each attribute to the range \([-1, +1]\) or \([0, 1]\). In the modeling process, the data sets of river flow were scaled to the range between 0 and 1 as follow:

\[
q_i' = \frac{q_i - q_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}
\]  

where \(q_i'\) is the scaled value, \(q_i\) is the original flow value and \(q_{\text{min}}, q_{\text{max}}\) are respectively the minimum and maximum of flow series.

4. Prediction modeling and input selection

We are interested in hydrological forecasting model that predict outputs from inputs based on past records. There are no fixed rules for developing these AI techniques (ANN, ANFIS, GP, SVM), even though a general framework can be followed based on previous successful applications in engineering (Cheng et al., 2005; Lin et al., 2006; Nayak et al., 2004; Sudheer et al., 2002). The objective of studies focus on predicting discharges using antecedent values is to generalize a relationship of the following form:

\[
Y = f(X^m)
\]  

where \(X^m\) is a m-dimensional input vector consisting of variables \(x_1, \ldots, x_r, \ldots, x_m\) and \(Y\) is the output variable. In discharge modeling, values of \(x_i\) may be flow values with different time lags and the value \(Y\) is generally the flow in the next period. Generally, the number of antecedent values included in the vector \(X^m\) is not known a priori.

In these AI techniques, being typical in any data-driven prediction models, the selection of appropriate model input vector would play an important role in their successful implementation since it provides the basic information about the system being modeled. The parameters determined as input variables are the numbers of flow values for finding the lags of runoff that have a significant influence on the predicted flow. These influencing values corresponding to different lags can be very well established through a statistical analysis of the data series. Statistical procedures were suggested for identifying an appropriate input vector for a model (Lin et al., 2006; Sudheer et al., 2002). In this study, two statistical methods (i.e. the autocorrelation function (ACF) and the partial autocorrelation function (PACF)) are employed to determine the number of parameters corresponding to different antecedents values. The influencing antecedent discharge patterns can be suggested by the ACF and PACF in the flow at a given time. The ACF and PACF are generally used in diagnosing the order of the autoregressive process and can also be employed in prediction modeling (Lin et al., 2006). The values of ACF and PACF of monthly flow sequence (1953/1~1999/12) is calculated for lag 0 to 24 in Manwan, which are presented in Fig.10. Similarly, the values of ACF and PACF of monthly flow sequence (1951/1~1994/12) is calculated for lag 0 to 24 in Hongjiadu, which are presented in Fig.11. From Fig.10(a) and Fig.11(a), the ACF exhibits the peak at lag 12. In addition, Fig.10(b) and Fig.11(b) showed a significant correlation of PACF at 95% confidence level interval up to 12 months of flow lag. Therefore twelve antecedent flow values have the most information to predict future flow and are considered as input for
monthly discharge time series modeling.

5. Model performance evaluation

Some techniques are recommended for hydrological time series forecasting model performance evaluation according to published literature related to calibration, validation, and application of hydrological models. Four performance evaluation criteria used in this study are computed as in the following section.

The coefficient of correlation (R) or its square, the coefficient of determination (R^2): It describes the degree of collinearity between simulated and measured data, which ranges from -1 to 1, is an index of the degree of linear relationship between observed and simulated data. If R = 0, no linear relationship exists. If R = 1 or -1, a perfect positive or negative linear relationship exists. Its equation is

\[ R = \frac{\sum_{i=1}^{n} (Q_0(i) - \bar{Q}_0)(Q_f(i) - \bar{Q}_f)}{\sqrt{\sum_{i=1}^{n} (Q_0(i) - \bar{Q}_0)^2 \cdot \sum_{i=1}^{n} (Q_f(i) - \bar{Q}_f)^2}} \]  

R and R^2 have been widely used for model evaluation (Lin et al., 2006; Santhi et al., 2001; Van Liew et al., 2003), though they are oversensitive to high extreme values (outliers) and insensitive to additive and proportional differences between model predictions and measured data (Legates and McCabe, 1999).

Nash-Sutcliffe efficiency coefficient (E): The Nash-Sutcliffe model efficiency coefficient is used to assess the predictive power of hydrological models (Nash and Sutcliffe, 1970). It is a normalized statistic that determines the relative magnitude of the residual variance (“noise”) compared to the measured data variance and indicates how well the plot of observed versus simulated data fits the 1:1 line (Moriasi et al., 2007). It is defined as:

\[ E = 1 - \frac{\sum_{i=1}^{n} (Q_0(i) - Q_f(i))^2}{\sum_{i=1}^{n} (Q_0(i) - \bar{Q}_0)^2} \]  

Nash-Sutcliffe efficiencies ranges between (-∞, 1]: E=1 corresponds to a perfect match of forecasting discharge to the observed data; E=0 shows that the model predictions are as accurate as the mean of the observed data; and -∞<E<0 occurs when the observed mean is a better predictor than the model, which indicates unacceptable performance.

Root mean squared error (RMSE): It is an often used measure of the difference between values predicted by a model and those actually observed from the thing being modeled. RMSE is one of the commonly used error index statistics (Lin et al., 2006; Nayak et al., 2004) and is defined as:

\[ RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Q_f(i) - Q_0(i))^2} \]  

Mean absolute percentage error (MAPE): The MAPE is computed through a term-by-term comparison of the relative error in the prediction with respect to the actual value of the variable.
Thus, the MAPE is an unbiased statistic for measuring the predictive capability of a model. It is a measure of the accuracy in a fitted time series value in statistics and has been used for river flow time series prediction evaluation (Hu et al., 2001). It usually expresses accuracy as a percentage and is defined as:

$$\text{MAPE} = \frac{1}{n} \sum_{i=1}^{n} \frac{|Q_f(i) - Q_o(i)|}{\overline{Q}_o} \times 100$$

where $Q_o(i)$ and $Q_f(i)$ are, respectively, the observed and forecasted discharge and $\overline{Q}_o , \overline{Q}_f$ denote their means, and $n$ is the number data points considered.

5. Development of models

ARMA model uses the direct dependence of the previous measurements and depends on the previous innovation of the process in a moving average form. The monthly discharge series, which do fit a normal distribution with respect to the skewness coefficient, can be normalized using a log-transformation function in order to remove the periodicity in the original record (Keskin et al., 2006). In order to choose the appropriate ARMA (p, q) model, the Akaike information criteria (AIC) are used to select the value of p and q, which represent respectively the number of autoregressive orders and the number of moving-average orders of the ARMA model. In this study, the models ARMA (5, 8), (6, 7), (8, 7), (9, 8) and (11, 8), have a relatively minimum AIC value based on flow series in Manwan, and the models ARMA (5, 9), (6, 10), (7, 9), (8, 9) and (10, 11) have a relatively minimum AIC value based on flow series in Hongjiadu. Table 1 and Table 2, respectively, show their AIC values and the performance of alternative ARMA models. Hence, according to their performance indices, ARMA (8, 7) is selected as the ARMA model in Manwan, and ARMA (6, 10) is selected as the ARMA model in Hongjiadu.

In this study, a typical three-layer feed-forward ANN model (Fig. 1) with a back-propagation algorithm is constructed for forecasting monthly discharge time series. The back-propagation training algorithm is a supervised training mechanism and is normally adopted in most of the engineering application. The primary goal is to minimize the error at the output layer by searching for a set of connection strengths that cause the ANN to produce outputs that are equal to or closer to the targets. The neurons of hidden layer use the tan-sigmoid transfer function, and the linear transfer function for output layer. A scaled conjugate gradient algorithm (Moller, 1993) is employed for training, and the training epoch is set to 500. The optimal number of neuron in the hidden layer was identified using a trial and error procedure by varying the number of hidden neurons from 2 to 13. The number of hidden neurons was selected based on the RMSE. The effect of changing the number of hidden neurons on the RMSE of the data set is shown in Fig. 12 and Fig. 13. It can be observed that the effect of the number of neurons assigned to the hidden layer has insignificant effect on the performance of the feed forward model. The numbers of hidden neurons were found to be four and four for Manwan and Hongjiadu, respectively.

The ANFIS applies a hybrid learning algorithm that combines the backpropagation gradient descent and the least squares estimate method, which outperforms the original backpropagation algorithm. An essential part of fuzzy logic is fuzzy sets defined by membership functions and rule bases. Shapes of the fuzzy sets are defined by the membership functions. The adjustment of
adequate membership function parameters is facilitated by a gradient vector. After determining a gradient vector, the parameters are adjusted and the performance function is minimised via least-squares estimation. For the proposed Sugeno-type model, the overall output is expressed as linear combinations of the resulting parameters. The output $f$ in Fig. 3 can be rewritten as:

$$ f = w_1 f_1 + w_2 f_2 = (w_1 x) p_1 + (w_1 y) q_1 + (w_1) r_1 + (w_2 x) p_2 + (w_2 y) q_2 + (w_2) r_2 $$

The resulting parameters $(p_1, q_1, r_1, p_2, q_2, r_2)$ are computed by the least-squares method.

Consequently, the optimal parameters of the ANFIS model can be estimated using the hybrid learning algorithm. For more detail, please refer to Jang and Sun (Jang et al., 1997).

GP has the ability to generate the best computer program to describe the relationship between the input and output. In this study, in order to find the optimal monthly flow series forecasting model, the selection of the appropriate parameters of GP evolution is necessary. Although the fine-tuning of algorithm was not the main concern of this paper, we investigated various initialization and run approaches and the adopted GP parameters are presented in Table 3. This setup furnished stable and effective runs throughout experiments. The evolutionary procedures are similar to GAs including defining the fitness function, genetic operators such as crossover, mutation and reproduction and the termination criterion, etc. In GP, the crossover operator is used to swap the subtree from the parents to reproduce the children using mating selection policy rather than exchanging bit strings as in GAs.

A kernel function has to be selected from the qualified functions in using SVM. Dibike et al. (2001) applied different kernels in SVR to rainfall-runoff modeling and demonstrated that the radial basis function (RBF) outperforms other kernel functions. Also, many works on the use of SVR in hydrological modeling and forecasting have demonstrated the favorable performance of the RBF (Khan and Coulibaly, 2006; Lin et al., 2006; Liong and Sivapragasam, 2002; Yu et al., 2006). Therefore, the RBF is used as the kernel function for prediction of discharge in this study.

There are three parameters in using RBF kernels: $C$, $\varepsilon$ and $\sigma$. The accuracy of a SVM model is largely dependent on the selection of the model parameters. However, structured methods for selecting parameters are lacking. Consequently, some kind of model parameter calibration should be made. Recently, there are several methods developed to identify the parameters, such as the simulated annealing algorithms (Pai and Hong, 2005), GA (Pai, 2006) and the shuffled complex evolution algorithm (SCE-UA) (Lin et al., 2006; Yu et al., 2004). The SCE-UA method belongs to the family of evolution algorithm and was presented by Duan et al. (1993). In this study, the SCE-UA is employed as the method of optimizing parameters of SVM and a more comprehensive presentation can be found by Lin et al. (2006). To reach at a suitable choice of these parameters, the RMSE was used to optimize the parameters. Optimal parameters $(C, \varepsilon, \sigma) = (19.9373, 8.7775e-004, 1.2408)$ and $(C, \varepsilon, \sigma) = (0.5045, 5.0814e-004, 0.6623)$ were obtained for Manwan and Hongjiadu, respectively.

6. Results and discussion

The Manwan Hydropower has been studied by Cheng et al. (2005) using ANFIS with discharges of monthly river flow discharges during 1953-2003, and by Lin et al. (2006) using SVM with discharges of monthly river flow discharges during 1974-2003. In their study, the R and RMSE were employed for evaluation model performance. In this paper, in order to identify more
suitable models for forecasting future monthly inflows to hydropower reservoirs, the monthly
discharge time series data of two study sites in different rivers are applied. For the same basis of
comparison, the same training and verification sets, respectively, are used for all the above models
developed, whilst the four quantitative standard statistical performance evaluation measures are
employed to evaluate the performances of various models developed. Tables 4 and 5 present the
results of Manwan and Hongjiadu study sites respectively, in terms of various performance
statistics.

It can be observed from Tables 4 and 5 that various AI methods have good performance during
both training and validation, and they outperform ARMA in terms of all the standard statistical
measures. For Manwan hydropower, in the training phase, the ANFIS model obtained the best R,
RMSE, and E statistics of 0.932, 329.77, and 0.869, respectively; while the SVM model obtained
the best MAPE statistics of 12.49. Analyzing the results during testing, it can be observed that the
SVM model outperforms all other models. Similarly, for Hongjiadu hydropower, in the training
phase, the ANFIS model obtained the best RMSE and E statistics of 887.38 and 0.564,
respectively; while the SVM model obtained the best R and MAPE statistics of 0.753 and 28.25,
respectively. Analyzing the results during testing, the SVM model obtained the best R and MAPE
statistics of 0.823 and 33.77, respectively; while the GP model obtained the best RMSE, and E
statistics of 86.07 and 0.654, respectively. RMSE evaluates the residual between observed and
forecasted flow, and MAPE measures the mean absolute percentage error of the forecast. R
evaluates the linear correlation between the observed and computed flow, while E evaluates the
capability of the model in predicting flow values away from the mean. According to the figures in
Tables 4 and 5, we can conclude that the best performance of all AI methods developed in this
paper is different in terms of the different statistical measures.

In addition, in the validation phase as seen in Tables 4 and 5, the values with the ANFIS, GP and
SVM model prediction were able to produce a good, near forecast, as compared to those with
ARMA and ANN model, whilst it can be concluded that the ANFIS model obtained the best
minimum absolute error between the observed and modeled maximum and minimum peak flows
in Manwan Hydropower, and the GP and SVM model obtained the best minimum absolute error
between the observed and modeled maximum and minimum peak flows, respectively, in
Hongjiadu Hydropower. In the validation phase, the SVM model improved the ARMA forecast of
about 6.06% and 20.12% reduction in RMSE and MAPE values, respectively; Improvements of
the forecast results regarding the R and E were approximately 1.22% and 1.69%, respectively in
Manwan Hydropower. In Hongjiadu Hydropower, the GP model obtained the best value of RMSE
during the validation phase decreases by 8.77% and the best value of E increases by 11.99%
comparing with ARMA; while, the SVM model obtained the best value of R during the validation
phase increases by 4.71% and the best value of MAPE decreases by 29.69% comparing with
ARMA. Thus the results of this analysis indicate that the ANFIS or SVM is able to obtain the best
result in terms of different evaluation measures during the training phase, and the GP or SVM is
able to obtain the best result in terms of different evaluation measures during the validation phase.
Furthermore, as can be seen from Tables 4 and 5 that the virtues or defect degree of forecasting
accuracy is different in terms of different evaluation measures during the training phase and the
validation phase. SVM model is able to obtain the better forecasting accuracy in terms of different
evaluation measures during the validation phase not only during the training phase but also during
the validation phase. The forecasting results of ANFIS model during the validation phase are
inferior to the results during the training phase. GP is in the middle or lower level in training phases, but the GP model is able to obtain the better forecasting result in validation phases, and especially the GP model is able to obtain the maximum peak flows among all models developed in Hongjiadu Hydropower. The performances of all prediction models developed in this paper during the training and validation periods in the two study sites are shown in Fig. 14 to 17.

7. Conclusions

An attempt was made in this study to investigate the performance of several AI methods for forecasting monthly discharge time series. The forecasting methods investigated include the ANNs ANFIS techniques, GP models and SVM method. The conventional ARMA is also employed as a benchmarking yardstick for comparison purposes. The monthly discharge data from actual field observed data in the Manwan Hydropower and Hongjiadu Hydropower were employed to develop various models investigated in this study. The methods utilize the statistical properties of the data series with certain amount of lagged input variables. Four standard statistical performance evaluation measures are adopted to evaluate the performances of various models developed.

The results obtained in this study indicate that the AI methods are powerful tools to model the discharge time series and can give good prediction performance than traditional time series approaches. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases. SVM model is able to obtain the better forecasting accuracy in terms of different evaluation measures during the validation phase during both the training phase and the validation phase. The forecasting results of ANFIS model during the validation phase are inferior to the results during the training phase. GP is in the middle or lower level in training phases, but the GP model is able to obtain the better forecasting result in validation phases. The ANFIS and GP model obtain the maximum peak flows among all models developed in different studies sites, respectively. Therefore, the results of the study are highly encouraging and suggest that ANFIS, GP and SVM approaches are promising in modeling monthly discharge time series, and this may provide valuable reference for researchers and engineers who apply AI methods for modeling long-term hydrological time series forecasting. It is hoped that future research efforts will focus in these directions, i.e. more efficient approach for training multi-layer perceptrons of ANN model, the increased learning ability of the ANFIS model, the fine-tuning of algorithm for selecting more appropriate parameters of GP evolution, saving computing time or more efficient optimization algorithms in searching optimal parameters of SVM model etc to improve the accuracy of the forecast models in terms of different evaluation measures for better planning, design, operation, and management of various engineering systems.

Acknowledgements

This research was supported by the Central Research Grant of Hong Kong Polytechnic University (G-U265), the National Natural Science Foundation of China (No.50679011), Doctor Foundation of higher education institutions of China (No.20050141008).
Reference


Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River, NJ.


artificial neural network rainfall-runoff models. Hydrological Processes, 16(6):
1325-1330.


Table 1. AIC value and performance indices of alternative ARMA models for Manwan hydropower

<table>
<thead>
<tr>
<th>(p, q)</th>
<th>AIC</th>
<th>Training</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>E</td>
</tr>
<tr>
<td>(5, 8)</td>
<td>12.043</td>
<td>0.916</td>
<td>0.839</td>
</tr>
<tr>
<td>(6, 7)</td>
<td>12.045</td>
<td>0.915</td>
<td>0.838</td>
</tr>
<tr>
<td>(8, 7)</td>
<td>11.786</td>
<td>0.922</td>
<td>0.849</td>
</tr>
<tr>
<td>(9, 8)</td>
<td>11.813</td>
<td>0.921</td>
<td>0.847</td>
</tr>
<tr>
<td>(11, 8)</td>
<td>11.817</td>
<td>0.921</td>
<td>0.848</td>
</tr>
</tbody>
</table>

Table 2. AIC value and performance indices of alternative ARMA models for Hongjiadu hydropower

<table>
<thead>
<tr>
<th>(p, q)</th>
<th>AIC</th>
<th>Training</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>E</td>
</tr>
<tr>
<td>(5, 9)</td>
<td>9.231</td>
<td>0.722</td>
<td>0.523</td>
</tr>
<tr>
<td>(6, 10)</td>
<td>9.221</td>
<td>0.725</td>
<td>0.521</td>
</tr>
<tr>
<td>(7, 9)</td>
<td>9.242</td>
<td>0.724</td>
<td>0.520</td>
</tr>
<tr>
<td>(8, 9)</td>
<td>9.252</td>
<td>0.726</td>
<td>0.516</td>
</tr>
<tr>
<td>(10, 11)</td>
<td>9.268</td>
<td>0.722</td>
<td>0.501</td>
</tr>
</tbody>
</table>

Table 3. Values of primary parameters used in GP runs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal set</td>
<td>Variable x, random (0,1)</td>
</tr>
<tr>
<td>Function set</td>
<td>+, -, *, /, sin, cos, ^</td>
</tr>
<tr>
<td>Population:</td>
<td>2000 individuals</td>
</tr>
<tr>
<td>The maximum number of generations:</td>
<td>100</td>
</tr>
<tr>
<td>Crossover rate:</td>
<td>0.9</td>
</tr>
<tr>
<td>Mutation rate:</td>
<td>0.05</td>
</tr>
<tr>
<td>Selection:</td>
<td>Tournament with elitist strategy</td>
</tr>
<tr>
<td>Initial population:</td>
<td>Ramped-half-and-half</td>
</tr>
<tr>
<td>The maximum depth of tree representation</td>
<td>9</td>
</tr>
</tbody>
</table>
Table 4. Forecasting performance indices of models for Manwan hydropower

<table>
<thead>
<tr>
<th>Model</th>
<th>Training</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>RMSE</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td>334.0</td>
</tr>
<tr>
<td>ARMA</td>
<td>0.922</td>
<td>354.27</td>
</tr>
<tr>
<td>ANN</td>
<td>0.925</td>
<td>346.31</td>
</tr>
<tr>
<td>ANFIS</td>
<td>0.9322</td>
<td>329.77</td>
</tr>
<tr>
<td>GP</td>
<td>0.918</td>
<td>360.96</td>
</tr>
<tr>
<td>SVM</td>
<td>0.9315</td>
<td>334.07</td>
</tr>
</tbody>
</table>

Notes: Min means minimum peak flows, and Max means maximum peak flows

Table 5. Forecasting performance indices of models for Hongjiadu hydropower

<table>
<thead>
<tr>
<th>Model</th>
<th>Training</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>RMSE</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td>25.5</td>
</tr>
<tr>
<td>ARMA</td>
<td>0.727</td>
<td>91.56</td>
</tr>
<tr>
<td>ANN</td>
<td>0.725</td>
<td>91.16</td>
</tr>
<tr>
<td>ANFIS</td>
<td>0.751</td>
<td>87.38</td>
</tr>
<tr>
<td>GP</td>
<td>0.734</td>
<td>90.28</td>
</tr>
<tr>
<td>SVM</td>
<td><strong>0.753</strong></td>
<td><strong>89.89</strong></td>
</tr>
</tbody>
</table>

Notes: Min means minimum peak flows, and Max means maximum peak flows
List of all figures

Fig. 1. Architecture of three layers feed-forward back-propagation ANN

Fig. 2. Two inputs first-order Sugeno fuzzy model with two rules
Fig. 3. Architecture of ANFIS

Fig. 4. GP parse tree representing function \( \frac{\sqrt{(b^2 - 4ac)} - b}{2a} \)
Fig. 5. The basis of the support vector machines.

Fig. 6. The soft margin loss setting for a linear SVM and $\epsilon$-insensitive loss function.
Fig. 7. Monthly discharge at Manwan Reservoir
Fig. 8 Location of study sites
Fig. 9 Monthly discharge at Hongjiadu Reservoir

The diagram shows monthly discharge data over a period from 1951/1 to 2004/12.

Fig. 10. (a) the autocorrelation function of flow series. (b) The partial autocorrelation function of flow series in Manwan
Fig. 11 (a) The autocorrelation function of flow series. (b) The partial autocorrelation function of flow series in Hongjiadu.

Fig. 12 Sensitivity of the number of nodes in the hidden layer on the RMSE of the neural network for Manwan hydropower.
Fig. 13 Sensitivity of the number of nodes in the hidden layer on the RMSE of the neural network for Hongjiadu hydropower

Fig. 14 Forecasted and observed flow during training period by ARMA, ANN, ANFIS, GP and SVM for Manwan hydropower
Fig. 15 Forecasted and observed flow during training period by ARMA, ANN, ANFIS, GP and SVM for Hongjiadu hydropower.

Fig. 16 Forecasted and observed flow during validation period by ARMA, ANN, ANFIS, GP and SVM for Manwan hydropower.
Fig. 17 Forecasted and observed flow during validation period by ARMA, ANN, ANFIS, GP and SVM for Hongjiadu hydropower.